
ORIGINAL PAPER

Experiment design for nonparametric models based on
minimizing Bayes Risk: application to voriconazole1

David S. Bayard1 • Michael Neely1,2

Received: 6 June 2016 / Accepted: 25 October 2016 / Published online: 1 December 2016

� Springer Science+Business Media New York 2016

Abstract An experimental design approach is presented

for individualized therapy in the special case where the

prior information is specified by a nonparametric (NP)

population model. Here, a NP model refers to a discrete

probability model characterized by a finite set of support

points and their associated weights. An important question

arises as to how to best design experiments for this type of

model. Many experimental design methods are based on

Fisher information or other approaches originally devel-

oped for parametric models. While such approaches have

been used with some success across various applications, it

is interesting to note that they largely fail to address the

fundamentally discrete nature of the NP model. Specifi-

cally, the problem of identifying an individual from a NP

prior is more naturally treated as a problem of classifica-

tion, i.e., to find a support point that best matches the

patient’s behavior. This paper studies the discrete nature of

the NP experiment design problem from a classification

point of view. Several new insights are provided including

the use of Bayes Risk as an information measure, and new

alternative methods for experiment design. One particular

method, denoted as MMopt (multiple-model optimal), will

be examined in detail and shown to require minimal

computation while having distinct advantages compared to

existing approaches. Several simulated examples, including

a case study involving oral voriconazole in children, are

given to demonstrate the usefulness of MMopt in phar-

macokinetics applications.

Keywords Bayes Risk � Experiment design �
Nonparametric � Population model � Voriconazole

Introduction

Nonparametric (NP) population models are specified by a

discrete parameter probability distribution. The richness of

the NP approach is in its ability to not simply estimate

central tendency and dispersion, but rather to estimate the

entire population parameter joint density. NP models arise

naturally when applying maximum likelihood (ML) esti-

mation to population modeling problems due to a

remarkable fact that the optimal ML estimate is known to

be discrete [34, 36]. NP models also arise in pharmacoki-

netic (PK) applications when computations are simplified

by making discrete approximations to continuous distri-

butions [28]. Software programs for generating NP PK

population models are readily available, e.g., NPEM

[16, 46], NPAG [3, 32], and USC*PACK [26], which are

now all available within the Pmetrics package for R [10].

The use of NP models for design of PK dosage regimens is

discussed in [6].

An important question arises as to how to best design

experiments with respect to NP population model priors.

Ideally, the experiment should be designed to extract the

most information using the least number of samples. A

widely used method for experiment design is to optimize the

D-optimality criterion introduced by Box and Lucas [12],
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which consists of maximizing the determinant of the Fisher

information matrix M [14, 19, 50]. One criticism of D-opti-

mal (Dopt) design is that it only uses the mean of the popu-

lation model and ignores other distributional information.

An improved class of approaches incorporating the full prior

distribution are the so-called ‘‘robust’’ sampling designs,

whichmore generally optimize the expectation of a specified

scalar function ofM [15, 41, 52, 57]. Choices for this scalar

function include the determinant of M (giving rise to ED-

optimal design), the determinant of the matrix inverse of

M (giving rise to EID-optimal design), and the log of the

determinant of M (giving rise to ELD design). The ELD

design is sometimes called the API design. Algorithms and

software for computing the ED, EID and ELD designs are

described in Pronzato and Walter [41], Tod and Rocchisani

[51, 52] and Walter and Pronzato [57].

While such Dopt approaches have been used with success

across various applications, it is interesting to note that they

largely fail to address the fundamentally discrete nature of

the NP problem. Specifically, the problem of identifying an

individual from a NP prior is more naturally treated as a

problem of classification, i.e., of finding the support point

that best matches the patient’s behavior. Looking to the

classification literature for inspiration, a classifier’s perfor-

mance ismost often scored in terms of howwell it minimizes

the Bayes Risk. Bayes Risk is defined as the probability that a

maximum a posteriori (MAP) estimator will misclassify a

subject [18]. Hence, an experiment designminimizingBayes

Risk will ensure that the MAP estimate (which is one of the

support points), is representative of the true patient with high

probability. This is especially important for PK applications

in light of the work of Sheiner et al. [47–49] and others

[24, 44, 55, 56], who have demonstrated the value of MAP

Bayesian control, i.e., where theMAP estimate is used as the

basis for determining subsequent dosing regimens.

Interestingly, the authors are not aware of a single

instance where Bayes Risk has been used as an information

measure for experiment design purposes in a PK context. It is

expected that this is because its computation is generally

unwieldy. As pointed out in Fedorov (cf., [19], p. 233), in the

context of evaluating Bayes Risk for model discrimination

‘‘...even for comparatively simple response surfaces, it is

necessary to deal with serious computation difficulties,

which make construction of the optimal design practically

impossible’’. The current paper makes several strides in this

direction. Specifically, use is made of a theoretical upper

bound on the Bayes Risk that has recently appeared in the

literature in Blackmore et al. [11]. The upper bound is

important because it can be computed completely alge-

braically without requiring multidimensional integration or

stochastic analysis. Because of its computational advan-

tages, this paper definesmultiple-model optimal (MMopt) as

the experiment design approach that minimizes this Bayes

Risk upper bound. It will be shown that MMopt provides a

flexible and effective method for designing experiments for

NP models across a wide range of PK applications.

Background on experiment design is given in ‘‘Back-

ground’’ section, with discussion of D-optimality, the ED,

EID, and ELD robust designs, and the globally optimal

Bayes optimal classifier (Bopt). In ‘‘Multiple model optimal

(MMopt) design’’ section, the Bayes Risk upper bound of

[11] is introduced.MMopt is defined as an experiment design

approach thatminimizes this upper bound. In ‘‘Two-support-

point example’’ section, a simple two-support-point example

is used to compare performance between the various designs.

Sampling designs are applied in ‘‘Four-support-point

example’’ section to a more complicated four-support-point

example. The MMopt experiment design approach is

demonstrated on a simulated PK example in ‘‘Pharmacoki-

netic example’’ section, and its usefulness in a voriconazole

case study is demonstrated in ‘‘Voriconazole case study’’

section. ‘‘Discussion’’ section summarizes the properties of

MMopt relative to Bopt, ED, EID, and ELD.Appendices and

a Supplemental File are included that provide detailed

analysis on certain aspects of the various designs. Conclu-

sions are postponed until ‘‘Conclusions’’ section.

This paper focuses on sampling times, but MMopt can

be easily adapted to optimize over any other aspects of

experiment design (i.e., dose timing, dose amounts, etc.)

Background

Dynamic model and measurements

A nonlinear dynamic model is defined of the form,

_xðtÞ ¼ f ðxðtÞ; dðtÞ; hÞ; ð1Þ

where x is the state, d is the input, and h 2 Rp is the

parameter vector, and f is a function of these three quan-

tities. The system output at time tk is given as,

lk ¼ h x tkð Þ; hð Þ; ð2Þ

where the observed function h depends on both the state x

and parameter vector h: A noisy measurement of lk is

taken of the form

yk ¼ lk þ rknk; ð3Þ

where nk �Nð0; 1Þ is the measurement noise, and rk scales
nk to its desired level. The experiment design problem is

formulated to find the n optimal sampling times

U ¼ t1; . . .; tnf g; ð4Þ

that act to best identify the parameter vector h:
The parameter vector h can have either continuous or

discrete values. When applied to NP problems, h is

96 J Pharmacokinet Pharmacodyn (2017) 44:95–111

123



assumed to belong to a discrete set h 2 H ¼D fh1; . . .; hmg;
having Bayesian prior probabilities pðhiÞ; i ¼ 1; . . .;m: The

true value of h is denoted as h�: A slight generalization of

(3) is to allow rk to be a function of lk according to an

‘‘assay polynomial’’ of the form,

rk lkð Þ ¼ c0 þ c1lk þ c2l
2
k þ c3l

3
k : ð5Þ

Here the coefficients c0; . . .; c3 are typically determined

from a separate laboratory assay error calibration.

D-optimal design

The D-optimal experiment design (denoted here as Dopt),

is defined by maximizing the determinant of the Fisher

information matrix [14, 19, 50].

D-optimal design

UD ¼D argmax
U

jMj; ð6Þ

where jð�Þj denotes the matrix determinant, and the Fisher

information matrix M is given by,

Mðh; UÞ ¼
Xn

k¼1

1

r2k

olk
oh

olk
ohT

� ������
h¼h�

: ð7Þ

Dopt designs have the property that they minimize the

volume of confidence ellipsoids for the parameters. Dopt

design has become a useful tool for optimizing experiments

over a wide range of applications [20, 30].

The partial of l in (7) is evaluated on the true parameter

value h�: This is cause for some concern, since the true

parameter value h� is not known, and in fact is the main

reason for doing experiment design in the first place. How-

ever, for problems where lk ¼ hðxðtkÞ; hÞ is linear in h;

lk ¼ h x tkð Þð ÞTh; ð8Þ

where h is a column vector, the partial becomes,

olk
oh

¼ h x tkð Þð Þ: ð9Þ

In this case the dependence on h vanishes, and the problem

goes away. Hence, Dopt is best suited to problems for

which lk has the form (8) which is a linear function of h:
Furthermore, when the Fisher matrix M is singular its

determinant is zero. This implies that Dopt sampling design

is only defined when at least p samples are taken, where

p equals the number of parameters.

Robust D-optimal designs

A drawback to using Dopt designs with nonlinear models

of the form (1)–(3), is that l is nonlinear in h: This means

that the Dopt design becomes a function of the unknown

true parameter vector h�; which presents a problem since it

is not known beforehand. A more principled approach is to

use robust Dopt designs which optimize the expectation of

a cost function, where the expectation is taken over the

random variable h; and where the cost function is a spec-

ified as a scalar function of the Dopt cost. The most

common robust Dopt designs are based on the ED, EID,

ELD experiment design criteria defined as (cf.,

[13, 15, 41, 52, 57]),

ED optimal design

argmax
n

EhðjMjÞ: ð10Þ

EID optimal design

argmin
n

Eh
1

jMj

� �
: ð11Þ

ELD optimal design

argmax
n

Ehðlog jMjÞ: ð12Þ

Again, since the Fisher matrix determinant is only non-zero

when the Fisher matrix M is nonsingular, these robust

designs have the same restriction as Dopt designs in that

they must contain at least p samples, where p equals the

number of parameters.

Other robust Dopt approaches are possible. One varia-

tion is to add the precision matrix X�1 to M in any of the

above expressions, where X is the prior covariance matrix

of h: Such modifications are discussed in [13]. Another

variation is to reverse the order of the determinant and

expectation in the ED design (10) to give jEhðMÞj: Com-

bining both of these latter two modifications gives the

design criterion jEhðMÞ þ X�1j which has been applied to

PK problems in Hennig et al. [23] and Merle and Mentre

[37].

In this paper, MMopt experiment designs will be com-

pared to ED, EID, and ELD optimal robust designs under

the assumption of an NP prior. This comparison is not

intended to be exhaustive as other experiment design

methods are possible. Comparisons with methods such as

Ds optimal design [22], T-optimal design [2, 54], alterna-

tive robust Dopt designs [23, 37], and Bayesian design

[13, 43], are left for future studies.

Bayes optimal classifier

Given a vector of observations Y 2 R and a vector of

control inputs U 2 U; the posterior probability pðHijY; UÞ
of the ith hypothesis Hi in an m-category classification

problem is calculated using Bayes rule as [29],
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p HijY; Uð Þ ¼ pðY jHi; UÞpðHiÞ
pðY jUÞ ; ð13Þ

where Hi; i ¼ 1; . . .;m represent the m individual

hypotheses, and pðHiÞ; i ¼ 1; . . .;m represents their corre-

sponding prior probabilities.

Remark 1 When applied to discrete priors, H‘ is under-

stood to be the hypothesis that the true value of h corre-

sponds to h‘: Bayesian prior support point probabilities are

denoted as pi ¼ pðhiÞ; i ¼ 1; . . .;m:

After computing the posterior probabilities from (13),

the most probable hypothesis is defined by Hi where,

Hi ¼ argmax
j

p HjjY; U
� �

: ð14Þ

This selection rule is denoted as the Bayes optimal clas-

sifier. Since the Bopt classifier maximizes the posterior

probability, it is also a MAP estimator.

Since (14) is only an estimate, it will sometimes be correct

and sometimes be incorrect. The probability of it being

incorrect is denoted as theBayesRisk. For a givenU, Eq. (14)

can be thought of as a prescription for dividing up the domain

R into at most m regions defined by the following relation,

Ri ¼D Yjp HijY; Uð Þ[ p H‘jY ; Uð Þ for all ‘ 6¼ if g: ð15Þ

This definition allows one to state the Bopt classifier (14)

simply as an algorithm that selects model Hi as the MAP

estimate if and only if Y falls into region Ri:

Multiplying both sides of the inequality in (15) by

pðY jUÞ[ 0 and rearranging allows region Ri to be

equivalently defined as,

Ri ¼
D

Yjp Hi; Y jUð Þ[ p H‘; Y jUð Þ for all ‘ 6¼ if g: ð16Þ

The Bayes Risk is calculated by summing over all possible

ways that a given classifier can make a classification error,

i.e., by summing over the probabilities of selecting Hj

when in fact Hi is true,

pðerrorÞ ¼
Xm

i¼1

X

j6¼i

p Y 2 Rj; HijU
� �

; ð17Þ

¼
Xm

i¼1

X

j 6¼i

p Y 2 RjjHi; U
� �

p Hið Þ; ð18Þ

¼
Xm

i¼1

X

j 6¼i

Z

Rj

p YjHi; Uð Þp Hið ÞdY : ð19Þ

The experiment design that minimizes the Bayes Risk (19)

is defined as the Bopt design, or Bopt for short,

Bayes optimal design (Bopt)

UB ¼D argmin
U

pðerrorÞ: ð20Þ

Multiple model optimal (MMopt) design

Bayes Risk overbound

Computing the Bayes Risk is generally a very difficult

problem. However, a recent overbound on the Bayes Risk

has appeared in the literature that is relevant to the special

case where the likelihood functions are Gaussian, i.e.,

p Y jHi; Uð Þ ¼ NðlðiÞ; RðiÞÞ; i ¼ 1; . . .;m: ð21Þ

The overbound is given in the following result.

Theorem 1 (Blackmore et al. [11]) When performing

hypothesis selection between m hypotheses, for Gaussian obser-

vation distributions such that pðY jHiÞ ¼ NðlðiÞ; RðiÞÞ; i ¼
1; . . .;m; the Bayes Risk is upper bounded as follows,

pðerrorÞ�
Xm

i¼1

X

j[ i

p Hið Þ
1
2p Hj

� �1
2e�jði;jÞ; ð22Þ

where,

jði; jÞ ¼ 1

4
ðlðjÞ � lðiÞÞT ½RðiÞ þ RðjÞ��1ðlðjÞ � lðiÞÞ

þ 1

2
ln

1
2
RðiÞ þ 1

2
RðjÞ

�� ��

jRðiÞj
1
2jRðjÞj

1
2

:

ð23Þ

Proof See Blackmore et al. [11]. h

MMopt design

Theorem 1 is important because the expression (22) over-

bounds the Bayes Risk and hence represents a form of pre-

posterior analysis [42]. However, in contrast to many of the

pre-posterior analysis expressions found in modern Baye-

sian optimal design (cf., [43]), expressions (22), (23) can

be calculated analytically without requiring multidimen-

sional integration or stochastic analysis. For the purpose of

this paper, a design that minimizes the Bayes Risk over-

bound (22) is denoted as the multiple model optimal

experiment design (MMopt). Specifically,

MM optimal design

UMM ¼ argmin
U

Xm

i¼1

X

j[ i

p Hið Þ
1
2p Hj

� �1
2e�jði;jÞ: ð24Þ

MMopt designs can be computed for many problems of

practical interest. The overbound was first developed and

used for active estimation in Blackmore et al. [11]. These

ideas were later extended by the present authors in a series

of workshops on optimal experiment design [7, 8]. Since

Bayes Risk is always non-negative, the minimization of an
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overbound on the Bayes Risk will intuitively act to drive it

toward lower values, as desired.

The minimization of Bayes Risk acts to make the MAP

estimate a better predictor (i.e., classifier), of the true patient. For

example, if the Bayes Risk is reduced to 0.1 by proper experi-

ment design, it means that the MAP estimate (which itself is

always a support point in the discrete model) will correspond to

the true patient with probability 0.9. This interpretation can be

very useful in PK applications where the MAP estimate is used

to guide subsequent dosing and/or therapeutic recommenda-

tions. Currently, a large number of successful dosing and ther-

apeutic drug monitoring approaches are based on MAP

Bayesian control (cf., [44, 47–49, 55, 56]). The efficacy of such

methods is directly based on the accuracy of theMAP estimate.

Since MMopt acts to minimize the Bayes Risk, it improves the

discriminating power of the MAP Bayesian estimate, which in

turn, has the potential advantage of improving control perfor-

mance across a wide range of PK applications.

Two-support-point example

A simple two-support-point example is given to demon-

strate the difference between treating an experiment design

problem as a parameter estimation problem (i.e., using D,

ED, EID, ELD designs) versus treating it as a classification

problem (i.e., using MMopt).

System model

A two-support-point example involving an exponential

measurement model is defined as

yk ¼ l tk; að Þ þ rnk; ð25Þ

lðt; aÞ ¼ e�at: ð26Þ

The Fisher information matrix M for a single sample time

is computed as,

ol
oa

¼ �te�at; ð27Þ

MðaÞ ¼ 1

r2
ol
oa

� �2

¼ 1

r2
te�atð Þ2; ð28Þ

and the Dopt cost follows as

jMðaÞj ¼ t2e�2at=r2: ð29Þ

Values for parameter a are given as

Model 1 : a1 ¼ 1:5 ðfast support pointÞ; ð30Þ

Model 2 : a2 ¼ 0:25 ðslow support pointÞ; ð31Þ

with r ¼ 0:3; and with the prior specified as p1 ¼ 0:5 and

p2 ¼ 0:5: The two support point responses are plotted in

Fig. 1. For this example, all optimizations are performed

over a discrete time grid spanning 0–10 h, with a

Dt ¼ 0:0001 h spacing.

Designs for two-support point example

It is known that theDopt design for an exponentialmodel of the

form (25), (26) is given by t ¼ 1=a [31], i.e., at one time con-

stant of themodel response, or equivalently where the response

has dropped to e�1 ¼ 0:3679 of its initial value. Hence, mini-

mizing (29) over t gives the individual Dopt designs as,

tDðfastÞ ¼ 1=a1 ¼ 0:6667; ð32Þ

tDðslowÞ ¼ 1=a2 ¼ 4: ð33Þ

These two Dopt designs are plotted with a circle and dia-

mond, respectively, in Fig. 1, and indicate the time con-

stants for each response. Clearly, the optimal sample times

for the two support points are very different (i.e., 0.6667 vs.

4). This exposes a dilemma when using the Dopt design.

What is good for one support point is very different from

what is good for the other support point.

ED-optimal design

One method to resolve the above dilemma is to use a robust

design approach such as ED design. As discussed earlier,

ED design makes use of prior information, and is defined

by maximizing over the expected value of |M|,

tED ¼ argmax
t

E½jMj� ¼ argmax
t

0:5 M a1ð Þj j þ 0:5 M a2ð Þj j:

ð34Þ

Here |M| is given by (29). Optimization of (34) for this

example gives the ED design as

Fig. 1 Responses for the two-support-point example. The Dopt

design is indicated for each support point taken separately

J Pharmacokinet Pharmacodyn (2017) 44:95–111 99
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tED ¼ 3:9991: ð35Þ

The ED cost (34) is a weighted combination of the indi-

vidual Dopt costs given earlier in (29), with weights of

(0.5, 0.5) corresponding to the prior probabilities ðp1; p2Þ:
The situation is depicted in Fig. 2. The ED-optimal sam-

pling design of t ¼ 3:9991; represents a compromise

between the Dopt values of t ¼ 0:6667 and 4. Here, the

weighting strongly favors the term jMða2Þj which is asso-

ciated with the slow a2 support point.

Bayes optimal design

Computation of the Bopt design is usually unwieldy. For-

tunately, the current example is simple enough to allow its

analytic computation.

Responses for the two model support points (30), (31)

are shown in Fig. 3, where the response separation is

defined by rðtÞ ¼ jlðt; a1Þ � lðt; a2Þj: Since there is

additive Gaussian noise associated with each measured

response, the Bayes Risk (19) can be represented as the

grey area in Fig. 4. Here, Fig. 4 can be thought of as

looking at Fig. 3 ‘‘sideways’’, such that the two Gaussian

‘‘bumps’’ represent the two hypotheses associated with the

true patient being Model 1 or 2. The Bopt design mini-

mizes this Bayes Risk (i.e., grey area), which can be cal-

culated analytically as

Bayes Risk ¼ ProbðType I errorÞ þ ProbðType II errorÞ;
ð36Þ

¼ p1

Z 1

ycross

p yja1ð Þdyþ p2

Z ycross

�1
p yja2ð Þdy

¼ 1�
Z rðtÞ=2

�1
N 0; r2
� �

dy; ð37Þ

where ycross is where the two Gaussians intersect in Fig. 4.

Intuitively, this calculation is simply adding the standard

Types I and II error probabilities that arise in a classical

two-hypothesis test (i.e., defined as if we were treating a1
as the null hypothesis). The response separation r(t) is an

important statistic in the two-support-point example.

Fig. 2 The ED measure (solid) is equal to one half the Dopt measure

for the slow a2 support point jMða2Þj (dot), and one half the Dopt

measure for the fast a1 support point jMða1Þj (dash). Since the slow

support point measure dominates the fast support point, the ED

sample at t ¼ 3:9991 is nearly identical to that of the slow a2 model’s

Dopt sample at t ¼ 4; but has been drawn slightly lower by the

weighted influence of the fast a1 model’s Dopt sample at t ¼ 0:6667

Fig. 3 Depiction of response separation r(t) between responses

lðt; a1Þ and lðt; a2Þ

Fig. 4 Bayes Risk is depicted as the grey area between curves,

corresponding to the sum of Types I and II errors. Bayes Risk

decreases as response separation r(t) increases, which ‘‘pulls apart’’

the two Gaussian distributions and shrinks the grey area between

them
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Equation (37) indicates that the Bayes Risk decreases

monotonically with increasing r(t). This is seen graphically

in Fig. 4 where the sum of the two grey areas decreases

monotonically as the two distributions are ‘‘pulled apart’’.

Hence the Bayes Risk is minimized at the time of maximal

response separation r(t) given by,

tB ¼ argmax
t

rðtÞ ¼ argmax
t

l t; a1ð Þ � l t; a2ð Þj j ¼ 1:4334:

ð38Þ
MMopt design

The MMopt design is calculated by minimizing the Bayes

Risk overbound (22) as

tMM¼argmin
t
p

1
2

1p
1
2

2e
�jð1;2Þ¼argmin

t
p

1
2

1p
1
2

2e
�ðlðt;a1Þ�lðt;a2ÞÞ2=ð8r2Þ:

ð39Þ

The minimization is changed to a maximization by taking

the negative log of (39) and then is simplified to give,

tMM ¼ argmax
t

l t; a1ð Þ � l t; a2ð Þj j: ð40Þ

Since MMopt directly maximizes the response separation

rðtÞ ¼ jlðt; a1Þ � lðt; a2Þj; it is identical to the Bopt

design (38) for this example, and is given by,

tMM ¼ 1:4334: ð41Þ

Summary of results

Results are summarized in Table 1. The true Bayes Risk

for each design is calculated using Monte Carlo simulation

with 1:4� 106 realizations.

MMopt gives the identical sampling time t ¼ 1:4334 as

the Bopt design, with the identical Bayes Risk of 0.1659.

This is due to the fact that they both maximize response

separation, which was seen in (37) to minimize Bayes Risk

and be the optimal strategy for discriminating between the

two support points. The ED optimal sampling time of

3.9991 is very different from the Bopt, and suffers a Bayes

Risk that is 60% larger (i.e., 0.2712 vs. 0.1659). The fact

that the ED design discriminates poorly is not surprising

since the criteria (34) is a simple average (over the prior) of

the Fisher information calculated for each support point

separately, which is generally unrelated to response sepa-

ration. Likewise, the remaining Fisher-information-based

designs (EID, and ELD) do not perform as well as Bopt and

MMopt (although ELD is a close second), due to their

criteria (11), (12), which ignore response separation.

Here, the MMopt sample times ensure that the MAP

Bayesian estimate (i.e., the largest support point of the

Bayesian posterior), will correctly determine the true

patient 83% of the time (i.e., 0:8341 ¼ 1� 0:1659). This

can be an important advantage in applications to PK

control, where the MAP estimate is often used to compute

the patient’s next drug dose or to decide subsequent

treatment.

In summary, is has been shown that the key idea when

optimizing experiment design for a NP model (with two

support points: the simplest possible case), is to pick a

sampling time that maximizes the separation between the

two model responses. It is interesting that this notion is

completely missing (and should not be expected), from

Fisher-information based designs which are derived and

justified based on completely different arguments. This

example demonstrates the usefulness of MMopt, and

clearly underscores the inherent difference between trying

to design an optimal experiment to learn a parametric

model versus a NP model.

Designs for two-support-point example with closely-

spaced parameters

A modification of the two-support-point example is now

studied, where the uncertainty in parameter a is chosen

very small. In this case, it will be seen that the Bopt,

MMopt, and the ED, EID, and ELD designs all give very

similar results.

The two-support-point example (25), (26) is used again

as in the previous example. However, in the current

example the values for a1 and a2 are chosen very close

Model 1 : a1 ¼ 1:1 ðfast support pointÞ; ð42Þ

Model 2 : a2 ¼ 1 ðslow support pointÞ; ð43Þ

so that there is very little uncertainty in the problem. The

two support point responses are plotted in Fig. 5. The Dopt

designs for each support point taken separately are calcu-

lated as t ¼ 1=a1 ¼ 0:9091 (for fast support point a1) and

t ¼ 1=a2 ¼ 1 (for slow support point a2). These sample

times are relatively close together, in contrast to the pre-

vious example. Results are summarized in Table 2. As

expected by the theory, the MMopt design again agrees

exactly with Bopt design. However, somewhat unexpect-

edly, the remaining designs (ED, EID, ELD, Dopt) are also

Table 1 Summary of optimal sampling time designs for two-support-

point example

Design metric Sample time (h) Bayes Risk (Prob)

Bopt 1.4334 0.1659

MMopt 1.4334 0.1659

ED 3.9991 0.2712

EID 0.7498 0.2003

ELD 1.1429 0.1705
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very close to Bopt design, with essentially the same opti-

mal sampling time at t ¼ 0:95 h.

It is shown in Appendix that the fact that the various

designs give the same optimal sampling time in this example

is not an accident, but rather, follows from the asymptotic

properties of the robust design cost functions as the param-

eters a1 and a2 become close. Specifically, it is proved in

Corollary 1 (for the restricted two-support-point problem

which is a slightly more general problem than treated here),

that as the parameter uncertainty Da ¼ a2 � a1 becomes

vanishingly small, the objectives of maximizing

JED; JD; JELD and minimizing JEID asymptotically approach

the single common objective of maximizing the response

separation rðtÞ ¼ jlða1; tÞ � lða2; tÞj over time t.

In summary, results from this two-support-point example

indicate that the ED, EID, ELD, and Dopt designs applied to

models having closely-space parameters (i.e., small model

uncertainty), tend to agree with the Bopt andMMopt designs

in this special case. The result is not just numerical, but is

supported by the theory provided in Appendix.

Four-support-point example

System model

In this section the ED, EID, ELD, and Dopt designs are

compared with MMopt on a more complicated four-sup-

port-point example with two unknown parameters. A two-

parameter exponential measurement model is defined as

yi ¼ l ti; a; bð Þ þ rni; ð44Þ

lðt; a; bÞ ¼ be�at; ð45Þ

ni �N 0; r2
� �

: ð46Þ

Discrete parameter values are given in Table 3, with r ¼
0:1 with prior pi ¼ 0:25; i ¼ 1; . . .; 4: The four support

point responses are plotted in Fig. 6.

In this example, model parameters are intentionally

chosen to help demonstrate the difference between using

Fisher information and classification as experiment design

objectives. Specifically, Fisher-information-based designs

strongly favor putting a sample at the time of the highest

output response, which in this example occurs at time t ¼
0: However, from a classification point of view, a sample at

time t ¼ 0 is partially wasted because it does not help

discriminate between all responses. Specifically, three of

Fig. 5 Responses for two-support-point example with closely-spaced

parameters

Table 2 Summary of optimal sampling time designs for two-support-

point example with close parameters

Design metric Sample time (h) Bayes Risk (Prob)

Bayes optimal 0.9530 0.4767

MMopt 0.9530 0.4767

ED 0.9570 0.4767

EID 0.9480 0.4767

ELD 0.9520 0.4767

D-optimal 0.9524 0.4767

All designs give nearly the same optimal sample time at 0.95 h

Table 3 Values for model

parameters a and b
Index a b

1 2 2.625

2 1 0.6

3 0.7 0.6

4 0.5 0.6

Fig. 6 Responses for four-support-point example
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the four support points shown in Fig. 6 have the same

output response at t ¼ 0 and are not well separated.

The designs are optimized over a time grid t 2 ½0; 4�;with
grid points separated by 0.05 s apart. The Bopt design is too

difficult to compute for this example and is not included. The

Bayes cost for each design is evaluated using Monte Carlo

analysis with 1:4� 106 runs per estimate. Results are com-

pared for the two and three sample time cases only, since the

model has two parameters and the ED, EID and ELD designs

do not exist for the one sample design.

Designs for four-support-point example

Results for the various metrics are summarized in Table 4

for a two sample design, and in Table 5 for a three sample

design. As expected, the ED, EID, and ELD designs place a

sample at t ¼ 0 in all cases. The MMopt design improves

on these designs by shifting this first sample slightly to the

right (to t ¼ 0:45 s), at which time the response curves are

better separated, and hence better discriminated. It is seen

that MMopt has smallest Bayes Risk for all cases studied.

Pharmacokinetic example

MMopt experiment design is demonstrated on a simulated

PK example. The example is based on a one-compartment

(first-order) model,

_x ¼ �Kxþ dðtÞ; ð47Þ

lk ¼
xðtkÞ
V

; ð48Þ

yk ¼ lk þ rknk; ð49Þ

nk �Nð0; 1Þ; ð50Þ

rk ¼ 0:1: ð51Þ

Here, x is the amount of drug in the central compartment,

d(t) is the dose input (time-dependent in general), K is the

elimination constant, V is the volume of distribution, yk is

the noisy measurement at time tk; and rk is the standard

deviation of its noise. The population model is comprised

of m ¼ 10 randomly chosen support points, whose values

of V and K are given in Table 6.

The Bayesian prior is defined such that all 10 support

points have equal probability, i.e., pi ¼ 1=10; i ¼ 1; . . .; 10:

The system is driven by a dosing profile d(t) having a value of

300 units that is held constant for 1 h and then shut off. The

10 support point responses to the dose input d(t) are shown in

Fig. 7. All optimization is performed over a discrete uniform

time grid ranging from t ¼ 0 to 24 h, with time points spaced

at Dt ¼ 0:25 ho (i.e., 15 min) apart. This time grid is chosen

coarser than the grids used previously in order to simplify the

optimization process, while at the same time being consistent

with what can reasonably be enforced in a practical clinical

Table 4 Summary of optimal

two-sample designs for four-

support-point example

Design metric Two-sample times (h) Bayes Risk (Prob) 99% Bayes Risk conf bound

MMopt 0.45 1.4 0.32839 	0:00070

ED 0 0.8 0.37028 	0:00070

EID 0 1 0.36044 	0:00072

ELD 0 0.95 0.36234 	0:00072

Table 5 Summary of optimal

three-sample designs for four-

support-point example

Design metric Three-sample times (h) Bayes Risk (Prob) 99% Bayes Risk conf bound

MMopt 0.45 1.4 1.4 0.28065 	0:00067

ED 0 0.7 0.9 0.32048 	0:00067

EID 0 0 1 0.36034 	0:00072

ELD 0 0.85 1.05 0.30990 	0:00069

Table 6 Values of V and K in a

pharmacokinetic model with 10

support points

# K V

1 0.090088 113.7451

2 0.111611 93.4326

3 0.066074 90.2832

4 0.108604 89.2334

5 0.103047 112.1093

6 0.033965 94.3847

7 0.100859 109.8633

8 0.023174 111.7920

9 0.087041 108.6670

10 0.095996 100.3418

Mean 0.0820 102.3852

STD 0.0311 9.8615
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application. For each case studied, results are computed

using a Monte Carlo simulation having 1� 106 runs. The

corresponding 99% confidence bounds are calculated from

the Monte Carlo statistics and reported for completeness.

Design for PK estimation

MMopt design is applied to the problem of estimating the

PK parameters V and K in models (47)–(49) by designing

experiments having one, two and three optimal sample

times. For the one sample design, MMopt is compared to

Bopt (the optimal Bayesian design), while for the two- and

three-sample designs, MMopt is compared to ED. This

choice is motivated by the fact that ED is not defined for a

one sample design, while Bopt becomes computationally

unwieldy for the two- and three-sample cases.

Performance is summarized in Table 7. For the one-

sample design, the true Bayes Risk is computed numerically

using 1� 106 Monte Carlo runs, and is shown in Fig. 8. The

minimum is attained at t ¼ 4:25 h. The shape of the curve is

interesting, having several local minima which would gen-

erally complicate its optimization. For the one-sample

design, MMopt also attains an optimal at T ¼ 4:25 h, which

is identical to that ofBopt.Hence,MMopt is globally optimal

for this example. Of course this result is obtained on a coarse

time grid, so they may not agree exactly on a finer grid. For

the two and three sample designs, MMopt has lower Bayes

Risk than ED design. In both cases, the improvement is

statistically significant with p-values smaller than 2.2e-16

(machine precision). The low p-values are due to the high

confidence obtained from using a large number of runs in

each Monte Carlo evaluation.

Voriconazole case study

We wished to use MMopt to develop an optimal first

sampling strategy for oral voriconazole in children.

Because this drug has a mixture of linear and non-linear

elimination, which is related to but not entirely predicted

by age, it is a challenge for practitioners to know when

steady state is achieved. This in turn makes comparison of

Fig. 7 Ten support point responses to dose input d(t)

Table 7 Results for optimal

one, two and three sample

designs applied to PK

estimation

Design metric Samples (h) Bayes Risk (Prob) 99% Conf (Prob)

One-sample design

Bopt 4.25 0.5474 	0:0015

MMopt 4.25 0.5474 ±0.0015

Two-sample design

MMopt 1 9.5 0.2947 ±0.0014

ED 1 24 0.3272 ±0.0014

Three-sample design

MMopt 1 1 10.5 0.2325 ±0.0013

ED 1 1 24 0.2617 ±0.0013
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Bayes Risk for 1-Sample Design
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Optimal Bayes Risk = 0.5474

Bopt sample time 
= 4.25 hr

0.55

Fig. 8 Bayes Risk computed using 1� 106 Monte Carlo runs,

showing the one-sample Bayesian design at Bopt = 4.25 h with an

optimal value of Prob = 0.5474
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a trough concentration to a pre-established target steady-

state range of 1–5.5 mg/L difficult due to the uncertainty

about steady-state conditions. For this optimal sampling

project, we used the same dataset that we previously used

to build a population model of voriconazole in adults and

children [39]. The data comprised 141 subjects, with 85

children ranging from 2 to 11 years of age, and 56 adults

19 to 55 years of age. The population model had seven

parameters with linear absorption, allometrically scaled

Michaelis–Menten clearance and volume of the central

compartment, a peripheral tissue compartment, and

bioavailability. There were 125 support points in the final

NP population model.

We first used the MMopt function that has been incorpo-

rated into our Pmetrics NP population modeling and simu-

lation package for R to calculate one and two optimal times to

sample after the first maintenance dosage of voriconazole.

The MMopt calculations were constrained to 0.5 h intervals

on the range from 0 to 36 h. We used the population points

and assay error polynomial (5) of c0 ¼ 0:02; c1 ¼ 0:1; c2 ¼
c3 ¼ 0;with loading dosages of 9 mg/kg two times in the first

24 h, followed by the first maintenance dose of 8 mg/kg at

the beginningof day2, 12 h after the second loadingdose.We

combined three sets of 125 time–concentration profiles gen-

erated from the support points in the model, with each set

corresponding to a child aged 2, 7 or 12 years, and weighing

the median for each age, according to CDC growth charts:

12.2, 23.3 and 36.1 kg. The single optimal time point to

sample (MMopt1) was 1 h before the second maintenance

dose, i.e., 35 h into the regimen. The two optimal time points

(MMopt2) were a peak and trough, 1 h after the first main-

tenance dose, and just before the second maintenance dose,

i.e., 25 and 36 h into the regimen. This is shown in Fig. 9.

Next, we used the population model with full covariances

to simulate 50 new subjects administered oral voriconazole

9 mg/kg q12h for two doses, followed by a single 8 mg/kg

dose. The mean (range) simulated weights and ages were

40.6 (12–89) kg and 6.4 (2.2–11.1) years. We simulated

hourly concentrations until 24 h after the final dose, and

these observations were corrupted with random noise drawn

from a Gaussian distribution with mean of 0 and standard

deviation based on the assay error coefficients above.

The complete data for each simulated subject was defined

as the ‘‘full’’ dataset. We depleted the full data set to include

only the MMopt2 observations at times 25 and 36 h.We also

depleted it to include only the MMopt1 observation time at

35 h. We used the model to calculate the full Bayesian pos-

terior with concentrations every 12 min from 0 to 48 h for

each dataset (full, MMopt2, MMopt1). From each posterior,

we calculated the area-under-the-curve (AUC) from 24 to

36 h by trapezoidal approximation, as well as extracted the

concentration at time 25 h (1 h post-dose peak) and 36 h

(12 h post-dose trough).

Using the full dataset to generate a Bayesian posterior,

the simulated observations could be predicted as

0.05 ? 0.92* prediction, R2 ¼ 0:87; indicating a good fit.

We therefore defined the AUC, peak and trough from the

Bayesian posterior based on the full dataset to be the

reference, and compared the AUCs, peaks and troughs

from the MMopt2 and MMopt1 posteriors using a paired

T-test. The results are shown in Table 8. Also included

in the table is the 95th percentile of the absolute pre-

diction difference as a measure of imprecision.

In conclusion, we could show that using two MMopt

samples, one obtained 1 h after the first maintenance dose

and one just prior to the second maintenance dose, permits

estimation of voriconazole AUC, peaks and troughs with

reasonably low bias. While the peaks are significantly

underpredicted, this is not likely to affect clinical outcome

since efficacy has been linked to AUC or trough concen-

trations [1, 25, 27, 35, 38], and the absolute underpredic-

tion is low. A single sample 1 h before the second

maintenance dose is very similar in accuracy to two sam-

ples. Using one or two MMopt samples with this popula-

tion model results in an error in trough prediction that is

95% likely to be less than 0.38 or 0.93 mg/L, respectively.

Dopt sampling would require seven blood samples, which

is not readily feasible even in the inpatient setting. MMopt

sampling will permit rapid assessment of the appropriate-

ness of the voriconazole oral dose in children, and subse-

quent sampling times in individual patients can be guided

by further use of MMopt for each patient. Clinicians may

now have a tool that overcomes the concerns about steady

state, and which uses the patient’s own measured

24 26 28 30 32 34 36

0
2

4
6

8
10

Time (h)

V
or

ic
on

az
ol

e 
(m

g/
L)

Fig. 9 Oral dosing responses of time versus concentration, simulated

from a voriconazole nonparametric model with 125 support points.

Patients are given loading doses at 0 and 12 h, and a maintenance

dose at 24 h. MMopt samples times are determined on a grid

constrained to 0.5 h intervals. The two optimal sample times

(MMopt2) are shown in dashed lines at 25 and 36 h. The one

optimal sample time (MMopt1) is indicated by the dash-dot line at

35 h
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concentrations to control both the dose and the time to best

sample.

Discussion

Several properties of the various experiment design

approaches are summarized in Table 9, and are discussed

below.

An interesting question arises whether an experiment

design is invariant under a change of variables in the

model. Let an estimation problem having parameter vector

a 2 Rp be reparametrized in terms of the vector b 2 Rp

where a and b are related by the mapping,

a ¼ f ðbÞ: ð52Þ

The mapping (52) is assumed to be regular in the sense that

it is one-to-one and has continuous partial derivatives. In

the case of a regular linear reparametrization, the mapping

(52) takes the form

a ¼ Fb; ð53Þ

where F 2 Rp�p is a square and invertible matrix.

P1 Invariance under regular linear reparametrization.

P2 Invariance under regular nonlinear reparametriza-

tion.

An obvious property of support point responses is that

they are invariant under regular reparametrization.

Accordingly, methods such as Bopt and MMopt based

purely on support point responses, will also trivially be

invariant under a regular reparametrization (of both the

linear and nonlinear kind). However the same is not true

for the Fisher-based robust designs. An analysis performed

in the (Supplemental File, 8/13/2016) proves that while all

the robust designs are invariant under linear parametriza-

tion, only the ELD design (not the ED and EID designs) are

invariant under nonlinear parametrization.

This lack of invariance can have significant consequences

in practice. For example, a one-compartment PK model is

parameterized by volume V and elimination rate K as

_x ¼ �Kxþ d; ð54Þ

li ¼
xðtiÞ
V

: ð55Þ

Here, the drug amount in the compartment is x, the dose is

d, and li indicates the noiseless part of a drug concen-

tration measurement at time ti: However, an alternative

parametrization is given by using parameters volume V and

clearance C (where C ¼ VK) [21],

_x ¼ �ðC=VÞxþ d; ð56Þ

Table 8 Bias and imprecision

of predictions from Bayesian

posteriors based on two optimal

samples (MMopt2) or one

(MMopt1) optimal sample

compared to posteriors based on

hourly samples (Full)

Full MMopt2 MMopt1

Bias (MMopt minus Full)

AUC (mg h/L) 18.53 -0.82 (-3.18 to 1.55), P = 0.49 -1.86 (-4.13 to 0.40), P = 0.11

Peak (mg/L) 2.58 0.37 (0.16 to 0.58), P\ 0.001 0.42 (0.04 to 0.79), P = 0.03

Trough (mg/L) 0.8 0.01 (-0.16 to 0.18), P = 0.87 -0.09 (-0.20 to 0.03), P = 0.12

95th Percentile imprecision (|MMopt minus Full|)

AUC (mg h/L) 11.5 10.75

Peak (mg/L) 1.13 2.55

Trough (mg/L) 0.93 0.38

The MMopt2 samples are taken 1 h after and just before the first and second oral maintenance voriconazole

doses, respectively. The MMopt1 sample is taken 1 h before the second oral maintenance voriconazole

dose

Table 9 Properties of ED, EID,

ELD, MMopt, and Bopt

designs, where Y stands for

‘‘yes,’’ and N stands for ‘‘no’’

# Properties ED EID ELD MMopt Bopt

P1 Invariance under regular linear reparametrization Y Y Y Y Y

P2 Invariance under regular nonlinear reparametrization N N Y Y Y

P3 Avoids dependence on estimator asymptotic properties N N N Y Y

P4 Avoids knowing true parameters in nonlinear problems Y Y Y Y Y

P5 Allows taking fewer than p samples N N N Y Y

P6 Can handle heterogeneous model structures N N N Y Y

P7 Gives known optimal solution to two-support point example N N N Y Y

P8 Captures main elements of pre-posterior analysis N N N Y Y

P9 Solves optimal Bayesian classifier problem N N N N Y
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li ¼
xðtiÞ
V

: ð57Þ

According to Table 9 property (P2), when using the ED or

EID methods, a clinician would have to compute separate

experiment designs depending on whether he was using the

ðV; KÞ or ðV ; CÞ parametrization. This behavior is non-

intuitive as the responses are identical under either

parametrization and should not call for separate designs. In

contrast, the ELD, MMopt and Bopt designs are invariant

under this change of variables.

P3 Avoids dependence on estimator asymptotic

properties.

P4 Avoids knowing true parameters in nonlinear

problems.

As discussed in Pronzato and Pazman [40], there are

two common avenues for circular reasoning to enter into

the experimental design process. The first [cf., (P3)], is the

dependence on asymptotic properties of the estimator.

This represents a contradiction since experiment designs

are typically used for placing only a small (non-asymp-

totic) number of samples, while certain information

measures (e.g., Fisher information) are rigorously only

valid asymptotically as the number of samples goes to

infinity. The second [cf., (P4)], is the assumption that the

true parameters are available beforehand for use in com-

puting the optimal design. This represents a contradiction

since it is the whole point of experimental design to find

these parameters in the first place.

MMopt and Bopt both satisfy (P3) and (P4) and com-

pletely avoid these contradictions. However, the robust

designs do not satisfy (P3) because they are defined in

terms of Fisher information which involves an asymptotic

approximation. Nevertheless, all robust designs avoid the

second contradiction [and hence satisfy (P4)], due to the

fact that they average over the prior distribution.

P5 Allows taking fewer than p samples.

Both Bopt and MMopt allow taking fewer than p sam-

ples, where p is the number of parameters. The Dopt robust

designs do not enjoy this same property since their cost

would be zero for all sub-sampled designs. It is worth

noting that certain heuristic modifications of Dopt designs

have been introduced to help overcome this limitation [17].

P6 Can handle heterogeneous model structures.

TheBopt andMMopt experiment designs are based purely

on support point responses and as such, are able (trivially) to

handle heterogeneous model structures. In particular, the

underlying discrete NP population can be a mix of models

having different orders or numbers of compartments, linear or

nonlinear dynamics, or any other combination of heteroge-

neous characteristics. The Dopt designs do not enjoy this

same property. However, several extensions relevant to

model discrimination have been developed (cf., [2, 54]).

P7 Gives known optimal solution to two-support-point

example.

It was shown theoretically and confirmed numerically in

the two-support-point example of Section , that both Bopt

and MMopt maximize the response separation and conse-

quently correspond to the Bopt design. Hence both Bopt

and MMopt satisfy (P7). Of course the robust designs are

not designed to maximize response separation, and as

expected, they generally fail to give the Bopt design even

in the two-support-point example. However, an interesting

property proved theoretically in Appendix and confirmed

by example in Section is that the robust designs act to

minimize Bayes Risk in the limit as the parameter uncer-

tainty becomes vanishingly small.

P8 Captures main elements of pre-posterior analysis.

P9 Solves optimal Bayesian classifier problem.

The idea of pre-posterior analysis is to optimize a ‘‘what-

if’’ thought experiment that calculates the Bayesian posterior

resulting from ‘‘having already implemented’’ a given can-

didate experiment design (cf., [33, 42]). In the current paper,

only the Bayesian optimal classifier (Bopt) satisfies (P9)

since it minimizes Bayes Risk which is a property of the

Bayesian posterior. However, MMopt minimizes an over-

bound on the true Bayes Risk, which acts to indirectly reduce

Bayes Risk. Hence MMopt satisfies (P8) and captures

important elements of pre-posterior analysis.

It is worth noting that there is a separate literature on

Bayesian optimal design [43]. Pre-posterior analysis methods

from Bayesian optimal design have been applied in control

theory [4, 5, 53] and in the context of PK problems in Merle

and Mentre [37] and Schumitzky [45]. Interestingly, the sec-

ondmethod discussed in [37] canbe directly related toMMopt

in that it defines informative experiments as those that mini-

mize the covariance of the pre-posteriorBayesiandistribution,

while MMopt defines informative experiments as those that

maximize its mode. Intuitively, both approaches are acting to

‘‘hone in’’ on the parameter values by making the pre-poste-

rior Bayesian distribution ‘‘tall’’ (in the case of MMopt), and

‘‘thin’’ (in the case of [37]).

Generally speaking, Bayesian optimal approaches are

promising and may find application to a broad class of PK

problems in the future. However for the NP models con-

sidered here, such approaches are more complicated than

MMopt, and generally require Monte Carlo simulation,

multidimensional integration, and/or stochastic analysis

which significantly adds to their computation.
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Conclusions

MMopt is introduced as a novel experiment design method

uniquely relevant to NP models. MMopt minimizes an

overbound on the Bayes Risk, where the overbound in

based on a key inequality first proved in [11]. The main

idea is to think of individualized therapy with respect to an

NP (i.e., discrete) prior, as a classification problem to find

the support point that best matches the patient’s behavior.

This classification-based approach leads to the important

notion of ‘‘response separation’’ as a guiding principle for

understanding and optimizing the NP problem. It is inter-

esting that Fisher-based designs completely ignore

response separation, being motivated instead by arguments

specifically relevant to parametric models. The issue of

response separation underscores the essential difference

between optimal designs intended for parametric models

versus NP models. Despite this difference, the two

approaches were shown to give identical results in the

special case where the prior uncertainty becomes vanish-

ingly small. This indicates that the Fisher-based designs

may have some value in a restricted local sense when

applied to NP models. Bayes Risk minimization has the

additional advantage of causing the MAP Bayesian esti-

mate to be more accurate, which is relevant to PK appli-

cations where MAP Bayesian control is applied for

determining individualized drug doses. Using numerical

examples, including a PK voriconazole study, and sup-

porting theoretical analysis in an Appendix and Supple-

mental File, the usefulness of MMopt is demonstrated and

discussed with respect to the ED, EID, and ELD classes of

Fisher-information-based robust designs.

Future work will directed at comparing MMopt with

alternative experimental design approaches, and develop-

ing a weighted version of MMopt that incorporates a

matrix of misclassification costs (i.e., the cost of misclas-

sifying support point i as j). This latter development will

allow the clinician to tailor the experimental design to elicit

specific information needed to support to a diverse range of

clinical goals.
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Appendix: Two-support-point problem with close
parameters

Definition 1 (Two-support-point problem) A general class

of two-support-point problems is defined of the form,

y tkð Þ ¼ l tk; að Þ þ rknk; ð58Þ

where a 2 X ¼D fa1; a2g is a random variable taking on

values a1 and a2; zðt; aiÞ; i ¼ 1; 2 are the support point

responses, each assumed to be continuous over the closed

interval t 2 T ¼D ½tA; tB�; yðtkÞ is the noisy measurement of

zðt; aÞ taken at discrete time tk; nk �Nð0; 1Þ is the mea-

surement noise at time instant tk; rk scales nk to a desired

level; and the prior support point probabilities are specified

as p1 for a1 and p2 for a2 where p1 [ 0; p2 [ 0; and

p1 þ p2 ¼ 1:

The experiment design problem is to find the set U of n

optimal sampling times

U ¼ t1; . . .; tnf g; ð59Þ

on a specified time interval t 2 T ¼D ½tA; tB� that act to best

identify the parameter vector a 2 fa1; a2g:

Definition 2 (Restricted two-support-point problem) A

restricted two-support-point problem is defined by Defini-

tion 1 under the additional conditions that the noise is

independent of time, rk ¼ r; there is only one sample to be

taken, n ¼ 1; U ¼ ft1g; and the prior support point prob-

abilities are uniformly distributed, i.e., p1 ¼ p2 ¼ 0:5:

Furthermore, it is assumed that the function lðt; aÞ is

sufficiently smooth to admit a first-order Taylor expansion

in the vicinity of parameter values a1 and a2 for all t 2 T :

In what follows, the asymptotic order notation Oð�kÞ is
used to indicate a term that decreases to zero as �k:

Specifically, lim�!0 Oð�kÞ ¼ 0 and there exists a constant

M such that [9],

lim
�!0

O �k
� �

=�k
�� �� ¼ M\1: ð60Þ

Furthermore, the notational dependence of lðt; aÞ on time t

will be suppressed and denoted more simply as lðaÞ:

Theorem 2 The costs associated with the ED, D [evalu-

ated on the mean parameter value a ¼ 1
2
ða1 þ a2Þ�; EID

and ELD optimal designs for the restricted two-support-

point problem of Definition 2 can be written in terms of the

response separation rðtÞ ¼ jlða2Þ � lða1Þj for sufficiently

small parameter uncertainty Da ¼ a2 � a1 as,

JED ¼ 0:5 M a1ð Þj j þ 0:5 M a2ð Þj j ¼ rðtÞ2

r2Da2
þOðDaÞ;

ð61Þ

JD ¼ jMðaÞj ¼ rðtÞ2

r2Da2
þOðDaÞ; ð62Þ

JEID ¼ 0:5 M a1ð Þj j�1þ0:5 M a2ð Þj j�1¼ r2Da2

rðtÞ2
ð1þOðDaÞÞ;

ð63Þ
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JELD ¼0:5 ln M a1ð Þj j þ 0:5 ln M a2ð Þj j

¼ 0:5 ln
rðtÞ4

r4Da4
þOðDaÞ

 !
:

ð64Þ

Proof of Eq. (61): Consider the response lðaÞ as a function
of the parameter a. Let lða2Þ be expressed in terms of the

Taylor expansion about a1

l a2ð Þ ¼ l a1ð Þ þ ol
oa

���
a1

a2 � a1ð Þ þ O a2 � a1ð Þ2: ð65Þ

Letting Da ¼D a2 � a1 yields upon rearranging,

l a2ð Þ � l a1ð Þ ¼ ol
oa

���
a1
DaþOðDaÞ2: ð66Þ

Squaring both sides of (66) gives

l a2ð Þ � l a1ð Þð Þ2¼ ðDaÞ2 ol
oa

���
a1

� �2

þOðDaÞ3: ð67Þ

Similarly, let lða1Þ be expressed in terms of the Taylor

expansion about a2

l a1ð Þ ¼ l a2ð Þ þ ol
oa

���
a2

a1 � a2ð Þ þ OðDaÞ2; ð68Þ

which can be rearranged as

l a2ð Þ � l a1ð Þ ¼ ol
oa

���
a2
DaþOðDaÞ2: ð69Þ

Squaring both sides of (69) yields

l a2ð Þ � l a1ð Þð Þ2¼ ðDaÞ2 ol
oa

���
a2

� �2

þOðDaÞ3: ð70Þ

Adding one half of (67) to one half of (70) gives

l a2ð Þ � l a1ð Þð Þ2¼ ðDaÞ2 1

2

ol
oa

���
a1

� �2

þ 1

2

ol
oa

���
a2

� �2
 !

þOðDaÞ3:

ð71Þ

Dividing both sides by r2ðDaÞ2 gives,

1

2r2
ol
oa

���
a1

� �2

þ 1

2r2
ol
oa

���
a2

� �2

¼ ðlða2Þ � lða1ÞÞ2

r2Da2
þOðDaÞ:

ð72Þ

Proof of Eq. (62): Combining relations a ¼ 1
2
ða1 þ a2Þ

and Da ¼ a2 � a1; gives

a ¼ a1 þ
1

2
Da; ð73Þ

a ¼ a2 �
1

2
Da: ð74Þ

Let lða2Þ be expressed in terms of a Taylor expansion of

lðaÞ about a

l a2ð Þ ¼ lðaÞ þ ol
oa

���
a
a2 � að Þ þ O a2 � að Þ2: ð75Þ

Rearranging (74) gives a2 � a ¼ 1
2
Da which is substituted

into (75) to give

l a2ð Þ ¼ lðaÞ þ ol
oa

���
a

1

2
Da

� �
þOðDaÞ2 ð76Þ

Similarly, let lða1Þ be expressed in terms of a Taylor

expansion of lðaÞ about a

l a1ð Þ ¼ lðaÞ þ ol
oa

���
a
a1 � að Þ þ O a1 � að Þ2: ð77Þ

Rearranging (73) gives a1 � a ¼ � 1
2
Da which is substi-

tuted into (77) to give

l a1ð Þ ¼ lðaÞ � ol
oa

���
a

1

2
Da

� �
þOðDaÞ2: ð78Þ

Subtracting (78) from (76) and rearranging gives

l a2ð Þ � l a1ð Þ ¼ ol
oa

���
a
DaþOðDaÞ2: ð79Þ

Squaring both sides of (79) and dividing by r2ðDaÞ2 gives
upon rearranging,

1

r2
ol
oa

���
a

� �2

¼ ðlða2Þ � lða1ÞÞ2

r2Da2
þOðDaÞ : ð80Þ

Proof of Eq. (63): Reciprocating both sides of Eq. (67),

using the relation 1
1þ� ¼ 1� �þOð�2Þ for small �; and

rearranging gives,

Da2

ðlða2Þ � lða1ÞÞ2
¼ ol

oa

����
2

a1

 !�1

ð1�OðDaÞÞ: ð81Þ

Likewise, reciprocating both sides of Eq. (70) and rear-

ranging gives,

Da2

ðlða2Þ � lða1ÞÞ2
¼ ol

oa

����
2

a2

 !�1

ð1�OðDaÞÞ: ð82Þ

Adding (81) and (82) and multiplying both sides by r2=2
gives upon rearranging

0:5
1

r2
ol
oa

���
2

a1

� ��1

þ 0:5
1

r2
ol
oa

���
2

a2

� ��1

¼ r2Da2

ðlða2Þ � lða1ÞÞ2
ð1þOðDaÞÞ:

ð83Þ

Proof of Eq. (64): Multiplying (67) and (70) yields,
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l a2ð Þ � l a1ð Þð Þ4¼ Da4
ol
oa

���
a1

� �2
ol
oa

���
a2

� �2

þOðDaÞ5:

ð84Þ

Dividing both sides by r4Da4 gives upon rearranging

1

r2
ol
oa

���
2

a1

� �
1

r2
ol
oa

���
2

a2

� �
¼ ðlða2Þ � lða1ÞÞ4

r4Da4
þOðDaÞ:

ð85Þ

Taking 1
2
lnð�Þ of both sides gives

0:5 ln
1

r2
ol
oa

���
2

a1

� �
þ 0:5 ln

1

r2
ol
oa

���
2

a2

� �

¼ 0:5 ln
ðlða2Þ � lða1ÞÞ4

r4Da4
þOðDaÞ

 !
:

ð86Þ

Corollary 1 As the parameter uncertainty Da ¼ a2 � a1
becomes small in the restricted two-support-point problem

of Definition 2, the objective functions JED; JD and JELD
approach a monotonically increasing function of the

response separation r(t), while JEID approaches a mono-

tonically decreasing function of the response separation r(t).

Proof The result follows by the properties of relations

(61), (62), (63), (64) as Da becomes small, noting that

functions 1 / x and lnðxÞ are monotonically decreasing and

increasing in x, respectively. h

Corollary 1 indicates that as the parameter uncertainty

Da ¼ a2 � a1 becomes small in the restricted two-support-

point problem of Definition 2, the objectives of maximizing

JED; JD; JELD and minimizing JEID asymptotically

approach the single common objective of maximizing the

response separation rðtÞ ¼ jlða2; tÞ � lða1; tÞj over time

t 2 T : These asymptotic properties are examined numeri-

cally in the ‘‘Two-support-point example’’ section.
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