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Abstract The current method to analyze concentration-QT

interval data, which is based on predictions conditional on

a best model, fails to take into account the uncertainty of

the model. Previous studies have suggested that failure to

take into account model uncertainty using a best model

approach can result in confidence intervals that are overly

optimistic and may be too narrow. Theoretically, more

realistic estimates are obtained using model-averaging

where the overall point estimate and confidence interval are

a weighted-average from a set of candidate models, the

weights of which are equal to each model’s Akaike weight.

Monte Carlo simulation was used to determine the degree

of narrowness in the confidence interval for the degree of

QT prolongation under a single ascending dose and thor-

ough QT trial design. Results showed that model averaging

performed as well as the best model approach under most

conditions with no numeric advantage to using a model

averaging approach. No difference was observed in the

coverage of the confidence intervals when the best model

and model averaging was done by AIC, AICc, or BIC,

although in certain circumstances the coverage of the

confidence interval themselves tended to be too narrow

when using BIC. Modelers can continue to use the best

model approach for concentration-QT modeling with con-

fidence, although model averaging may offer more face

validity, may be of value in cases where there is

uncertainty or misspecification in the best model, and be

more palatable to a non-technical reviewer than the best

model approach.

Keywords TQT � Linear mixed effect models � E14 �
Concentration–response � Modeling � AIC � AICc � BIC

Introduction

The assessment of prolongation of the QT interval from an

ECG is a standard component of drug development

because of the toxicities associated with QT interval pro-

longation [1–4]. Because of the regulatory implications,

such assessments were typically made using results from a

‘thorough QT’ (TQT) study. The outline of the design,

conduct, and analysis of TQT studies has been described in

the International Conference on Harmonisation E14

Guidance [5]. Briefly, male and female subjects are

administered placebo, active control, active drug, or a

supratherapeutic dose of active drug in either a parallel

(most common) or crossover manner. Time-matched serial

ECGs and pharmacokinetic samples are collected, and

cardiac parameters, like QT interval, PR interval, and RR

interval, are extracted from the ECG by a cardiologist

blinded to treatment. The QT intervals are then corrected

for heart rate, typically using Fridericia’s correction (QTcF

intervals), and analyzed using the intersection–union test

(IUT). Clinically meaningful prolongation is declared if the

upper 1-sided 95% confidence interval of the largest pla-

cebo-corrected, time matched change from baseline, i.e.,

double-delta QTcF interval (ddQTcF) exceeds 10 ms.

The IUT, however, has been criticized for its high false

positive rate [6]. As an alternative to the IUT, exposure–

response modeling has been proposed [4, 6–8] as this
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approach maintains the Type I error [6, 9]. Under this

approach, all individual responses are pooled and then

linear and nonlinear mixed effect models are utilized to

assess the relationship between ddQTcF intervals and drug

and metabolite concentrations. If the upper 95% confidence

interval of the predicted ddQTcF at the geometric mean

maximal concentration (Cmax) at the therapeutic dose

exceeds 10 ms, the drug is declared to significantly prolong

QT intervals.

The most common model seen in the literature is a linear

mixed effects model using drug concentrations as the

dependent variable, both subject (as reflected by the

intercept) and concentration as correlated random effects,

and the residual error is treated as a simple normal random

effect [4, 10–12]. Sometimes covariates, such as sex [13],

weight [11], or nominal time [14, 15], are used or tested in

the model. Sometimes more complex residual error struc-

tures, such as using a spatial covariance, are reported [16].

Sometimes, nonlinear models, like an Emax or sigmoid

Emax model, are reported [17]. Further, there have also

been suggestions that for some drugs, like moxifloxacin,

hysteresis between ddQTcF intervals and drug concentra-

tions may be present which may require correction

[18, 19]. The point is, the analysis of ddQTcF interval data

is not as straightforward as first reported. As such, an FDA-

industry-academia white paper on this topic is expected to

be released in 2017 in an attempt to harmonize these

analyses.

Recently, the requirements for TQT studies, which are

costly and difficult to perform, have been relaxed as

sponsors may now be allowed to show that such studies are

unnecessary when data are collected from properly

designed single-ascending dose (SAD) and multiple-as-

cending dose (MAD) studies are analyzed [2, 15]. The

utilization of SAD and MAD study data raises some issues

not seen with a TQT study, namely sample size. TQT

studies are usually powered with regards to the IUT and not

with regards to concentration-QT (C-QT) modeling. Con-

sequently, these studies are over-powered when it comes to

C-QT modeling. Further, because SAD and MAD studies

are often parallel group designs, variability is increased

because each subject no longer acts as their own control

and also the dependent variable changes from time-mat-

ched differences in QTcF intervals (double-delta correc-

tion) to change from predose baseline values (so-called

single-delta or dQTcF intervals).

The assessment for prolongation is based on the geo-

metric mean Cmax at the therapeutic dose and whether the

upper 1-sided 95% confidence interval exceeds 10 ms. This

prediction is made using the ‘‘best’’ model approach. In

C-QT modeling, a single model is never used. Model

development is an iterative process where candidate mod-

els are developed, compared to other reference models, and

discarded or kept [20]. In the end, a final or ‘‘best’’ model is

selected based on some best fit criteria, like the likelihood

ratio test. This is the forward–backward selection process.

Alternatively, all candidate models can be fit to the data

and then ranked based on some selection metric, like the

Akaike Information Criteria (AIC), finite-sample size AIC

(AICc), or Bayesian information criteria where the model

with the smallest metric is the ‘‘best’’ model. Prediction of

QTc interval prolongation at Cmax is then based on the

‘‘best’’ model. This approach may not be generalizable to

all settings, but it is the recommended approach by regu-

latory authorities.

When a ‘‘best’’ model is selected based on the observed

data, and subsequent predictions are made from that model,

the predictions are known to be overly precise because they

do not account for model selection uncertainty [21]. Leo

Breiman, one of the most influential statisticians of the last

century, said the model selection problem and model

dimensionality was the ‘‘quiet scandal of statistics’’ [22].

Bornkamp [23] shows how model selection uncertainty

may result in different conclusions from a Phase 2 dose–

response study in diabetes patients. Model uncertainty may

be of concern in SAD and MAD studies because of the

relative small numbers of subjects per cohort. One way to

correct the impact of model uncertainty is by pre-specifi-

cation of the model to be used prior to data analysis, but

such a model may not best fit the data. Another way to

account for model uncertainty is to make predictions based

on model-averaging (MA) [21]. MA weights the predic-

tions from a set of candidate models with the weights

dependent on the goodness of fit of the individual models.

Models with better goodness of fit are given higher weight

in the prediction.

Between the time this paper was submitted for publi-

cation and the time of its publication, a publication of very

similar nature was published in Pharmaceutical Statistics

by Sebastien et al. [24]. In that paper the authors examined

the utility of model-averaging in concentration-QT mod-

eling using three mixed effect models for model averaging:

linear model with intercept, Emax model with intercept,

and exponential model with intercept. Their simulation was

of a TQT crossover study with 3 treatments (placebo and

two doses), 30 subjects in total, having ECGS and phar-

macokinetic samples collected at nine time points. Drug

concentrations were simulated using a 1-compartment

model with first order absorption. Importantly, they

examined four different data generating mechanisms for

ddQTcF: no relationship between drug concentration and

effect, linear relationship with intercept, Emax model with

intercept, and exponential model with intercept. There was

little difference in coverage and model predictions between

the best model and model averaged approach leading them

to recommend that either a formal selection criteria or
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model averaging approach be used for concentration-QT

analyses. Their results are biased, however, to the extent

that the data generating mechanism was the same as least

one of them models used to analyze the data and the results

may be overly optimistic. If the same data generating

mechanism is used as the model used to analyze the data, it

would be expected that the true parameter estimates can be

recovered and any model predictions will be close to the

true value. This study illustrates a problem with many TQT

simulation studies—the data generating mechanism is

basically the same as the model used to analyze the data.

This is not necessarily a flaw but represents the ‘‘best case

scenario.’’ A more realistic measure would be to use a

more realistic data generating mechanism and then deter-

mine how the model-averaged approach works. Such an

approach could be done by first resampling actual ECG

data from placebo-treated subjects, add on a drug effect,

and then analyze the resulting data. Another approach

would be to use a more physiologic baseline model, add on

drug effect, and then analyze the data. This is the approach

used in this paper; using data generating mechanisms dis-

tinct from the models used to analyze the data, the results

of Sebastian et al. are extended to more realistic conditions.

The hypothesis of this simulation study was that in the

modeling of C-QT data using data generating mechanisms

separate and distinct from the data analysis models, model-

averaging will result in more reliable estimates of the

degree of prolongation at Cmax and will protect against

model misspecification.

Method of model-averaging

The method is as follows:

1. Let R be the total number of possible candidate models

that minimized successfully and were fit using max-

imum likelihood.

2. Rank all R models based on smallest AIC (for very

small sample sizes AICc should be used).

3. The arithmetic difference in AIC, called Di, is calcu-

lated for each model as the difference in the AIC and

the model with the smallest AIC serving as the

reference model.

4. Akaike weights w are calculated for each of the R

models as

wi ¼
exp � 1

2
Di

� �

PR

r¼1

exp � 1
2
Dr

� � : ð1Þ

5. Let Êi be the prediction estimate for the ith model. The

model-averaged (MA) estimate of the prediction, Êma,

is calculated across models as

Êma ¼
XR

i¼1

wiÊi: ð2Þ

A modification of the method is to use the small sample

size corrected AIC (AICc) or Bayesian information crite-

rion (BIC) to compute the weights. Model-averaging can

be done for both the mean estimate and confidence inter-

vals, although it can be problematic for averaging model

confidence intervals.

A demonstration of the model-averaging calculations is

seen in Table 1. In this example, 4 candidate models were

tested using AIC as the weighting metric. The ‘‘best

model’’ was a traditional linear mixed effect model and the

predicted effect at Cmax was 8.92 ms. Based on the MA

approach, the predicted effect was slightly larger, 8.96 ms,

because although the average prediction was largely

dominated by the ‘‘best’’ model, Models 2 and 3 still

contributed almost 19% to the weighting. It should be clear

that if the weight of the best model is[0.9, MA is probably

not needed and inference can be made on the best condi-

tional model.

Model-averaging has received little attention in the lit-

erature. A keyword search of PubMed with ‘‘model aver-

aging’’ in the title only has 112 references starting from

1999 with few applications being reported in drug devel-

opment. Jin et al. [25] reported on the application of model

averaging two dose selection for a combination drug pro-

duct, while Schorning et al. [26] and Verrier et al. [27]

reported on the using of model-averaging to select doses in

Phase 2. Outside of drug development, model-averaging

has been used to improve prediction in ecology [28, 29],

epidemiology [30–32], pharmacoeconomics [33, 34], and

genetics [35–38]. What these reports have generally found

is that model averaging performs the same, if not better,

than traditional modeling methods across various measures

of performance.

Example in practice

Drug X is being developed for the treatment of cancer. This

study was a phase 1, open label first-in-human study in

adult patients with relapsed or refractory cancer in which a

single dose of drug X was administered on Day -2. Once-

daily dosing began on Day 1 of Cycle 1. In one cohort of

patients, ECGs were collected at Day -2 and Day 15 of

Cycle 1 at predose (within 0.5 h of dosing), 2, 4, 6, and

24 h postdose, while in the other cohort predose ECG

assessments were done on Cycle 1 Day 1, Cycle 1 Day 8,

Cycle 1 Day 22, and Day 1 of each subsequent 28 day

cycle. ECG monitoring was done in triplicate, within

30 min of nominal times, and transmitted electronically for

central reading. QTcF intervals were extracted by a
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cardiologist and averaged. Blood samples were collected at

ECG times and analyzed for plasma drug X concentrations.

Predose ECG measurements on Day -2 were treated as

the baseline. Single-delta QTcF intervals (dQTcF) were

calculated at every time point using time-matching. Drug X

concentrations less than the limit of quantification of the

assay were set to zero. Time matched concentration-dQTcF

intervals were analyzed using the following prespecified

models:

1. Linear mixed effect model with random intercept

only (null model).

2. Linear mixed effect model with random intercept

and drug concentration as a random effect. Uncor-

related random effects (standard model).

3. Model 2 with correlated random effects.

4. Model 1 with quadratic drug concentration term

treated as a fixed effect.

5. Model 2 with quadratic drug concentration term

treated as a fixed effect.

6. Emax model with intercept. Emax, EC50, and

intercept are treated as uncorrelated random effects.

7. Model 6 with no random effect on Emax term.

8. Model 6 with no random effect on EC50 term.

9. Model 6 with no random effect on both Emax and

EC50.

10. Emax model without intercept. All model parameters

treated as uncorrelated random effects.

11. Model 10 without random effect on Emax term.

12. Model 10 without random effect on EC50 term.

13. Model 10 without random effect on Emax and EC50

term.

14. Exponential model of the form

effect ¼ Emax 1� exp �b � concð Þð Þ ð3Þ

where Emax is the maximal effect that is treated as a

random effect and b is the exponential slope treated

as a fixed effect.

All random effects in the models above were assumed to

be normally distributed. All models were fit using Gaussian

adaptive quadrature using the NLMIXED procedure in

SAS, Version 9.3 (SAS Institute, Cary NC). Models were

ranked smallest to largest based on the Akaike Information

Criteria (AIC) [39, 40]. The best fit model was one that had

converged successfully without errors, had the smallest

AIC, and all parameter estimates were statistically signif-

icant (p\ 0.05) based on the t test (parameter/standard

error of the parameter). At the therapeutic dose (120 mg

once daily) the predicted median steady-state maximal

concentration (Cmax,ss) was 282 ng/mL. The predicted

dQTcF interval at the therapeutic dose and the corre-

sponding two-sided 90% confidence interval (equivalent to

the one-sided 95% CI) was calculated. Akaike weights

were calculated for all models. The MA dQTcF interval

and dQTcF interval using the best model were calculated

and compared.

Table 2 presents the results from each model and the

model averaged estimate. The best model was Model 8,

although many models had AIC values close to the best

model. Figure 1 presents a scatter plot of Drug X con-

centrations against dQTcF intervals overlaid with a non-

parametric smoother and predictions from the linear mixed

effect model and best model. The estimate of dQTcF

intervals at 282 ng/mL under the best model was 6.19 ms

with a 1-sided 95% CI of 8.12 ms, whereas the model

averaged estimate was slightly higher at 6.22 ms and

1-sided 95% CI of 8.17 ms.

Methods

Monte Carlo simulation of the performance

of model-averaged prediction

SAD/MAD and TQT simulation

To understand the performance of the MA approach

compared to the traditional best model approach a Monte

Carlo simulation was performed. Two types of study

designs were utilized:

(1) Data were simulated from a parallel-group single

ascending dose (SAD) study having 6 subjects per

group with doses of 10, 50, 100, 200, 400, 600 and

800 mg. Pharmacokinetic and ECG samples were

collected at 0, 1, 2, 3, 4, 5, 6, 8 and 12 h after dosing.

Predose ECGs were collected at -30, -15 and

-5 min prior to dosing. Single-delta QTcF (dQTcF)

Table 1 Table showing the

calculation of predicted effect

using model-averaging

Model number Êi (ms) AICi Di exp(-0.5*Di) wi wi � Êi (ms)

1 8.92 300.25 0.00 1.000 0.813 7.248

2 9.15 303.27 3.02 0.221 0.180 1.643

3 9.17 309.52 9.27 0.010 0.008 0.072

4 6.25 350.11 49.86 0.000 0.000 0.000

Total 1.231 1.000 8.963
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Table 2 Model-averaging results for Drug X at therapeutic Cmax of 282 ng/mL

Model number Point estimate (ms) 1-sided 95% CI (ms) AIC DAIC # of Model parameters Model weight

8 6.19 8.12 11427.47 0 6 0.645

6 6.19 8.12 11429.25 1.78 7 0.266

12 6.56 8.72 11431.43 3.96 4 0.089

3 4.90 6.58 11448.33 20.86 6 0.000

5 5.01 6.72 11449.97 22.5 7 0.000

14 6.83 9.12 11452.91 25.44 4 0.000

2 5.00 6.56 11461.51 34.04 5 0.000

4 5.16 6.73 11462.57 35.1 6 0.000

9 6.21 7.95 11562.34 134.87 5 0.000

7 6.21 7.95 11564.31 136.84 6 0.000

1 5.28 6.88 11616.43 188.96 3 0.000

13 6.58 7.75 11928.34 500.87 3 0.000

11 6.58 7.76 11930.34 502.87 4 0.000

Average 6.22 8.17

Fig. 1 Scatter plot of Drug X concentrations against dQTcF inter-

vals. Different doses are denoted by different symbols. The solid red

line is the model prediction using Model 1. The solid black line is the

nonparametric smooth to the data using a LOESS smoother. The solid

line is the model prediction using the best model (Model 12). The

Cmax at the therapeutic dose is the noted with the dashed line at

282 ng/mL (Color figure online)
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intervals, which were the dependent variable used in

the analysis, were calculated by subtracting the mean

predose baseline QTcF interval from the QTcF

interval at each time point.

(2) Data were simulated from a hypothetical TQT study

having 40 patients (20 males and 20 females).

Subjects were randomized to receive in a crossover

fashion a single-dose dose of placebo, 50, or 500 mg

of drug. Three different sampling designs were

tested:

(i) Pharmacokinetic and ECG samples were

collected at 0, 1, 2, 3 and 4 h after dosing.

(ii) Pharmacokinetic and ECG samples were

collected at 0, 1, 2, 3, 4, 5, 6, 8 and 12 h

after dosing.

(iii) Pharmacokinetic and ECG samples were

collected at 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5,

6, 8 and 12 h after dosing.

Double-delta QTcF intervals (ddQTcF) were calculated

in each drug treatment period by first subtracting the pre-

dose value from each post-dose time point (generating the

dQTcF interval) and then subtracting the time-matched

dQTcF interval in the placebo period. ddQTcF intervals

were the dependent variable in the analysis.

Pharmacokinetic data were simulated from a 1-com-

partment model with absorption. Population mean param-

eters were: CL = 40 L/h; V = 125 L; and Ka = 0.5 per h.

Between-subject variability was 30% for each pharma-

cokinetic parameter. Proportional residual variability was

10% for observed concentrations. Under this model, aver-

age maximal drug concentrations (Cmax) were *200 ng/

mL at 50 mg and*2000 ng/mL at 500 mg (*25% CV for

both). Supplemental Figs. 1 and 2 present representative

concentration–time profiles for each study design.

Two types of baselines were studied. The first baseline

was assumed to be a constant within an individual. This is

the baseline studied by Sebastian et al. [24]. QTcF intervals

in the absence of drug (QTcFdrug_free) were simulated as:

QTcF tð Þdrug free¼ QTcF0 ð4Þ

where QTcF0 was the baseline QTcF interval at time 0

which had a mean of 395 ms for females and 378 ms for

males and a BSV of 4.2%. The second baseline studied was

a more realistic, physiologically based one, reported by

Grosjean and Urien [41], where QTcF intervals had a cir-

cadian rhythm. Under this model, QTcFdrug_free was sim-

ulated with 2-cosinor functions:

QTcF tð Þdrug free¼QTcF0 1þ A1 cos
p
12

t � U1ð Þ
� ��

þA2 cos
p
6

t � U2ð Þ
� �� ð5Þ

where t is time post-dose, A1 and A2 are amplitudes, and

U-1 and U2 are phases. All parameters were log-normal in

distribution. Model parameters were reported in Table 6 of

Grosjean and Urien [41]. The population mean A1 and A2

were 0.0052 and 0.01 with BSV of 69 and 38%, respec-

tively. The population mean U-1 and U2 were 20.5 h and

14.2 h with BSV of 33 and 44%, respectively. Drug effect

was simulated based on simulated drug concentrations

using a standard linear model:

effect ¼ b1 � conc½ � ð6Þ

where b1, the slope, was log-normal in distribution with a

BSV of 30%. The slope was systematically varied in the

simulation from 0 to 0.01 ms/ng/mL. QTcF intervals in the

presence of drug were equal to:

QTcF tð Þ ¼ QTcF tð Þdrug freeþ effect: ð7Þ

Observed QTcF intervals had mean QTcF(t) with nor-

mally distributed random variability of 4 ms. Supplemental

Figs. 3 and 4 present representative concentration-dQTc

and ddQTcF plots time profiles for each study design,

respectively, under a circadian baseline.

The dependent variable (denoted DV, which was dQTcF

for SAD/MAD studies and ddQTcF for TQT study) was

analyzed using linear and nonlinear mixed effects models

[20, 42–44]:

1. Linear mixed effect model with random intercept

only (null model). Residual variance is simple

variance matrix.

2. Linear mixed effect model with random intercept

and drug concentration as an uncorrelated random

effect. This is the standard or typical model used to

analyze ddQTcF intervals. Residual variance is

simple variance matrix.

3. Model 2 with correlated random effects.

4. Model 2 with quadratic concentration as a fixed

effect.

5. Model 4 with correlated random effects.

6. Nonlinear Emax model with intercept. All model

parameters (E0, Emax, and EC50) are treated as

random effects.

7. Model 7 with Emax treated as a fixed effect.

8. Model 7 with EC50 treated as a fixed effect.

9. Model 7 with Emax and EC50 treated as fixed

effects.

10. Nonlinear Emax model without intercept. Emax and

EC50 are treated as random effects.

11. Model 10 with EC50 treated as a fixed effect.

12. Sigmoid Emax model with intercept. E0, Emax, and

EC50 are treated as random effects. Hill coefficient c
treated as a fixed effect.

13. Model 12 with E0 treated as a fixed effect.
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14. Model 12 with Emax treated as a fixed effect.

15. Model 12 with EC50 treated as a fixed effect.

16. Model 12 with Emax and E0 treated as a fixed effect.

17. Sigmoid Emax model without intercept. Emax and

EC50 are treated as random effects. Hill coefficient c
treated as a fixed effect.

18. Exponential model

DV ¼ h0 � exp 1� h1concð Þ ð8Þ

where Emax is treated as a random effect.

19. Power model with intercept

DV ¼ h0 þ conch1 ð9Þ

where the intercept was treated as a random effect.

20. Modified power model without intercept.

All random effects in the models above were assumed to

be normally distributed. All models were fit using the

NLMIXED procedure in SAS using maximum likelihood

estimation. The best model was chosen based on prespec-

ifying the criteria for a ‘‘best model’’ [45, 46]. These cri-

teria were successful model convergence, smallest

information criterion, and all parameter estimates were

statistically significant (p\ 0.05). Three different infor-

mation criterion were tested: AIC, AICc, and BIC. For each

of these information criterion, the best model was selected

using that information criterion and the model-averaging

predictions were done based on weights using that infor-

mation criterion. The degree of prolongation was estimated

at Cmax values of 200, 500, 1000 and 2000 ng/mL using

the best model and by model-averaging. For both the best

model and model-averaging approach, 90% confidence

intervals were also calculated. For the model-averaged

confidence intervals, the approach of Burnham and

Anderson [21] was used. Specifically, the 2-sided 90%

confidence intervals were calculated for each model. The

upper interval was chosen as the 1-sided 95% confidence

interval and then the model averaged average confidence

interval was calculated using the same weights used to

define the model-averaged mean estimate.

The following endpoints were calculated for each

combination of the slope (as defined by Eq. (6)) and true

Cmax value:

1. The percent ratio of the best model point estimate to

the MA point estimate (calculated as the (best model

point estimate)/(model averaged estimate) 9 100%);

2. The percent ratio of the best model 2-sided 90% CI

range to the MA 2-sided 90% CI;

3. The percent ratio of the best model upper 2-sided 90%

CI to the MA upper 2-sided 90% CI; and

4. Whether the 90% 2-sided CI for the best model and

MA approach contained the true drug effect

(coverage).

A total of 200 replicates were generated for every

combination of sampling scheme and slope and the mar-

ginal median values reported.

TQT simulation with non-inclusive data generating model

(effect of gross model misspecification)

One concern about the validity of the SAD/MAD and TQT

results was that the data generating model (Eq. (6)–(7))

was similar to one of the candidate models for the best

model and MA approach, i.e., a linear model was used to

simulate the data and to analyze the data in both the best

model and MA approach. This may result in an inherent

bias in how well these methods are performing. To

examine the impact of this bias, the TQT simulation was

repeated using a circadian baseline with three data gener-

ating models:

effect ¼ exp
Slope

7
Conc

� �
þ Slope

ffiffiffiffiffiffiffiffiffiffiffi
Conc

p
: ð10Þ

effect ¼ 12 1� exp � Conc

Slope� 50; 000

� �Slope�100
 !

:

ð11Þ

effect ¼
0 Conc\1000

10� Conc2

Slope� 100000ð Þ2þConc2
Conc � 1000

8
<

:
:

ð12Þ

These general shape of the effect profiles are shown in

Supplemental Fig. 6. Note the difference between

Eqs. (10)–(12) and Eq. (6). The data generating model was

not one of the candidate models used in the analysis. The

new drug effect model was not meant to simulate reality

but to ensure that the data generating model was different

than the candidate models used to fit the data.

Results

SAD/MAD studies

Figure 2 presents the median ratio percent of the best

model to the model-averaged results for the SAD study

under a constant and circadian QTcF baseline. A value

greater than 100% indicates the best model had a higher

value than the MA value. All the results were within *90

to *105% with most of the simulations being near 100%,

indicating that the best model and MA had similar pre-

dictions and confidence intervals. There were small dif-

ferences between the information criteria selection metrics

with BIC generally producing greater agreement between

the two approaches. For the best model approach,
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Supplemental Fig. 5 presents a stacked bar chart of the

most frequently chosen best model for each study design,

baseline, and information criterion used for model selec-

tion. Two things became apparent in the data. First, there

were small differences in which model was chosen most

frequently using the different information criterion with the

BIC being more conservative at declaring a drug effect

than AIC or AICc when no drug effect was present. Sec-

ond, there was a difference in which model was chosen

most frequently depending on whether the baseline was

constant or circadian in a SAD study design, but not so

much under a TQT design. When a drug effect was present,

Models 2, 9, and 15 were the most frequently chosen model

across all study designs and baselines.

Figure 3 presents the coverage for the approaches. For a

90% confidence interval the coverage should be approxi-

mately 90%. Coverage was mostly similar between the

approaches but sometimes coverage was worse with the

best model approach (see Cmax 2000 ng/mL with

slope = 0.001). Coverage tended to decrease with

increasing Cmax but approached their asymptote as the

signal-to-noise increased, i.e., as the slope was increased.

Coverage was uniformly lower with a circadian rhythm

baseline than coverage seen with a constant baseline. Little

difference was observed between confidence intervals

derived from the best model compared to the MA

approach, but coverage did not approach nominal values

and was smaller coverage than expected. At the highest

two Cmax values, a difference using BIC as the model

selection metric was noted—coverage tended to be even

smaller than the other metrics with the MA approach

having slightly better coverage than the best model. The

results from the SAD simulations, using either a constant

QTcF baseline or circadian rhythm baseline, or using AIC,

Fig. 2 Panel plot from Monte Carlo simulation of the ratio of the best

model estimate to the MA estimate for the SAD study design. The

median ratio in percent of the best model estimate to the model

averaged estimate plotted as a function of the slope of the true slope

parameter stratified by selection criteria and different levels of Cmax

(200, 500, 1000 and 2000 ng/mL). Plotted are the mean, upper

2-sided 90% CI, and CI range. A value of 100% implies no difference

between estimates. Legend: open blue circle, point estimate; dark red

plus, CI range; green cross, upper confidence interval (Color

figure online)
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AICc, or BIC as the metric for model selection, no

appreciable difference between the best model and MA

approach was generally observed.

TQT studies

Figure 4 presents the median ratio percent of the best

model to the model-averaged results for the TQT study. All

the results were within 95–105% and practically all results

were near 100% indicating that the best model and MA had

similar values. Figure 5 presents the coverage results for

the TQT study. Coverage under the TQT design was near

the 90% nominal value except when there was only 5

sampling points per subject. Under these conditions, cov-

erage dipped to near 40% in some circumstances. But for 9

and 13 sampling points per subject, coverage was near

nominal levels. Regardless of the conditions, no difference

was observed in the coverage between the best model and

MA approach.

Results of TQT simulation with non-inclusive data

generating model (effect of gross model

misspecification)

With a data generating model that is very distinct from the

models used to analyze the data, some differences between

the best model and MA approach emerge. Figure 6 pre-

sents the median ratio percent of the best model to the

model-averaged results for a non-inclusive data generating

model using AIC as the selection metric. Supplemental

Figs. 7 and 8 show the results for AICc and BIC, respec-

tively. With Eq. (10), which was an exponentially

increasing function with no asymptote, differences were

observed with 5 sampling points but decreased with

Fig. 3 Panel plot from Monte Carlo simulation coverage for the best

model approach and the MA approach for the SAD study design. The

percent of simulations where the 2-sided 90% CI contained the true

drug effect (coverage) for the best model approach and the MA

approach. Compared were models chosen or weighted based on AIC,

AICc, and BIC. A 90% CI should have an approximate coverage of

90% (gray line). Legend: open blue circle best model using AIC,

open brown triangle model averaged using BIC, brick red dashed line

with plus sign best model using AICc, purple dashed line with open

square model averaged using AICc, turquoise dashed and dotted line

with X symbol best model using BIC, green dashed and dotted line

with asterisk model averaged using BIC (Color figure online)
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increasing sampling points such that at 13 sampling points

there was no difference between the best model and MA

results. With Eq. (11), which was a hyperbolic model

similar in shape to an Emax model, there was no difference

between best model and the MA approach. With Eq. (12),

which was a step function at low slope values but changing

to an Emax type model at higher slope values, differences

were not seen with 5 sampling points, but were observed

with 9 and 13 sampling points. At the midpoint of the

concentration range, 500 and 1000 ng/mL, with both 9 and

13 sampling points, the best model estimates and confi-

dence intervals were considerably larger than the MA

approach, but this flipped at the highest Cmax examined,

2000 ng/mL, wherein the MA estimates and confidence

intervals were larger. Under all conditions, the results were

within -10 to ?30%.

For the best model approach, Supplemental Fig. 9 pre-

sents a stacked bar chart of which model was chosen most

frequently stratified by the data generating equation and

information criterion used for model selection. Like the

previous simulations, there was little difference in which

model was chosen most frequently in terms of information

criterion used for model selection. Because of the very

different data generating mechanisms, it would be inap-

propriate to draw conclusions across equations. What was

surprising, however, was how often a linear model was

chosen despite the curvilinear nature of the data generating

mechanism.

Figure 7 presents the coverage results for the nonin-

clusive data generating models. Although there was no

difference between the MA and best model approach,

coverage depended on the true Cmax concentration and

slope and could be quite different from nominal values.

Under many conditions the coverage was horrible. For

instance, the coverage using Eq. (12) with 5 sampling

points when the Cmax was 2000 ng/mL showed that the

Fig. 4 Panel plot from Monte Carlo simulation of the ratio of the best

model estimate to the MA estimate for the TQT study design. The

median ratio in percent of the best model estimate to the model

averaged estimate plotted as a function of the slope of the true slope

parameter stratified by selection criteria, different levels of Cmax

(200, 500, 1000 and 2000 ng/mL), and different sampling schemes (5,

9, and 13 data points). Plotted are the mean, upper 2-sided 90% CI,

and CI range. A value of 100% implies no difference between

estimates. Legend: open blue circle, point estimate; dark red plus, CI

range; green cross, upper confidence interval (Color figure online)
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coverage was less than 20%, which means that in fewer

than 20% of the confidence intervals generated was the true

drug effect contained within (the nominal effect should be

90% for a 90% CI). Nevertheless, these additional simu-

lations, which were quite artificial and were purposefully

designed to test model misspecification, could not detect

any real differences between the MA and best model

approach.

Discussion

Cleaskens and Hjort [47] showed that inference based on a

model post-selection results in standard errors that are too

small (resulting in too small of CIs) and the associated

point estimates may be biased in the case of a normal linear

model. They show analytically and through simulation that

model-averaging can correct for post-model selection bias.

Sebastian et al. [24] applied model averaging to the con-

centration-QT modeling setting and showed few differ-

ences between the traditional best model and MA

approach. They concluded that either approaches could be

used but that whichever method is selected should be

systematically used. Their results may be biased, however,

because the data generating mechanism for their simula-

tions was the same as one of the models used to analyze the

data. Of course the results would appear favorable under

these conditions.

This paper extends those results by using data generat-

ing mechanisms that were more realistic (circadian rhythm

baseline) and, despite their artificial nature, used data

generating models that were very distinct from the models

used to analyze the data. The results from the simulation in

this paper show that Cleaskens and Hjort’s concern is

Fig. 5 Panel plot from Monte Carlo simulation coverage for the best

model approach and the MA approach for the TQT study design. The

percent of simulations where the 2-sided 90% CI contained the true

drug effect (coverage) for the best model approach and the MA

approach. Compared were models chosen or weighted based on AIC,

AICc, and BIC. A 90% CI should have an approximate coverage of

90% (gray line). Legend: open blue circle best model using AIC; open

Brown triangle, model averaged using BIC; brick red dashed line

with plus sign, best model using AICc; purple dashed line with open

square, model averaged using AICc; turquoise dashed and dotted line

with X symbol, best model using BIC; green dashed and dotted line

with asterisk, model averaged using BIC (Color figure online)
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unnecessary in the case of concentration—QT modeling.

All the simulation results suggest that the current approach

of making predictions of QT interval prolongation condi-

tional on a best model results in point estimates and con-

fidence intervals of nearly equal predictability as MA

estimates. When differences are noted, it was the best

model approach that resulted in estimates higher than the

MA approach, but these differences were often small,

usually less than 20%.

The results also suggest that model averaging is prac-

tically insensitive to the choice of the information criteria

used for model weighting and best model selection. The

ratios of best model to MA were nearly identical for AIC,

AICc, and BIC. There were some differences with regards

to coverage, with MA showing a slight edge, but the

absolute differences were small enough to be ignored.

Further, the choice of best model was largely the same

regardless of the information criterion used, although AIC

and AICc seemed more sensitive at declaring a drug effect

when a drug effect was not present, i.e., when the slope was

0. This result is consistent with the known conservativeness

of BIC because of its enhanced penalty for adding

parameters to a model.

An early reviewer of this paper was concerned about the

poor coverage results for some of the simulations. For the

SAD study, when the data generating mechanism was a

linear relationship between drug and QT interval prolon-

gation and using a circadian baseline, coverage was often

less than the nominal 90% and, in some cases, as low as

40–60%. The reason for the poor coverage was likely due

to poor correction of the underlying circadian rhythm using

a single-delta correction in the SAD study. With this cor-

rection, the predose baseline value is subtracted from all

postdose values; it will not completely control for the

Fig. 6 Panel plot from Monte Carlo simulation of the ratio of the best

model estimate to the MA approach for the TQT study design where

the data generating model was noninclusive, the baseline was

circadian, and using AIC as the selection metric. The median ratio

in percent of the best model estimate to the model averaged estimate

plotted as a function of the slope of the true slope parameter stratified

by the data generating mechanism, different levels of Cmax (200,

500, 1000 and 2000 ng/mL) and different sampling schemes (5, 9,

and 13 data points). Plotted are the mean, upper 1-sided 95% CI, and

CI range. A value of 100% implies no difference between estimates.

Legend: open blue circle, point estimate; dark red plus, CI range;

green cross, upper confidence interval (Color figure online)
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circadian nature of the interval throughout the day, par-

ticularly when the rhythm is at its peak or nadir. Two

points support this hypothesis. One is when the TQT and

SAD simulations were conducted without having a circa-

dian component as part of the data generating mechanism.

In this case, coverage levels approached near nominal

levels and were similar to reported values in Sebastian

et al. [24]. This explanation is also supported by the results

of the TQT simulation. In those simulations, double-delta

correction is expected to better control for underlying cir-

cadian rhythms and the results showed this as coverage

improved to near nominal levels when there were more

than 9 or more sampling points. One solution to control for

this misspecification of baseline correction is to include

nominal time in the model as a fixed factor effect; this may

be useful to control for circadian effects in the data and

future models should consider this [48].

Coverage was indeed quite poor when the data gener-

ating mechanism was not of the same functional form as

one of the analysis models. In some cases, coverage was

U-shaped, monotonically decreasing, or reverse

U-shaped—and this was with a TQT design. Coverage

could not be improved using a MA approach. This is

because the models that were chosen as the candidate set of

models were not even close to the functional form of the

data generating mechanism. It’s expected that a best model

approach will not give any kind of reasonable coverage

when the model is markedly misspecified, but it also

highlights that neither will the MA approach when all the

candidate models are misspecified. When the data

Fig. 7 Panel plot from Monte Carlo simulation coverage of the best

model estimate to the MA approach for the TQT study design where

the data generating model was noninclusive and the baseline was

circadian. The percent of simulations where the 2-sided 90% CI

contained the true drug effect (coverage) for the best model approach

and the MA approach. Compared were models chosen or weighted

based on AIC, AICc, and BIC. A 90% CI should have an approximate

coverage of 90% (gray line). Legend: open blue circle, best model

using AIC; open brown triangle, model averaged using BIC; brick red

dashed line with plus sign, best model using AICc; purple dashed line

with open square, model averaged using AICc; turquoise dashed and

dotted line with X symbol, best model using BIC; green dashed and

dotted line with asterisk, model averaged using BIC (Color

figure online)
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generating model was of a different functional form from

any of the candidate analysis models model-averaging will

not save an analysis from a poor choice of models. One or

more models in the set of analysis models must have a

suitable functional form; you can’t just use any set of

models and then use model-averaging to get a reasonable

prediction estimate. These results suggest that care should

be taken to ensure that a reasonable selection of models are

chosen for the set of candidate models used in model

averaging.

While these results suggest that it is unnecessary to

model average predictions, MA may offer some advan-

tages. Bloomfield [49] cautioned that choosing an incorrect

model may lead to an inaccurate estimate of the slope and,

as by corollary when applied to a C-QT analysis, an

inaccurate point estimate of the predicted QTcF interval.

Model-averaging could protect against such model mis-

specification. In fact, the MA approach fits in nicely with

George Box’s [50] quote about all models being wrong.

The MA approach assumes that no model is right and that

the true prediction lies somewhere between all the pre-

dictions from a set of reasonable candidate models. This

may be more palatable to a non-technical consumer of the

data compared results from a best model approach because

there is always the question of whether you have ‘‘the right

model’’. As modelers, we know there is no right model, but

to a nontechnical reviewer that subtlety is lost on them.

Using an estimate from a large set of candidate models

could offer protection and have greater face validity than

results obtained based on a single model.

What is appealing about the MA approach is that the

two methods appear to converge to the same results in

cases of reasonable signal to noise with a large number of

samples used in the analysis. Why the results were so

similar may be that 1 or 2 models in the MA approach

dominate the weights of the other models, in such a case, it

is likely the best model and MA result will converge to the

same value. In the limiting case, where the best model is

far and away better than any other competitor models, the

model-averaging estimate will be the best-model estimate

since its weight will be 100%. In most other cases, how-

ever, the model-averaging estimate will be a blend of a few

different models. For five competing models, a difference

of 7 points in the AIC will result in the best model

accounting for at least 90% of the weighted estimate. In the

simulation above, where there were 20 different models, a

difference in AIC of at least 10 points was needed for the

best-model to account for 90% or mores of the weighted

estimate.

In summary, while the current practice using the best

model produces reasonable estimates, the MA approach

can further strengthen the conclusions drawn from a con-

centration-QTc interval analysis. These results show under

most circumstances, the best model approach and MA

approach give similar results and when they do differ they

do so within a reasonable degree of error. Further, the MA

approach is relatively easy to perform, requires no addi-

tional models than already performed for the best model

approach, and offers an additional layer of confidence in

cases where there might be model misspecification or

model uncertainty.
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