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Abstract We present competitive and uncompetitive

drug–drug interaction (DDI) with target mediated drug

disposition (TMDD) equations and investigate their phar-

macokinetic DDI properties. For application of TMDD

models, quasi-equilibrium (QE) or quasi-steady state

(QSS) approximations are necessary to reduce the number

of parameters. To realize those approximations of DDI

TMDD models, we derive an ordinary differential equation

(ODE) representation formulated in free concentration and

free receptor variables. This ODE formulation can be

straightforward implemented in typical PKPD software

without solving any non-linear equation system arising

from the QE or QSS approximation of the rapid binding

assumptions. This manuscript is the second in a series to

introduce and investigate DDI TMDD models and to apply

the QE or QSS approximation.

Keywords Drug–drug interaction � Target-mediated drug

disposition � Competitive � Uncompetitive

Introduction

Drugs interact in many different ways with their targets.

Some drug–drug interaction (DDI) mechanisms can be

formulated based on first principles such as competitive,

uncompetitive or non-competitive behavior [1–3].

The first aim of this manuscript is to introduce competitive

and uncompetitive DDI as part of target-mediated drug dis-

position (TMDD) principles [4, 5]. We investigate pharma-

cokinetic DDI properties and present the baseline situation

for constantly available substances, e.g. necessary to

describe interaction of endogenous and exogenous agents.

The second aim is to provide quasi-equilibrium (QE) and

quasi-steady state (QSS) approximations for DDI TMDD

models with rapid binding [6]. Such approximations result in

a collection of differential and algebraic equations [6–8],

formulated in total concentration and total receptor variables.

In contrast to the single drug case, in the DDI TMDD situation

the non-linear equation system providing the free drug con-

centrations can no longer be solved explicitly, as presented by

Yan, Chen and Krzyzanski [9] for competitive DDI TMDD.

Therefore, based on the single drug case, we derived an

ordinary differential equation (ODE) formulation without

solving any equation system [6]. Here we apply the developed

method to DDI TMDD models to avoid solving any equation

systems and to obtain a formulation in free concentration

variables. Our QE or QSS representation for DDI TMDD

models can be straightforwardly implemented in standard

pharmacokinetic / pharmacodynamic (PKPD) software.

Theoretical

We divided the construction and approximation of a gen-

eral TMDD model into four steps, see Fig. 1 in [6]. In the

following we apply this construction principles to the
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competitive and uncompetitive DDI TMDD model. To

keep the focus on the DDI TMDD models, we provide

detailed mathematical derivations in the Appendices.

Competitive TMDD

If two drugs A and B compete for the same receptor R and

thereby form two complexes RCA and RCB, this is called

competitive interaction [1–3, 9, 10]. In this mechanism

both drugs have equal rights, i.e. if only one drug is on

board, the system reduces to the single case. We call this

property symmetric DDI behavior.

Original formulation in free variables

The binding kinetics of competitive DDI and its extension

to TMDD are presented in Fig. 1a. The original model

equations read

d

dt
CA ¼ InAðtÞ � kelACA � konACA � R

þ koffARCA

ð1Þ

d

dt
CB ¼ InBðtÞ � kelBCB � konBCB � R

þ koffBRCB

ð2Þ

d

dt
R ¼ ksyn � kdegR� konACA � R� konBCB � R

þ koffARCA þ koffBRCB

ð3Þ

d

dt
RCA ¼ konACA � R� ðkoffA þ kintAÞRCA ð4Þ

d

dt
RCB ¼ konBCB � R� ðkoffB þ kintBÞRCB : ð5Þ

The initial values of Eqs. (1)–(5) are defined by their steady

state baseline values. Under the assumption that the base-

line concentrations of the free drugs is C0
A � 0 and C0

B � 0,

the receptor and the complexes are in steady state and

initial conditions read

CXð0Þ ¼C0
X ð6Þ

Rð0Þ ¼ R0

¼ ksyn

kdeg þ kintA
konAC

0
A

koffAþkintA
þ kintB

konBC
0
B

koffBþkintB

ð7Þ

RCXð0Þ ¼ RC0
X ¼ konXC

0
XR

0

koffX þ kintX
ð8Þ

where X either represents A or B, i.e. X 2 fA;Bg. The input

functions have the form

InXðtÞ ¼ InBaseX þ InAdX ðtÞ
¼ kelXC

0
X þ kintXRC

0
X þ InAdX ðtÞ

ð9Þ

with InBaseX denoting the inflow baseline and InAdX ðtÞ
standing for the administration of the drugs. Eqs. (7)–(9)

are obtained similarly as in the single drug case [6]. Note

that for a zero baseline concentration C0
A ¼ C0

B ¼ 0 we

Fig. 1 Schematic of the

competitive DDI TMDD model

described by Eqs. (1)–(5) (panel

a) and the uncompetitive DDI

TMDD model described by

Eqs. (23)–(27) (panel b)
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have RC0
A ¼ RC0

B ¼ 0, R0 ¼ ksyn=kdeg and

InBaseA ¼ InBaseB ¼ 0:

In order to provide valid QE or QSS approximations

please note that the competitive TMDD model Eqs. (1)–(5)

are symmetric in A and B and have the property that if one

drug is absent the model equations reduce to the single

TMDD equations for the other drug. This means for the

parameter values of the competitive system in particular,

the QE or QSS assumptions for each single system have to

be satisfied. Thus, as in the single drug case [6] we follow

Peletier et al. [11] and assume

koffX

konXR0
�1 ð10Þ

max
kintX

koffX
;
kdeg

koffX
;
kelX

koffX

� �
\mX

with
koff

konR0
mX �1 :

ð11Þ

In addition, in case of an IV bolus we assume

doseX

V
[R0 : ð12Þ

In case of constant infusion, i.e. InAdX ¼ kinfX [ 0, t� 0, we

assume

CssX [R0; ð13Þ

with CssX ¼ limt!1 CXðtÞ denoting the steady state of the

free concentration of drug X.

Final QE and QSS approximation in free variables

We apply the techniques of [6] to Eqs. (1)–(5) (for details

see Appendix ‘‘Derivation of the final QE and QSS

approximation in free concentration variables’’) and obtain

its QE and QSS approximation written as ODE formulation

in the original variables:

d

dt
CA

d

dt
CB

d

dt
R

0
BBBBBB@

1
CCCCCCA

¼ MComðCA;CB;RÞ � gComðCA;CB;RÞ ð14Þ

where matrix MComðCA;CB;RÞ is listed in Table 1,

gComðCA;CB;RÞ

¼

InAðtÞ � kelACA � kintA
CA � R
KYA

InBðtÞ � kelBCB � kintB
CB � R
KYB

ksyn � kdegR� kintA
CA � R
KYA

� kintB
CB � R
KYB

0
BBBBBB@

1
CCCCCCA

ð15Þ

with the baseline initial values defined by

gComðC0
A;C

0
B;RÞ ¼ 0 resulting in

CXð0Þ ¼ C0
X ; ð16Þ

Rð0Þ ¼R0 ¼ ksyn

kdeg þ kintA
C0
A

KYA
þ kintB

C0
B

KYB

; ð17Þ

and the input functions

InXðtÞ ¼ kelXC
0
X þ kintX

C0
XR

0

KYX

þ InAdX ðtÞ; ð18Þ

with

KDX ¼ koffX

konX
and KSSX ¼ koffX þ kintX

konX
ð19Þ

where Y denotes either D (the dissociation constant) or SS

(the steady state constant). According to the rapid binding

assumptions, the complexes can be recovered from

Table 1 Matrices MComðCA;CB;RÞ and MUnðCA;CB;RÞ for QE approximation of DDI TMDD implementation

Competitive

MComðCA;CB;RÞ ¼ 1
Det

Det � RðRþ CB þ KDBÞ CAR � ðRþ KDBÞCA

CBR Det � RðRþ CA þ KDAÞ � ðRþ KDAÞCB

�ðRþ KDBÞR � RðRþ KDAÞ Det � CAðRþ KDBÞ � CBðRþ KDAÞ

0
@

1
A

with

Det ¼ R2 þ CAKDB þ CBKDA þ CARþ CBRþ KDAKDB þ KDARþ KDBR

Replacing KDX by KSSX for X 2 fA;Bg gives matrix MCom for the QSS approximation.

Uncompetitive

MUnðCA;CB;RÞ ¼ 1
Det

Det � RðCARþ CBKDA þ KDAKDABÞ � CARKDA � CAðCARþ CBKDA þ KDAKDABÞ
�CBRKDA Det � CARðRþ CA þ KDAÞ � KDACACB

�ðCBKDA þ CARþ KDAKDABÞR � CARKDA Det � CAðCARþ KDABKDA þ CBKDAÞ

0
@

1
A

with

Det ¼ R2CA þ CARKDA þ CBRKDA þ C2
ARþ CACBKDA þ K2

DAKDAB þ KDAKDABRþ CAKDAKDAB
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RCA ¼ CA � R
KYA

and RCB ¼ CB � R
KYB

: ð20Þ

Eqs. (14)–(20) are the final competitive DDI TMDD model

in free concentration variables with QE or QSS

approximation.

Similar to the single drug case, one has to investigate the

IV bolus situation again, since we are dealing here with

two infinitely fast processes running at the same time. We

are proceeding as in [6]. We mimic an IV bolus by an IV

short infusion, instead of solving the algebraic system of

balance equations

Cnew
A þ Cnew

A Rnew

KYA

¼CA þ RCA þ
doseA

V

Cnew
B þ Cnew

B Rnew

KYB

¼CB þ RCB þ
doseB

V

Rnew þ Cnew
A Rnew

KYA

þ Cnew
B Rnew

KYB

¼Rþ RCA þ RCB

to compute the new states Cnew
A ; Cnew

B and Rnew after

administration, where V is the volume of distribution.

Please note that Eqs. (14)–(20) with a short IV infusion

is an easy to use ODE which avoids the computation of the

solution of any algebraic system.

The first attempt to derive a QE approximation for a

competitive DDI TMDD system was by Yan et al. [9].

They used the total variables CtotA ¼ CA þ RCA,

CtotB ¼ CB þ RCB, Rtot ¼ Rþ RCA þ RCB and wrote the

algebraic equations (20) of the QE assumptions in the form

KYAðCtotA � CAÞ
¼ðRtot � CtotA � CtotB þ CA þ CBÞCA

ð21Þ

KYBðCtotB � CBÞ
¼ðRtot � CtotA � CtotB þ CA þ CBÞCB :

ð22Þ

However, in contrast to the single drug case, no explicit

solution for CA and CB of Eqs. (21)–(22) is known. Thus,

the reduction of the differential algebraic model equations

to an ordinary differential equation in the total variables

CtotA; CtotB and Rtot is not possible.

Uncompetitive TMDD

If drug A binds to receptor R forming a complex RCA and

drugB binds now to this complexRCA only, and additionally

forms a complex RCAB, this mechanism is called uncom-

petitive DDI. Hence, drug B acts as an antagonist and its

effect depends on prior activation of the recepter R, see

[1–3, 10, 13]. We call this unsymmetrical DDI behavior. In

case of uncompetitive DDI TMDD, drug A follows TMDD

behavior. However, drug B has first-order elimination in

absence of RCA and changes to TMDD behavior in presence

ofRCA. Interestingly, in unsymmetrical cases, i.e., situations

of DDIs where the roles of A and B are not interchangeable,

there will be a fundamental difference between the QE and

QSS approximation.

Original formulation in free variables

The model equations of the uncompetitive DDI TMDD

model in original variables read

d

dt
CA ¼ InAðtÞ � kelACA � konACA � Rþ koffARCA ð23Þ

d

dt
CB ¼ InBðtÞ � kelBCB � konABCB � RCA

þ koffABRCAB

ð24Þ

d

dt
R ¼ ksyn � kdegR� konACA � Rþ koffARCA ð25Þ

d

dt
RCA ¼ konACA � R� konABCB � RCA

þ koffABRCAB � ðkoffA þ kintAÞRCA

ð26Þ

d

dt
RCAB ¼ konABCB � RCA � ðkoffAB þ kintABÞRCAB : ð27Þ

In Fig. 1b the schematic of Eqs. (23)–(27) is presented. The

steady state baseline initial values are

CXð0Þ ¼ C0
X ð28Þ

Rð0Þ ¼ R0

¼ ksyn

kdeg þ kintAC
0
A
KSSABþkintABC

0
A
C0
B

KSSABKSSAþ
C0
B
kintAB

konA

ð29Þ

RCAð0Þ ¼ RC0
A ¼ C0

AR
0KSSAB

KSSAKSSAB þ C0
B
kintAB
konA

ð30Þ

RCABð0Þ ¼ RC0
AB ¼ C0

AC
0
BR

0

KSSAKSSAB þ C0
B
kintAB
konA

: ð31Þ

Please note, to shorten the notation in Eqs. (29)–(31) we

used KSSX from Eq. (19). The input functions have the form

InAðtÞ ¼ kelAC
0
A þ kintARC

0
A þ kintABRC

0
AB

þ InAdA ðtÞ
ð32Þ

InBðtÞ ¼ kelBC
0
B þ kintABRC

0
AB þ InAdB ðtÞ ð33Þ

where InAdX ðtÞ denotes administration of drug A or B.

To locate parameter regions for which the uncompetitive

system (23)–(27) admits a valid QE approximation please

keep the following properties of the system (23)–(27) in

mind. If drug B is absent, the model equations reduce to the

single TMDD equations for CA; R and RCA. On the other

hand, in absence of drug A due to the unsymmetry in the

equations, drug B follows a simple linear one-compartment

PK with elimination rate kelB. Following Peletier et al. [11]
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we assume the QE assumptions for the parameter belong-

ing to drug A

koffA

konAR0
�1 ð34Þ

max
kintA

koffA
;
kdeg

koffA
;
kelA

koffA

� �
\mA

with
koffA

konAR0
mA �1:

ð35Þ

In addition, in case of IV bolus we assume

doseA

V
[R0: ð36Þ

In case of constant infusion of drug A, that is, InAdA ¼
kinfA [ 0 for t� 0 we assume

CssA [R0: ð37Þ

Moreover, in order to achieve a fast binding of drug B to its

complex we in addition assume

koffAB � konAB: ð38Þ

Final QE approximation in free variables

We now apply the principles of [6] to Eqs. (23)–(27) (see

Appendix ‘‘Derivation of the final QE and QSS approxi-

mation in free concentration variables’’). The QE approx-

imation provides the algebraic equations

0 ¼ CAR� KDARCA ð39Þ

0 ¼ CBRCA � KDABRCAB: ð40Þ

The QSS approximation of the complexes now reads

0 ¼ CAR� kintAB

konA
RCAB � KssARCA ð41Þ

0 ¼ CBRCA � KssABRCAB ð42Þ

see Appendix ‘‘QSS approximation’’ . Interestingly, in

Eq. (41) the parameter konA, which should be eliminated by

the approximation, is still involved. Hence, traditional

singular perturbation theory [6, 15] does not eliminate all

production rates. Therefore it seems to be not an adequate

reduction tool for this DDI case.

The final equations for uncompetitive DDI TMDD

model in free variables with the QE approximation are

d

dt
CA

d

dt
CB

d

dt
R

0
BBBBBB@

1
CCCCCCA

¼ MUnðCA;CB;RÞ � gUnðCA;CB;RÞ ð43Þ

where matrix MUnðCA;CB;RÞ is listed in Table 1, and

gUnðCA;CB;RÞ

¼

InAðtÞ � kelACA � kintA
CAR

KDA

� kintAB
CACBR

KDAKDAB

InBðtÞ � kelBCB � kintAB
CACBR

KDAKDAB

ksyn � kdegR� kintA
CAR

KDA

� kintAB
CACBR

KDAKDAB

0
BBBBBB@

1
CCCCCCA
:

ð44Þ

According to gunðC0
A;C

0
B;RÞ ¼ 0 the baseline initial values

read

CXð0Þ ¼ C0
X ð45Þ

Rð0Þ ¼ R0

¼ ksyn

kdeg þ kintA
C0
A

KDA
þ kintAB

C0
A
C0
B

KDAKDAB

ð46Þ

(see Appendix ‘‘Baseline initial values for the uncompeti-

tive TMDD model’’). The input functions are

InAðtÞ ¼ kelAC
0
A þ kintA

C0
AR

0

KDA

þ kintAB
C0
AC

0
BR

0

KDAKDAB

þ InAdA ðtÞ
ð47Þ

InBðtÞ ¼ kelBC
0
B þ kintAB

C0
AC

0
BR

0

KDAKDAB

þ InAdB ðtÞ: ð48Þ

From Eqs. (39)–(40) the complexes can be obtained via

RCA ¼ CAR

KDA

ð49Þ

RCAB ¼ CACBR

KDAKDAB

: ð50Þ

Drug administration can be performed analogously to the

competitive DDI TMDD case. In particular, an IV bolus

will be mimicked by a short IV infusion.

Methods

To implement the presented QE or QSS approximation in

ODE formulation with free concentration variables, IV

bolus administration has to be mimicked by a short IV

infusion. Explanation and full details for our ODE formu-

lation with an IV short infusion in ADAPT 5 [16], NON-

MEM [17], R [18] and MATLAB [19] can be found in [6].

Oral drug administration can be implemented as usual. In

Appendix 5, the NONMEM control stream of the com-

petitive DDI TMDD with QE approximation and IV short

infusion Eqs. (14)–(18), and ADAPT 5 source code for the
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uncompetitive DDI TMDD scenario Eqs. (43)–(48)

is presented. Full files are available as supplemental

material.

We also implemented the original competitive and

uncompetitive DDI TMDD model with IV bolus Eqs. (1)–

(9) and Eqs. (23)–(33) in ADAPT 5 and produced data with

the residual error model

Vari ¼ rYðtiÞð Þ2

where Vari is the variance at the ith time point ti, r is the

variance parameter and Y the model prediction.

Results

First, typical concentration profiles and pharmacokinetic

interaction properties of the original competitive

Eqs. (1)–(9) and uncompetitive Eqs. (23)–(33) DDI

TMDD model were produced. Second, the QE approxi-

mation quality in ODE formulation in free concentration

variables with IV short infusion was visualized for

escalating doses. Finally, we fit data produced by the

original formulation with our QE approximation in

ADAPT 5 and NONMEM.

Typical concentration profiles

Competitive DDI

In competitive DDI both drugs compete for the same

receptor, a common behavior in different DDI scenarios.

For example, often therapeutic antibodies and hematopoi-

etic growth factors are agents competing for the same

receptor with endogenous substances [9]. Also endogenous

immunoglobulin G antibodies (IgG) compete with exoge-

nous IgG for the neonatal Fc receptor [9], and erythro-

poiesis-stimulation agents compete with endogenous

erythropoietin for the same receptor.

Two properties of the competitive TMDD model

Eqs. (1)–(9) were observed: (i) if model parameters of drug

A and B are equal, also the concentration profiles CA and

CB are equal, (ii) concentration profiles CA and CB, when

administered in combination, appear to be higher up to a

certain time point compared to the single profiles, if the

number of receptors is equal for the single and multiple

case. In Fig. 2a, b, property (ii) is shown in case of no

baseline concentration.

Next the pharmacokinetic interaction was assessed. Both

drugs interact with each other in a competitive manner and

0 10 20 30

C
A

(t)

10-2

100

102

Competitive (Original)

0 10 20 30

C
B

(t)

10-2

100

102

0 10 20 30 40

C
A

(t)

100

101

102

0 10 20 30 40

C
B

(t)

100

101

102

0 10 20 30

C
B

(t)

100

101

102

0 10 20 30

C
A

(t)

100

101

102

0 10 20 30

C
A

(t)

10-2

100

102

Uncompetitive (Original)

0 10 20 30

C
B

(t)

10-2

100

102a b e f

g hdc

Time t

Fig. 2 Properties of the original DDI TMDD models. Competitive: In

panels a and b the single drug profiles of drugs A and B (blue dotted

lines) are compared with the competitive model (black solid line)

Eqs. (1)–(9) for doseA ¼ 100, doseB ¼ 100 and no baseline

C0
A ¼ C0

B ¼ 0. In panels c and d, the effect of the administration of

one drug only on a present concentration of the other drug is shown

by two examples: (i) drugs A and B are in baseline C0
A ¼ C0

B ¼ 1, and

one administration at time t ¼ 12 of drug B with doseB ¼ 100 (red

dashed lines) causes an increase of drug A concentration, (ii) drug A is

administered with doseA ¼ 100 at t ¼ 0 and drug B administered with

doseB ¼ 100 at t ¼ 0 and additionally at t ¼ 12 (black solid lines),

and causes an increase of drug A concentration. Uncompetitive: In

panels e and f the single drug profiles of drugs A and B (blue dotted

lines) are compared with the uncompetitive model (black solid lines)

Eqs. (23)–(33) for doseA ¼ 100, doseB ¼ 100 and no baseline

C0
A ¼ C0

B ¼ 0. In panels g and h drugs A and B are in baseline C0
A ¼

C0
B ¼ 1 with one administration at time t ¼ 5 of drug A with doseA ¼

100 and non of drug B (red dashed line) and the other way around

(black solid lines) (Color figure online)
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administration of one drug has an effect on the concen-

tration profile of the other drug. Let drug A be present in

the system. Administration of drug B causes a decrease in

the number of receptors R and simultaneously an increase

of the complex RCB. Due to the competing behavior, a

release of bounded drug A from the complex RCA occurs

and therefore an increase of the concentration of drug

A. Hence, an increase of free drug concentration CA can

occur without actual administration of drug A. As example,

this behavior is shown for endogenously available drug

A and B at baseline C0
A ¼ C0

B [ 0 with different adminis-

trations in Fig. 2c, d. In the above examples, a certain set of

model parameters (kelA ¼ 0:1, konA ¼ 2:5, koffA ¼ 0:1,

kintA ¼ 0:1, kelB ¼ 0:2, konB ¼ 5, koffB ¼ 0:1, kintB ¼ 0:1,

ksyn ¼ 5, and kdeg ¼ 0:25) was chosen. These settings sat-

isfy the conditions (10)–(13) with mA ¼ mB ¼ 2:5 and

R0 2 ½10; 20�. The actual value of R0 depends on the

baseline values C0
A;C

0
B with 0�C0

A;C
0
B � 1.

Uncompetitive DDI

In uncompetitive DDI the action of drug B depends on

prior activation of receptor R [13], i.e. if drug A does not

bind with R producing a complex RCA, drug B is not active

in the mechanism. Hence, drug B acts as an antagonist.

Uncompetitive interaction is attractive from the perspective

of selective drug action [21], but is still a rare mechanism

[22]. Some examples without TMDD behavior are: (i)

lithium inhibiting inositol monophosphutuse [21] for psy-

chiatric medication, or (ii) memantine an NMDA receptor

antagonist for Alzheimer’s disease [13]. Currently we are

not aware of uncompetitive DDI TMDD examples. How-

ever, investigation of this case is useful to open the route

for the more common non-competitive scenario where drug

B binds to both, the receptor R and the complex RCA.

In the uncompetitive TMDD setting, drug B binds to the

complex RCA produced by drug A only. Hence, if no drug

A is on board, or the complex RCA is nearly eliminated,

drug B follows a first-order elimination process. In contrast,

if RCA is available, drug B follows typical TMDD-like

profiles, see Fig. 2e, f.

Again the pharmacokinetic interaction, i.e. the effect of

administration of one drug on the profile of the other drug

was examined. If drug A is administered, complex RCA is

build up and therefore more targets are available for drug

B causing a decrease in its free concentration. For admin-

istration of drug B, complex RCA decreases but only causes

a marginal effect on the concentration profile of drug

A. For endogenously available drugs at a baseline C0
A ¼

C0
B [ 0 the two cases are visualized in Fig. 2g, h. In the

above examples, we selected the model parameters as

kelA = kelAB = 0.1, konA = konAB = 2.5, koffA = koffAB = 0.1,

kintA = kintAB = 0.1, ksyn = 5 and kdeg = 0.25. These

parameter values satisfy (34)–(38) with mA ¼ 2:5, konAB ¼
25koffAB and R0 2 ½10; 20�. As in the competitive case the

value of R0 depends on the baseline values C0
A;C

0
B with

0�C0
A;C

0
B � 1.

Approximation quality of the QE formulation

Competitive

The QE approximation in the ODE formulation with an IV

short infusion Eqs. (14)–(18) captures reasonably well the

dynamics of the free concentrations from the original

Eqs. (1)–(9), see Fig. 3a, b. Next the QE approximation

quality if only drug A is administered and concentration of

drug B is present was assessed. As an example we consider

baseline concentrations C0
A;C

0
B [ 0. For administration of

drug A only, the concentration profile of drug B increases.

The QE approximation produces an immediate increase of

CB caused by the rapid binding assumption, whereas the

original system shows a more slow or fast increase. The

sharpness of increase of the original system depends on the

magnitude of the values konB and koffB. We increased the

values konB and koffB with an equal ratio KDB, and observe

that the original system converges to the QE approxima-

tion, compare Fig. 3c, d. This shows that the rapid binding

in the original system has to be fulfilled in order to obtain a

reasonable approximation.

Uncompetitive

Also the QE approximation in ODE formulation with an IV

short infusion Eqs. (43)–(48) captures reasonably well the

dynamics of free concentrations from the original equa-

tions (23)–(33), see Fig. 3e, f. Again drug A administration

only in presence of concentration of drug B was examined.

Consider as example baseline concentrations C0
A;C

0
B [ 0.

For increasing values of konA and koffA with equal KDA the

original system for drug A and drug B converges to the QE

approximation. Due to the antagonistic nature of drug B,

the konAB and koffAB do not seem to be related to the process

of convergence.

Parameter estimation

The QE approximation of the competitive Eqs. (14)–(18)

and uncompetitive Eqs. (43)–(48) DDI TMDD model in

ODE formulation with an IV short infusion was applied to

fit produced data from the original formulations Eqs. (1)–

(9) and (23)–(33). All parameters could be well estimated

from the produced data. However, in the uncompetitive

case it can be difficult to estimate all three drug B related
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parameters, since drug B switches from the typical TMDD

profile back to first-order elimination, if only few or no

complex RCA is available. Therefore, we fixed KDAB in our

example. Applied model parameters for data production,

initial estimates and final estimates are listed in Table 2. In

Fig. 4 the fits of the competitive case (panels a and b) from

NONMEM and the uncompetitive case (panels c and d) in

ADAPT 5 are shown.

Discussion

Competitive and uncompetitive DDI was extended with

TMDD behavior and the baseline scenario for endogenously

available substances was included. DDI TMDD models

describe the interaction on the pharmacokinetic level instead

on an effect level as presented in [3]. We investigated the

properties of the competitive and uncompetitive mecha-

nisms. For example, if both drugs compete for the same

receptor, administration of a single drug A only, will have an

impact on the present free concentration profile of drug

B. However, a systematic investigation with mathematical

characterizations of the DDI behaviors is crucial to fully

describe and quantify the behaviors of these effects.

We applied the QE or QSS approaches to construct

approximations resulting in a collection of differential and

algebraic equations. Interestingly, the QSS approximation

is not capable of removing all drug related parameters (i.e.

konA) in the uncompetitive case.

In the QE or QSS approximation, we now deal with a non-

linear equation system for the free drug concentrations, as

initially shown in [9] for the competitive DDI case. In total

variables, for such systems no explicit solution is known.

Therefore, we investigated the single drug case again in a

separate manuscript [6], and generalized the presented

method to the QE or QSS approximation of DDI TMDD

models. An equivalent formulation for the free drug con-

centrations in ordinary differential equations was obtained

without solving any equation system. Our formulation can be

implemented in any PKPD software as demonstrated for

ADAPT 5 and NONMEM. In the QE or QSS approximation

the rapid binding process is approximated by an infinitely

fast process. This implies that in the IV bolus situation, which

is also an infinitely fast process, one part of the drug goes to

the free drug concentration and the other part is infinitely fast

bound to the complex. Hence, we mimic the administration

of an IV bolus by an IV short infusion. An oral administration

can be applied as usual because the drug goes to an additional

Fig. 3 Visualization of the QE approximation. Competitive: In

panels a and b concentration profiles from the original formulation

(red dashed lines) Eqs. (1)–(9) and the approximation of the QE

formulation Eqs. (14)–(18) (black solid lines) are shown for

escalating doses of doseA ¼ doseB ¼ 10; 100; 1000 at t ¼ 0 and no

baseline C0
A ¼ C0

B ¼ 0. In panels c and d the effect of one drug

administration on the present concentration of the other drug is

shown. The original (red dashed lines) and QE approximation (black

solid lines) profiles with a baseline C0
A ¼ C0

B ¼ 1 are shown for a dose

of doseA ¼ 1000 at t ¼ 0. The konB and koffB are multiplied by the

factors 0.1, 1 and 10 in such a way that KDB stays the same to show

the convergence of the original formulation towards the QE

approximation. Uncompetitive: In panels e and f concentration

profiles from the original formulation (red dashed lines) Eqs. (23)–

(33) and the approximation of the QE formulation Eqs. (43)–(48)

(black solid lines) are shown for escalating doses of doseA ¼ doseB ¼
10; 100; 1000 at t ¼ 0 and no baseline C0

A ¼ C0
B ¼ 0. In panels g and

h original (red dashed lines) and QE approximation (black solid

lines) profiles with a baseline C0
A ¼ C0

B ¼ 1 are shown where for drug

A is administered with a dose of doseA ¼ 100 at t ¼ 24. The konA and

koffA are multiplied by the factors 0.1, 1 and 10 in such a way that KDA

stays the same (Color figure online)
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absorption compartment and not directly to the free drug

concentration.

The original DDI TMDD systems can be well described

by the QE approximation if the rapid binding assumption in

the original system is fulfilled. We demonstrated that e.g.

in case of drug A administered to a system where con-

centration of drug B is present, the kon and koff parameter

have to be large, to satisfactorily describe the increase of

Time t
0 5 10 15 20 25

C
A

(t)

10-2

100

102

Competitive

0 5 10 15 20 25

C
B

(t)

10-2

100
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0 5 10 15 20 25

C
A

(t)

10-2

100

102

Uncompetitive

0 5 10 15 20 25

C
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(t)

10-2

100

102ba dc

Fig. 4 Visualization of plasma concentration versus time data fitting

from the original formulation with the QE approximation: Fit (solid

lines) of the QE approximation of the competitive Eqs. (14)–(18) in

NONMEM (panels a and b) and the uncompetitive DDI TMDD

model Eqs. (43)–(48) in ADAPT 5 (panels c and d) in ODE

formulation with an IV short infusion. Data (crosses) were produced

with the original formulations Eqs. (1)–(9) and Eqs. (23)–(33)

Table 2 Estimated model parameters of the QE approximation of the competitive and uncompetitive DDI TMDD models formulated as ODE in

free variables

Parameter Definition Original Initial Estimate (CV% or r.s.e.)

ADAPT 5 NONMEM R MATLAB

� Maximum likelihood 	 � Weighted least squares 	

Competitive DDI TMDD

kelA Elimination rate 0.4 0.5 0.398 (13) 0.397 0.347 (22) 0.343

kintA Internalization rate 0.1 0.2 0.114 (11) 0.114 0.124 (14) 0.121

konA Binding rate 2.5 – – – – –

koffA Dissociation rate 0.1 – – – – –

KDA Dissociation constant 0.04 0.1 0.060 (58) 0.059 0.045 (66) 0.040

kelB Elimination rate 0.25 0.4 0.240 (17) 0.240 0.283 (25) 0.290

kintB Internalization rate 0.1 0.2 0.120 (10) 0.120 0.125 (14) 0.124

konB Binding rate 5 – – – – –

koffB Dissociation rate 0.1 – – – – –

KDB Dissociation constant 0.02 0.1 0.024 (30) 0.024 0.030 (52) 0.029

r2 Residual variance 0.1 0.2 0.170 (15) 0.170 – –

Uncompetitive DDI TMDD

kelA Elimination rate 0.1 0.2 0.097 (1.0) 0.097 0.097 (1.0) 0.097

kintA Internalization rate 0.1 0.2 0.102 (11) 0.103 0.098 (9.6) 0.098

konA Binding rate 2.5 – – – – –

koffA Dissociation rate 0.1 – – – – –

KDA Dissociation constant 0.04 0.1 0.051 (12) 0.052 0.055 (12) 0.055

kelB Elimination rate 0.1 0.2 0.096 (1.0) 0.096 0.096 (1.2) 0.096

kintAB Internalization rate 0.1 0.2 0.112 (7.8) 0.112 0.126 (9.8) 0.126

konAB Binding rate 5 – – – – –

koffAB Dissociation rate 0.1 – – – – –

KDAB Dissociation constant 0.02 0.02a – – – –

r2 Residual variance 0.1 0.2 0.070 (14) 0.070 – –

Fixed model parameters in both cases are ksyn = 5 and kdeg = 0.25
a Fixed
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drug B. This is in accordance with the rapid binding

assumption. Moreover, we emphasize that our applied

method is valid in general and can be applied to other

systems with rapid binding behavior to construct appro-

priate QE or QSS approximations without running into

trouble with solving nonlinear algebraic equations.

Overall we presented DDI mechanisms with TMDD

behavior and provided QE approximations which can be

straightforward implementation in PKPD software. This

opens the route to apply DDI TMDD models (i) for PK

DDI characterizations of compounds with TMDD behav-

ior, (ii) as subsystems in physiologically more complex

scenarios, such as (minimal) PBPK models, and (iii) as the

PK DDI part in PKPD models.
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Appendix 1: Derivation of the final QE and QSS
approximation in free concentration variables

Competitive DDI

Step 1: Total concentration formulation

Similar to the single drug case [6] the key for the QE or

QSS approximation is to reformulate Eqs. (1)–(5) in total

drug and total receptor concentration variables. With

CtotA ¼ CA þ RCA ð51Þ

CtotB ¼ CB þ RCB ð52Þ

Rtot ¼ Rþ RCA þ RCB ð53Þ

we obtain

d

dt
CtotA ¼ InAðtÞ � kelACA � kintARCA ð54Þ

d

dt
CtotB ¼ InBðtÞ � kelBCB � kintBRCB ð55Þ

d

dt
Rtot ¼ ksyn � kdegR� kintARCA � kintBRCB ð56Þ

d

dt
RCA ¼ konACA � R� ðkoffA þ kintAÞRCA ð57Þ

d

dt
RCB ¼ konBCB � R� ðkoffB þ kintBÞRCB: ð58Þ

The baseline initial values are

CtotXð0Þ ¼C0
totX ¼ C0

X þ RC0
X

Rtotð0Þ ¼R0
tot ¼ R0 þ RC0

A þ RC0
B

RCXð0Þ ¼RC0
X

ð59Þ

for X 2 fA;Bg. The values C0
A; C

0
B; R

0; RC0
A; RC

0
B in

Eq. (59) are chosen according to Eqs. (6)–(8) and the input

functions in Eqs. (54)–(55) according to Eq. (9). Substi-

tuting free variables in Eqs. (54)–(58) with total variables

from Eqs. (51)–(53) we obtain

d

dt
CtotA ¼ InAðtÞ � kelAðCtotA � RCAÞ

� kintARCA

ð60Þ

d

dt
CtotB ¼ InBðtÞ � kelBðCtotB � RCBÞ

� kintBRCB

ð61Þ

d

dt
Rtot ¼ ksyn � kdegðRtot � RCA � RCBÞ

� kintARCA � kintBRCB

ð62Þ

d

dt
RCA ¼ konAðCtotA � RCAÞðRtot � RCA � RCBÞ

� ðkoffA þ kintAÞRCA

ð63Þ

d

dt
RCB ¼ konBðCtotB � RCBÞðRtot � RCA � RCBÞ

� ðkoffB þ kintBÞRCB :
ð64Þ

In comparison to Eqs. (1)–(5), Eqs. (60)–(64) have the

advantage that the parameters konX and koffX appear in the

equations of the complexes only.

Step 2: QE and QSS binding relations

We assume rapid binding between CA and R, as well as CB

and R. Hence, QE or QSS approximation of the complexes

RCA and RCB in Eqs. (57)–(58) provide the algebraic

equations

0 ¼ ðCtotA � RCAÞðRtot � RCA � RCBÞ � KYARCA ð65Þ

0 ¼ ðCtotB � RCBÞðRtot � RCA � RCBÞ � KYBRCB ð66Þ

for Y 2 fD; SSg with Eq. (19) (see Appendices 2, 3). The

differential algebraic equation (DAE) form in total vari-

ables is then given by Eqs. (60)–(62), (65)–(66).

Step 3: QE and QSS model equations

To avoid solving the coupled non-linear equation system

Eqs. (65)–(66) numerically, we transform Eqs. (54)–(56),

(65)–(66) back to the free variables. From Eqs. (65)–(66)

we obtain the complexes

RCX ¼ CX � R
KXA

: ð67Þ

The next step is to differentiate Eq. (67) and to express
d
dt
CtotA;

d
dt
CtotB;

d
dt
Rtot appearing at the left hand side of
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Eqs. (54)–(56) in terms of CA;CB and R and their deriva-

tives. Using Eqs. (51)–(53) we can calculate from

Eqs. (54)–(56)

d

dt
CtotA ¼ d

dt
CA þ

d

dt
RCA

¼ d

dt
CA þ

d

dt
CA

� �
R

KYA

þ d

dt
R

� �
CA

KYA

¼ InAðtÞ � kelACA � kintA
CAR

KYA

ð68Þ

d

dt
CtotB ¼ d

dt
CB þ

d

dt
RCB

¼ d

dt
CB þ

d

dt
CB

� �
R

KYB

þ d

dt
R

� �
CB

KYB

¼ InBðtÞ � kelBCB � kintB
CBR

KYB

ð69Þ

d

dt
Rtot ¼

d

dt
Rþ d

dt
RCA þ

d

dt
RCB

¼ d

dt
Rþ d

dt
CA

� �
R

KYA

þ d

dt
R

� �
CA

KYA

þ d

dt
CB

� �
R

KYB

þ d

dt
R

� �
CB

KYB

¼ ksyn � kdegR� kintA
CAR

KYA

� kintB
CBR

KYB

:

ð70Þ

The equivalent matrix form reads

QðCA;CB;RÞ

d

dt
CA

d

dt
CB

d

dt
R

0
BBBBBB@

1
CCCCCCA

¼ gComðCA;CB;RÞ ð71Þ

with

QðCA;CB;RÞ

¼

1 þ R

KYA

0
CA

KYA

0 1 þ R

KYB

CB

KYB

R

KYA

R

KYB

1 þ CA

KYA

þ CB

KYB

0
BBBBBB@

1
CCCCCCA

gComðCA;CB;RÞ

¼

InAðtÞ � kelACA � kintA
CAR

KYA

InBðtÞ � kelBCB � kintB
CBR

KYB

ksyn � kdegR� kintA
CAR

KYA

� kintB
CBR

KYB

0
BBBBBB@

1
CCCCCCA
:

Eq. (71) is equivalent to

d

dt
CA

d

dt
CB

d

dt
R

0
BBBBBB@

1
CCCCCCA

¼ MComðCA;CB;RÞgComðCA;CB;RÞ ð72Þ

where

MComðCA;CB;RÞ ¼ Q�1ðCA;CB;RÞ :

Q�1 denotes the inverse matrix of Q and the explicit rep-

resentation of MCom is listed in Table 1.

Uncompetitive DDI

Step 1: Total concentration formulation

The total drug and receptor variables are

CtotA ¼ CA þ RCA þ RCAB ð73Þ

CtotB ¼ CB þ RCAB ð74Þ

Rtot ¼ Rþ RCA þ RCAB ð75Þ

and we obtain

d

dt
CtotA ¼ InAðtÞ � kelACA � kintARCA � kintABRCAB ð76Þ

d

dt
CtotB ¼ InBðtÞ � kelBCB � kintABRCAB ð77Þ

d

dt
Rtot ¼ ksyn � kdegR� kintARCA � kintABRCAB ð78Þ

d

dt
RCA ¼ konACA � R� konABCB � RCA þ koffABRCAB

� ðkoffA þ kintAÞRCA

ð79Þ

d

dt
RCAB ¼ konABCB � RCA � ðkoffAB þ kintABÞRCAB: ð80Þ

The baseline initial values are obtained by applying

Eqs. (73)–(75) to the initial values Eqs. (28)–(31). This

leads to

CtotAð0Þ ¼C0
totA ¼ C0

A þ RC0
A þ RC0

AB

CtotBð0Þ ¼C0
totB ¼ C0

B þ RC0
AB

Rtotð0Þ ¼R0
tot ¼ R0 þ RC0

A þ RC0
AB

and the input functions Eqs. (32)–(33).

Again substituting the free variables in Eqs. (76)–(80)

yields

d

dt
CtotA ¼ InAðtÞ � kelAðCtotA � RCA � RCABÞ

� kintARCA � kintABRCAB

ð81Þ
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d

dt
CtotB ¼ InBðtÞ � kelBðCtotB � RCABÞ

� kintABRCAB

ð82Þ

d

dt
Rtot ¼ ksyn � kdegðRtot � RCA � RCABÞ

� kintARCA � kintABRCAB

ð83Þ

d

dt
RCA ¼ konAðCtotA � RCA � RCABÞ

ðRtot � RCA � RCABÞ
� konABðCtotB � RCABÞRCA

þ koffABRCAB � ðkoffA þ kintAÞRCA

ð84Þ

d

dt
RCAB ¼ konABðCtotB � RCABÞRCA

� ðkoffAB þ kintABÞRCAB :
ð85Þ

Note that in the formulation Eqs. (81)–(85) the parameter

konX ; koffX , intended for elimination show up in the equa-

tions of the complexes only.

Step 2: QE binding relations

In Appendix 2 it is shown that the QE approximation

provides the algebraic equations

0 ¼ CAR� KDARCA ð86Þ

0 ¼ CBRCA � KDABRCAB ð87Þ

and the resulting DAE consists of Eqs. (81)–(83), (86), (87).

Step 3: QE model equations

Using Eqs. (73)–(75) and Eqs. (76)–(78) we can compute

d

dt
CtotA ¼ d

dt
CA þ

d

dt
RCA þ

d

dt
RCAB

¼ InAðtÞ � kelACA � kintA
CAR

KDA

ð88Þ

� kintAB
CACBR

KDAKDAB

d

dt
CtotB ¼ d

dt
CB þ

d

dt
RCAB

¼ InBðtÞ � kelBCB � kintAB
CACBR

KDABKDA

ð89Þ

d

dt
Rtot ¼

d

dt
Rþ d

dt
RCA þ

d

dt
RCAB

¼ ksyn � kdegR� kintA
CAR

KDA

� kintAB
CACBR

KDABKDA

:

ð90Þ

In addition, from Eqs. (86)–(87) we obtain by

differentiation

d

dt
RCA ¼ 1

KDA

d

dt
CA

� �
Rþ CA

d

dt
R

� �
ð91Þ

d

dt
RCAB ¼ 1

KDAKDAB

d

dt
CA

� �
CBR

�

þCA

d

dt
CB

� �
Rþ CACB

d

dt
R

�
:

ð92Þ

With Eqs. (88)–(92) the equivalent matrix form reads

PðCA;CB;RÞ

d

dt
CA

d

dt
CB

d

dt
R

0
BBBBBB@

1
CCCCCCA

¼ gUnðCA;CB;RÞ ð93Þ

with PðCA;CB;RÞ ¼ I þ P̂ðCA;CB;RÞ,

P̂ðCA;CB;RÞ

¼

R

KDA

þ CBR

KDAKDAB

CAR

KDAKDAB

CA

KDA

þ CACB

KDAKDAB

CBR

KDAKDAB

CAR

KDAKDAB

CACB

KDAKDAB

R

KDA

þ CBR

KDAKDAB

CAR

KDAKDAB

CA

KDA

þ CACB

KDAKDAB

0
BBBBBB@

1
CCCCCCA

and

gUnðCA;CB;RÞ

¼

InAðtÞ � kelACA � kintA
CAR

KDA

� kintAB
CACBR

KDAKDAB

InBðtÞ � kelBCB � kintAB
CACBR

KDAKDAB

ksyn � kdegR� kintA
CAR

KDA

� kintAB
CACBR

KDAKDAB

0
BBBBBB@

1
CCCCCCA
:

Finally, Eq. (93) can be written as explicit ODE

d

dt
CA

d

dt
CB

d

dt
R

0
BBBBBB@

1
CCCCCCA

¼ MUnðCA;CB;RÞgUnðCA;CB;RÞ

where

MUnðCA;CB;RÞ ¼ P�1ðCA;CB;RÞ

is listed in Table 1.

Appendix 2: QE approximation

The QE approximation is based on the theory of Fenichel

[14] which allows a specific selection of the rates to be

accelerated.
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Competitive

To justify the QE approximation we increase the binding

rates konX ; koffX , where X 2 fA;Bg, by replacing with 1
e konX ,

1
e koffX with e[ 0 small in Eqs. (54)–(58). Since the new

constants are much larger this can be regarded as rapid

binding and we obtain

d

dt
RCA ¼ konA

e
CA � R� koffA

e
þ kintA

� �
RCA ð94Þ

d

dt
RCB ¼ konB

e
CB � R� koffB

e
þ kintB

� �
RCB: ð95Þ

Multiplying Eqs. (94)–(95) by e gives

e
d

dt
RCA ¼ konACA � R� koffA þ ekintA

� �
RCA ð96Þ

e
d

dt
RCB ¼ konBCB � R� koffB þ ekintB

� �
RCB: ð97Þ

Taking the limit e ! 0 in Eqs. (96)–(97) results in

0 ¼ konACA � R� koffARCA ð98Þ

0 ¼ konBCB � R� koffBRCB: ð99Þ

Dividing Eq. (98) by konA and Eq. (99) by konB gives the QE

approximation of the complexes

0 ¼ CA � R� KDARCA ð100Þ

0 ¼ CB � R� KDBRCB : ð101Þ

Uncompetitive

Accelerating the binding rates konX and koffX with X 2
fA;ABg in Eqs. (76)–(80) gives

d

dt
RCA ¼ konA

e
CAR� konAB

e
CBRCA þ

koffAB

e
RCAB

� koffA

e
þ kintA

� �
RCA

ð102Þ

d

dt
RCAB ¼ konAB

e
CBRCA �

koffAB

e
þ kintAB

� �
RCAB: ð103Þ

Multiplying Eqs. (102)–(103) by e leads to

e
d

dt
RCA ¼ konACAR� konABCBRCA þ koffABRCAB

� ðkoffA þ ekintAÞRCA

ð104Þ

e
d

dt
RCAB ¼ konABCBRCA � ðkoffAB þ ekintABÞRCAB:

ð105Þ

Taking the limit e ! 0 in Eqs. (104)–(105) results in

0 ¼ konACAR� konABCBRCA þ koffABRCAB

� koffARCA

ð106Þ

0 ¼ konABCBRCA � koffABRCAB : ð107Þ

Substituting Eq. (107) in Eq. (106) leads to

0 ¼ konACAR� koffARCA ð108Þ

0 ¼ konABCBRCA � koffABRCAB : ð109Þ

Dividing Eq. (108) with konA and Eq. (109) with konAB gives

the QE approximation of the complexes

0 ¼ CAR� KDARCA ð110Þ

0 ¼ CBRCA � KDABRCAB : ð111Þ

Appendix 3: QSS approximation

Following the classical singular perturbation theory [15] all

complex related processes are assumed to be rapid,

including the internalization from the complexes.

Competitive

Accelerating the rates with e small in Eqs. (54)–(58) yields

d

dt
RCA ¼ konA

e
CA � R� koffA

e
þ kintA

e

� �
RCA ð112Þ

d

dt
RCB ¼ konB

e
CB � R� koffB

e
þ kintB

e

� �
RCB: ð113Þ

Multiplying Eqs. (112)–(113) by e and taking the limit

e ! 0

0 ¼ konACA � R� koffA þ kintA
� �

RCA ð114Þ

0 ¼ konBCB � R� koffB þ kintB
� �

RCB: ð115Þ

Hence, the QSS approximation reads

0 ¼ CA � R� KSSARCA ð116Þ

0 ¼ CB � R� KSSBRCB: ð117Þ

Uncompetitive

We obtain from Eqs. (76)–(80) with e small

d

dt
RCA ¼ konA

e
CA � R� konAB

e
CB � RCA þ

koffAB

e
RCAB

ð118Þ

� koffA

e
þ kintA

e

� �
RCA ð119Þ
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d

dt
RCAB ¼ konAB

e
CB � RCA �

koffAB

e
þ kintAB

e

� �
RCAB :

ð120Þ

Multiplying these equations by e and then taking the limit

e ! 0 results in

0 ¼ konACAR� konABCBRCA þ koffABRCAB

� ðkoffA þ kintAÞRCA

ð121Þ

0 ¼ konABCBRCA � ðkoffAB þ kintABÞRCAB : ð122Þ

Inserting Eq. (122) in Eq. (121) gives

0 ¼ konACAR� kintABRCAB � ðkoffA þ kintAÞRCA ð123Þ

0 ¼ konABCBRCA � ðkoffAB þ kintABÞRCAB : ð124Þ

Dividing Eq. (123) by konA and Eq. (124) by konAB provides

0 ¼ CAR� kintAB

konA
RCAB � KSSARCA ð125Þ

0 ¼ CBRCA � KSSABRCAB : ð126Þ

Appendix 4: Baseline initial values
for the uncompetitive TMDD model

According to Eqs. (26)–(27) the baseline conditions for the

complexes with the concentrations C0
A;C

0
B � 0 are

kintA þ koffA

konA

kintAB

konA

�C0
B

kintAB þ koffAB

konAB

0
BB@

1
CCA RCA

RCAB

� �
¼ C0

AR

0

� �
:

ð127Þ

Applying Cramer’s rule to Eq. (127) and using the defini-

tion from Eq. (19) yields the solution

RC0
A ¼ C0

AR
0KSSAB

KSSAKSSAB þ C0
B
kintAB
konA

ð128Þ

RC0
AB ¼ C0

AC
0
BR

0

KSSAKSSAB þ C0
B
kintAB
konA

: ð129Þ

Inserting Eqs. (128)–(129) into the baseline condition of

the receptor equation (78) leads to

ksyn ¼ kdeg þ
kintAC

0
AKSSAB þ kintABC

0
AC

0
B

KSSABKSSA þ C0
B
kintAB
konA

0
@

1
AR;

which is equivalent to

R0 ¼ ksyn

kdeg þ kintAC
0
A
KSSABþkintABC

0
A
C0
B

KSSABKSSAþ
C0
B
kintAB

konA

:

The baseline concentrations of the input functions then

follow from Eqs. (76)–(77).

Appendix 5: Source codes

The matrix representation applied in Eqs. (14)–(15) and

Eqs. (43)–(44) is of the general form

H1

H2

H3

0
B@

1
CA ¼

M11 M12 M13

M21 M22 M23

M31 M32 M33

0
B@

1
CA

G1

G2

G3

0
B@

1
CA :

Hence, performing matrix multiplication the right hand

side of the differential equation reads

H1 ¼ M11G1 þM12G2 þM13G3

H2 ¼ M21G1 þM22G2 þM23G3

H3 ¼ M31G1 þM32G2 þM33G3

compare the lines 113–128 for the competitive and the

lines 221–239 for the uncompetitive case. The variables

H1,...,H3 correspond to DADT(1), ..., DADT(3) in NON-

MEM and XP(1), ..., XP(3) in ADAPT 5.

The lines of the code are numbered for referencing but

are not part of the code implementation.

NONMEM control stream for competitive DDI

TMDD

The $DES block of the control stream is presented.

Additionally, the first lines of the data file is shown to

present the IV infusion mechanism. The full control stream

is available in the supplemental material.

101: $DES

102: EPSILON = 1e-4

103: ; Dose at T1 = 0

104: INA = 0

105: INB = 0

106: IF (T.GE.0.AND.T.LE.0?EPSILON)

THEN

107: INA = 100*EPSILON**(-1)

108: INB = 100*EPSILON**(-1)

109: ENDIF

110: CA = A(1)/V

111: CB = A(2)/V

112: R = A(3)

113: DET = R**2?CA*KDB?CB*KDA?CA*R?

CB*R?KDA*KDB?KDA*R?KDB*R
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114: G1 = INA - KELA*CA - (KINTA*CA*R)/

KDA

115: G2 = INB - KELB*CB - (KINTB*CB*R)/

KDB

116: G3 = KSYN-KDEG*R-(KINTA*CA*R)/KDA-

(KINTB*CB*R)/KDB

117: M11 = (1/DET)*(DET - R*(R?CB?KDB))

118: M12 = (1/DET)*(CA*R)

119: M13 = (1/DET)*(-CA*(R?KDB))

120: M21 = (1/DET)*(CB*R)

121: M22 = (1/DET)*(DET - R*(R?CA?KDA))

122: M23 = (1/DET)*(-CB*(R?KDA))

123: M31 = (1/DET)*(-R*(R?KDB))

124: M32 = (1/DET)*(-R*(R?KDA))

125: M33 = (1/DET)*(DET-CA*(R?KDB)-

CB*(R?KDA))

126: DADT(1) = M11*G1 ? M12*G2 ? M13*G3

127: DADT(2) = M21*G1 ? M22*G2 ? M23*G3

128: DADT(3) = M31*G1 ? M32*G2 ? M33*G3

The first lines of the data file are:

150: #ID TIME TYPE DV MDV

151: 1 0 1 . 1

152: 1 0 2 . 1

153: 1 0.0001 1 . 1

154: 1 0.0001 2 . 1

155: 1 2 1 32.9432 0

156: 1 2 2 28.3621 0

ADAPT 5 source code for uncompetitive DDI

TMDD

The subroutine DIFFEQ is presented. For full source code

see supplemental material.

201: Subroutine DIFFEQ(T,X,XP)

202: Implicit None

203: Include ’globals.inc’

204: Include ’model.inc’

205: Real*8 T,X(MaxNDE),XP(MaxNDE)

206: Real*8 KELA,KDA,KINTA,KELB,

KDAB,KINTAB,KSYN,KDEG

207: Real*8 CA,CB,RR,R0

208: Real*8 DET,M(3,3),G(3)

209: KELA = P(1)

210: KDA = P(2)

211: KINTA = P(3)

212: KELB = P(4)

213: KDAB = P(5)

214: KINTAB = P(6)

215: KSYN = P(7)

216: KDEG = P(8)

217: R0 = KSYN/KDEG

218: CA = X(1)

219: CB = X(2)

220: RR = X(3) ? R0

221: DET = RR**2*CA?CA*RR*KDA?CB*RR*

KDA?CA**2*RR?CA*CB*KDA

222: & ?KDA**2

*KDAB?KDA*KDAB*RR?CA*KDA*KDAB

223: G(1) = R(1)-KELA*CA-(KINTA*CA*RR)/

KDA

224: & -KINTAB*((CA*CB*RR)/(KDA*KDAB))

225: G(2) = R(2)-KELB*CB-KINTAB*((CA*

CB*RR)/(KDA*KDAB))

226: G(3) = KSYN-KDEG*RR-(KINTA*CA*RR)/

KDA

227: & -KINTAB*((CA*CB*RR)/(KDA*KDAB))

228: M(1,1) = (1/DET)*(DET-RR*(CA*RR?

CB*KDA?KDA*KDAB))

229: M(1,2) = (1/DET)*(-CA*RR*KDA)

230: M(1,3) = (1/DET)*(-CA*(CA*RR?CB*

KDA?KDA*KDAB))

231: M(2,1) = (1/DET)*(-CB*RR*KDA)

232: M(2,2) = (1/DET)*(DET-CA*RR*(RR?

CA?KDA))

233: M(2,3) = (1/DET)*(-KDA*CA*CB)

234: M(3,1) = (1/DET)*(-RR*(CB*KDA?

CA*RR?KDA*KDAB))

235: M(3,2) = (1/DET)*(-CA*RR*KDA)

236: M(3,3) = (1/DET)*(DET-CA*(CA*RR?

KDAB*KDA?CB*KDA))

237: XP(1) = M(1,1)*G(1)?M(1,2)*G(2)?

M(1,3)*G(3)

238: XP(2) = M(2,1)*G(1)?M(2,2)*G(2)?

M(2,3)*G(3)

239: XP(3) = M(3,1)*G(1)?M(3,2)*G(2)?

M(3,3)*G(3)

240: Return

241: End
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