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Abstract The lifespan of red blood cells (RBCs) plays an

important role in the study and interpretation of various clin-

ical conditions. Yet, confusion about the meanings of funda-

mental terms related to cell survival and their quantification

still exists in the literature. To address these issues, we started

from a compartmental model of RBC populations based on an

arbitrary full lifespan distribution, carefully defined the

residual lifespan, current age, and excess lifespan of the RBC

population, and then derived the distributions of these

parameters. For a set of residual survival data from biotin-

labeled RBCs, we fit models based on Weibull, gamma, and

lognormal distributions, using nonlinear mixed effects

modeling and parametric bootstrapping. From the estimated

Weibull, gamma, and lognormal parameters we computed the

respective population mean full lifespans (95 % confidence

interval): 115.60 (109.17–121.66), 116.71 (110.81–122.51),

and 116.79 (111.23–122.75) days together with the standard

deviations of the full lifespans: 24.77 (20.82–28.81), 24.30

(20.53–28.33), and 24.19 (20.43–27.73). We then estimated

the 95th percentiles of the lifespan distributions (a surrogate

for the maximum lifespan): 153.95 (150.02–158.36), 159.51

(155.09–164.00), and 160.40 (156.00–165.58) days, the mean

current ages (or the mean residual lifespans): 60.45

(58.18–62.85), 60.82 (58.77–63.33), and 57.26 (54.33–60.61)

days, and the residual half-lives: 57.97 (54.96–60.90), 58.36

(55.45–61.26), and 58.40 (55.62–61.37) days, for theWeibull,

gamma, and lognormal models respectively. Corresponding

estimates were obtained for the individual subjects. The three

models provide equally excellent goodness-of-fit, reliable

estimation, and physiologically plausible values of the directly

interpretable RBC survival parameters.

Keywords RBC lifespan � Mathematical model �
Survival functions � Direct and indirect RBC survival

models

Introduction

The survival of red blood cells (RBCs) has been studied for

nearly a century [1] because of its importance in clinical

medicine and translational research. To cite three exam-

ples, the mean RBC lifespan and production rate determine

the steady-state hemoglobin (Hb) concentrations in both

healthy and diseased individuals [2]; variation in mean

RBC lifespan is sufficient to result in clinically important

differences in HbA1c among diabetics with the same mean
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blood glucose level [3]; and reduced mean RBC lifespan

contributes to the anemia of chronic renal failure [4, 5].

Equally important is the role of the RBC lifespan in

establishing criteria for stored RBCs for transfusion, elu-

cidation of the physiology and pathophysiology of ery-

thropoiesis, and the design of therapies for anemia and

other hematological conditions [6–8].

Confusion and a lack of proper quantification of various

aspects of RBC survival still exist in the literature. Before

discussing these issues we describe the two approaches,

direct and indirect, commonly used to study RBC survival

and the types of RBC samples used in such studies [9]. We

then provide a brief literature review.

Direct and indirect models of RBC survival

The direct approach [9] involves observing and quantifying

the disappearance of a population of labeled RBCs from the

circulation. Direct models fall primarily into two categories:

(1) empirical models for simple curve fitting [3, 5, 8, 10–14],

and (2) ‘‘phenomenological’’ models accounting for

macroscopic phenomena such as random destruction of the

cells, lifespan-based elimination of the cells, neocytolysis

(selective hemolysis of young RBCs under conditions of

RBC excess when acutely exposed to increased tissue oxy-

gen content), etc., and method-specific phenomena such as

radioactive decay of the label, elution, vesiculation, etc. in

the case of labeling by 51Cr [9, 10, 15–21].

Instead of the direct measurement of RBC survival, the

indirect approach [9] relies on native Hb, glycosylated Hb,

or other pharmacokinetic/pharmacodynamic (PK/PD)

information over time to make inferences about the RBC

lifespan [2, 9, 22–25]. Indirect models are lifespan-based

compartmental PK/PD models (e.g., lifespan-based indirect

response or LIDR models [26]), of which transit compart-

ment (TC) models are a special case [27]. A series of transit

compartments, each compartment with a PDF representing

the lifespan distribution of the cells in that compartment [9,

27, 28] is a hallmark of TC models.

As the name indicates, LIDR models are ‘‘indirect’’

models. Direct models, in which the survival of labeled

RBCs is tracked over time, are based on the residual sur-

vival function (SF), which is derived here as a consequence

of the LIDR model.

Random and cohort samples

Direct RBC survival studies can be conducted in two ways

depending on the type of sample of RBCs used [7]. A

random (or population) sample consists of a mixture of

RBCs of all ages, such as that obtained by a venous blood

draw. In contrast, a cohort sample consists of RBCs that

are all approximately the same age [7]. Random sample

methods are more easily performed and thus more widely

used in RBC survival studies [7, 14]. In such studies, RBCs

in blood drawn from a donor are labeled and transfused

into a recipient (possibly the same person), and their dis-

appearance is followed [7]. The time at which the sample is

collected is called the index time, and the corresponding

RBC population (in the circulation plus in the sample) at

that time is the index population.

For a random sample study, the sampling of blood and

transfusion of labeled RBCs back into the subject should

ideally happen at the index time and within a time interval

insignificant in comparison to the shortest lifespan of all but

a negligible fraction of the RBCs; further, the transfused

RBCs should be distributed homogeneously in the circula-

tion immediately. The concentration of labeled RBCs in the

circulation at that instant would serve as the baseline con-

centration. In practice, the labeled RBC enrichment at day 1

is taken as the baseline to minimize artifacts from RBCs

that are damaged and consequently removed during the first

24 h in circulation [29]. Blood samples are subsequently

drawn at sufficient intervals after the labeled RBC trans-

fusion to permit determination of RBC survival parameters.

The ratio of the concentration of labeled RBCs in the later

samples to the baseline concentration gives the survival data

at each time. A plot of these measurements against time

constitutes the random sample (residual) survival curve.

Labeling with radioactive 51Cr is the current de facto

gold standard for RBC survival studies [14], despite the

fact that it exposes subjects to radiation and despite the

analytical complications due to radioactive decay, elution

of 51Cr from cells, and loss of label by vesiculation [30].

Recently, Mock et al. [31] demonstrated that random

sample survival data for normal adults obtained using

nonradioactive biotin labeled RBCs (bioRBCs) can be used

in RBC survival studies with results similar to those from
51Cr. Rather than measuring the radioactivity of hemo-

globin bound 51Cr in the blood samples, which is inevitably

confounded by radioactive decay, vesiculation, and elution,

individual cells are enumerated by flow cytometry after

separation from unlabeled RBCs based on fluorescence

intensity due to binding of fluorescent-labeled streptavidin

to the biotin label on the RBCs. Thus, this method is free

from the problems of elution and vesiculation. Moreover,

biotinylation at lower densities appears not to affect the

RBC lifespan [14].

Brief literature survey

Mathematical descriptions of RBC survival are broadly

based on the direct or indirect method described above.

Direct models are based on the theory for transfused RBCs
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developed early on [10, 32–34]. Some quantitative

descriptions developed later focused on fitting a curve to

the survival curve and quantifying the mean lifespan and

half-life [5, 11, 15, 17, 18, 32]. Complicated phenomeno-

logical models were also used [10, 15–21, 30]. Some

authors used simple linear or cubic curve-fitting of the

survival curve to estimate the mean age at the time of

labeling [3, 14]. Many studies use the maximum RBC

lifespan (Tmax), a term that is difficult to quantify [3, 11,

13] in a plausible manner.

A direct PK/PD model including RBC survivor func-

tions of various complexity was presented by Uehlinger

et al. [25]. A new lifespan based compartmental PK/PD

model paved the way to an indirect and compartmental

approach to quantify RBC/reticulocyte mean lifespan [35].

Earlier works based on this approach assumed that all cells

in a compartment survived for a fixed time, which intro-

duced a time-delay in the input/output models thus repre-

senting the lifespan of the cells in a compartment by a point

distribution [2, 23, 26, 35–37]. The theory was expanded

later to represent the RBC lifespan distribution by possibly

time-varying continuous PDF [21, 22, 38–40]. These

indirect methods do not involve direct measurement of

random sample cell survival data. But Lledó-Garcı́a et al.

[9] presented a somewhat ‘‘hybrid’’ approach that used a

TC model to estimate mean lifespan from a set of biotin-

labeled random sample RBC survival data previously

published by Cohen et al. [3].

There exist confusions in the literature primarily due to

failure to distinguish between various survival functions

and survival parameters and subtle disconnects in the the-

oretical relationships developed. Furthermore, some mod-

els have a large number of unknown parameters, which

creates identifiability issues.

Objectives

In this paper, starting with a LIDR model based on an

arbitrary lifespan distribution, we derive the relations

between the residual lifespan distribution, which is the

basis of observations in the direct method, and the full

lifespan distribution; these are expressed through the sur-

vival functions corresponding to each distribution. Further,

we derive survival functions for the current age distribution

(distribution of ages in the index RBC population) and the

excess lifespan distribution (distribution of remaining

lifespan of cells in the index population that have survived

beyond a specified time te past the index time). Other RBC

survival descriptors (mean lifespan, mean current age, etc.)

are then easily obtained.

We apply these results to analyze a set of bioRBC data

[14] using theNLME framework.We consider threemodels,

based on the Weibull, gamma, and lognormal distributions,

respectively, for the full RBC lifespan. The PDFs for these

distributions are given in Appendix 1. These distributions

are widely used in reliability theory [41–43], survival

analysis [44], and studies of aging and lifespan for both

mechanical and biological systems using a reliability theory

approach [45–49]. Although the Weibull is widely used as a

failure distribution [41], aside from the papers by Friese

et al. [22, 39], ours is the only use of the Weibull as an RBC

lifespan distribution to our knowledge. In RBC survival

studies the gamma distribution arises in transit compartment

models [27] with a fixed, specified integer-valued shape

parameter, a restriction we avoid in this work.

Based on observations of the residual survival function

provided by the experimental data, the estimated structural

parameters of each model are used to compute the survival

functions for the full lifespan, current age, and excess

lifespan distributions. From these it is easy to estimate

many RBC survival descriptors at both the population and

individual levels; as examples we use the mean lifespan,

the standard deviation of the lifespan distribution, s
95
(as a

surrogate for maximum lifespan), mean current age, and

residual half-life. The definitions of these terms are pro-

vided later in the text.

The process of RBC aging and the eventual death is an

issue of special scientific and clinical interest [50–52]. The

RBC lifespan distribution may provide information of

clinical and research relevance in understanding the type of

red cell elimination taking place in normal individuals and

in those with specific diseases. For example, these models

can potentially be used to determine whether elimination is

primarily driven by an intrinsic lifespan-based mechanism

or is the result of extrinsic factors acting independently of

the RBC lifespan.

Post-transfusion survival of stored RBC has important

implications in determination of the shelf life of RBCs [8,

53]. Excess lifespan of RBC can potentially be used to

better quantify the post-transfusion survival of stored RBC.

A potential use of current age and excess lifespan dis-

tributions is to help identify morphological and/or physi-

ological attributes of RBCs that correlate to the RBC age

distribution, shedding light on the mechanism of RBC

aging and eventual death in health and disease [54]. For

example, it has been shown that the surface area and

hemoglobin amount generally resemble lognormal distri-

bution and the distribution changes in a time dependent

manner as the membrane continues to be shed [55]. Time

dependent changes in the density distribution of biotin-

labeled sickle RBC have been studied in [56]. If we are

able to accurately measure the current age or excess

lifespan distributions based on some morphological or

physiological attributes of RBCs, then it would potentially
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allow the quantification of full RBC survival descriptors

discussed in this paper with a single random sample of

blood instead of multiple consecutive random samples over

the period of up to 4 months as in the most commonly used

residual lifespan data.

Mathematical model

The birth time of an RBC is the time when a reticulocyte tran-

sitions to a fully matured and hemoglobinized RBC after losing

the ribosomes and mitochondria. By death time of RBC we

mean the moment of elimination of the RBC from the circula-

tion. At birth time t ¼ �u, eachRBC is assumed to be endowed

with a full lifespan s. Consider the index time t ¼ 0 when the

RBC sample is collected and labeled. The age of an RBC in the

index population at this time is the current age, sc ¼ u, which is

the amount of time already spent by it in circulation since its

‘‘birth.’’ The residual lifespan of the RBC is the time sr that it
remains in the circulation before its ‘‘death’’. Thus

s ¼ sc þ sr:

Given a fixed, specified time te after the index time, the

remaining lifespan of the RBC is excess lifespan of the

RBC, se ¼ s� te. Not all RBCs are born with the same

lifespans. The full lifespan and hence the residual lifespan,

the current age, and the excess lifespan can be represented

by respective continuous probability density functions

(PDFs). In general the RBC survival distributions for dif-

ferent people will not be the same.

We assume that the RBCs in healthy individuals survive

independently of each other. We assume the internal

environment of the study subject is stable in the sense that

the RBC lifespan distribution is time-invariant and that

there is no abnormal blood loss or other significant inter-

current event (e.g., events leading to hemolysis).

Full lifespan distribution

The (full) lifespan distribution in the population of RBCs in

a given individual is represented by a PDF p(t), t� 0. The

corresponding full SF is the probability that the lifespan is

[ t; more explicitly,

�PðtÞ ¼
Z 1

t

pðuÞdu: ð1Þ

The mean lifespan l is then given by the well-known

formulae

l ¼
Z 1

0

tpðtÞdt ¼
Z 1

0

�PðtÞdt: ð2Þ

In principle, if we could isolate a sample of newly pro-

duced RBCs released into the circulation (i.e., a cohort

sample), label them, and transfuse them into the recipient,

the survival curve obtained by tracking the labeled RBCs

would provide an estimate of the full SF �PðtÞ.

RBC compartmental model

We start with the LIDR compartmental model previously

studied by several other groups [26, 36–38, 40]. In brief the

model specifies that

_rðtÞ ¼ kðtÞ �
Z t

�1
kðuÞpðt � uÞdu; ð3Þ

where r(t) denotes the number of cells in the RBC com-

partment at time t, k(t) is the RBC production rate, which is

the rate of entry of cells into the RBC compartment, and

p(t) is the full RBC lifespan PDF, which can be a com-

pletely arbitrary PDF on the positive real numbers. The

integral term in Eq. (3) is the rate at which cells leave the

compartment, i.e., the rate of RBC death due to senescence

or hemolysis [40]. We assume k(t) is bounded and non-

negative, 0� kðtÞ�M\1 for all t, �1\t\1, and that

the mean lifespan l (Eq. (2)) is \1. Integrating Eq. (3)

from 0 to t[ 0, we obtain

rðtÞ � rð0Þ ¼
Z t

0

kðuÞdu�
Z t

0

kðvÞ
Z v

�1
pðv� uÞdudv:

Because k(t) is bounded, both integrals are finite. After

exchanging the order of integration in the double integral,

letting r0 ¼ rð0Þ be the size of the index population (i.e.,

the RBC population that was present at time t0 ¼ 0, which

is the index time as described above), and some algebraic

manipulation, we find

rðtÞ ¼ r0 þ r0ðtÞ þ r1ðtÞ �
Z 1

0

kð�uÞ�PðuÞdu; ð4Þ

where

r0ðtÞ ¼
Z 1

0

kð�uÞ�Pðt þ uÞdu ð5Þ

and

r1ðtÞ ¼
Z t

0

kðuÞ�Pðt � uÞdu: ð6Þ

The integral in (4) represents the RBC population due to past

production, that is, during t\0, that is present at time t0 ¼ 0.

This can be seen by noting that kð�uÞdu is the number of

cells produced during the time interval �u to �uþ du, and
�PðuÞ is the fraction of cells that survive for time u[ 0, and

the integral is the sum of these quantities over all u[ 0. For

a person with a stable internal environment, this will be the

RBC population at time 0, thus r0 and the integral cancel

each other in Eq. (4) and we are left with
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rðtÞ ¼ r0ðtÞ þ r1ðtÞ: ð7Þ

The term r0ðtÞ represents the part of the index population

that has survived until time t[ 0, whereas r1ðtÞ is the

portion of the RBC population that is present at time t[ 0

that was produced between times 0 and t.

Residual lifespan distribution

The survival time after t ¼ 0 of a cell in the index popu-

lation is called the residual lifespan of the cell. The

residual survival function (RSF), �PrðtÞ, is the proportion of

the index population that has survived at least until time

t[ 0 (equivalently, the probability of residual lifespan

[ t), �PrðtÞ ¼ r0ðtÞ=r0ð0Þ. From Eq. (5),

�PrðtÞ ¼
R1
0

kð�uÞ�Pðt þ uÞduR1
0

kð�uÞ�PðuÞdu
: ð8Þ

Survival curves reported in studies of random RBC sam-

ples are in fact estimates of the RSF.

The RSF depends on the past production rate k(t) for

times t\0, as indicated in Eq. (8). If k(t) can be assumed

constant for t\0 (which is consistent with the assumption

that the subjects had a stable intravascular environment),
�Pr reduces to the familiar form

�PrðtÞ ¼
1

l

Z 1

t

�PðuÞdu: ð9Þ

Note the similarity between Eqs. (9) and (1). The corre-

sponding PDF of the residual lifespan is

prðtÞ ¼ �PðtÞ=l: ð10Þ

Integration by parts of
R1
0

�PrðtÞdt gives the mean residual

lifespan lr, which is different from mean full lifespan:

lr ¼
Eðs2Þ
2l

¼ r2 þ l2

2l
; ð11Þ

where Eð�Þ signifies expected value, and l and r2 are the

mean and variance of the full RBC lifespan s.

Current age distribution

The members of the index population that have age

[ t� 0 at time 0 are those that were produced at some

time u before time �t and have survived for an additional

time �u; as in the case of Eq. (4), this is given byZ �t

�1
kðuÞ�Pð�uÞdu ¼

Z 1

t

kð�uÞ�PðuÞdu:

The fraction of the index population of age [ t, namely,

�PcðtÞ ¼
R1
t

kð�uÞ�PðuÞduR1
0

kð�uÞ�PðuÞdu
; ð12Þ

is the SF of the current age distribution, which is the

distribution of ages in the cell population at the index time

t0 ¼ 0. It reduces to Eq. (9) if the past production rate is

constant; in this specific situation, but not in general, the

current age distribution is the same as the residual lifespan

distribution and hence mean current age, lc= mean residual

lifespan, lr.

Excess lifespan distribution

Consider the subpopulation of the index population that is still

present at a specified time te [ 0; these are the cells that were

produced at some time�u\0 and survived for a time te þ u.

The excess lifespan distribution corresponds to the SF �PeðtÞ,
which is the fraction of this subpopulation of age [ te þ t,

where t[ 0 is called the excess lifespan. By an argument

similar to that following Eq. (4), the subpopulation of age

[ te þ t consists of those cells that were produced at some

time some time�u\0 and have survived for time te þ t þ u;

the number of such cells is
R1
0

kð�uÞ�Pðte þ t þ uÞdu. The
entire subpopulation present at time te corresponds to t ¼ 0 in

this expression. Thus the fraction of those present at time te
that are of age[ te þ t is the ratio

�PeðtÞ ¼
R1
0

kð�uÞ�Pðte þ t þ uÞduR1
0

kð�uÞ�Pðte þ uÞdu
: ð13Þ

This is the conditional probability that the lifespan of an

RBC in the index population is [ t þ te given that it is

[ te. Given a constant past production rate it reduces to

�PeðtÞ ¼
R1
tþte

�PðuÞduR1
te

�PðuÞdu
¼

�Prðte þ tÞ
�PrðteÞ

; ð14Þ

and this can be estimated from the observed residual sur-

vival curve. The corresponding PDF of excess lifespan

distribution is given by

�peðtÞ ¼
�Pðte þ tÞR1
te

�PðuÞdu
: ð15Þ

Note that, for te ¼ 0, the excess lifespan SF is the same as

the current age SF and consequently is the same as the

residual lifespan SF in the case under consideration.

Relation (2) holds for any probability distribution,

including the full lifespan, residual lifespan, current age,

and excess lifespan distributions. We can use Eqs. (8), (12),

and (14) to compute the mean residual lifespan (lr), mean

current age (lc) in the index population, and the mean

excess lifespan (le) in the surviving part of the index

population at any time te [ 0. These results generalize

those of Lindsell et al. [13], without the questionable

assumption of a stable, stationary, and closed population

[57].
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Methods and statistical analysis

We used a nonlinear mixed effects (NLME) model [58] to

analyze data obtained from 8 healthy adults who received

autologous biotin-labeled RBCs [14]. Parametric bootstrap

analysis was performed to confirm the results of NLME

analysis because the number of subjects is small. The

NLME model analysis was conducted using the nlmefit

function in the Statistics toolbox of MATLAB software

[59]. All computations and simulations were conducted

using the same software. A personal computer with a 4 GB

RAM and a 2 core Intel� (R) Core(TM) i3- M 370 @

2.40 GHz processor was used for all computations.

We analyzed the lowest density bioRBC data from

Mock et al. [14] as biotinylation at lower densities has

negligible effect on the RBC lifespan [14]. Details of the

experimental design and data collection are provided in

[14]. Briefly, each of eight healthy subjects was transfused

with autologous bioRBCs labeled at a biotinylation reagent

density of 6 lg/mL of packed RBC. Post-transfusion

residual RBC survival data were collected. Since even

microliter blood samples contain many RBCs, the laws of

large numbers from probability theory imply that such

samples will replicate the residual lifespan distribution of

the whole circulation at a given time within measurement

error; this is the basis of the statistical analysis of random

blood samples. Since the flow cytometric instrumentation

allows tracking of the disappearance of at least 97 % of

bioRBCs [14], we excluded values of the survival curves

smaller than 0.03. The bioRBC concentration at day 1 was

used as the baseline value.

We performed separate analyses for the Weibull,

gamma, and lognormal models. For each model, the non-

linear mean-value terms are the RSFs as in Eq. (9), but with

the appropriate survival functions; thus,

�Wrðt; a; bÞ ¼
1

lw

Z 1

t

�Wðu; a; bÞdu;

�Grðt; a; bÞ ¼
1

lg

Z 1

t

�Gðu; a; bÞdu;

�Lrðt; a; bÞ ¼
1

ll

Z 1

t

�Lðu; a; bÞdu;

ð16Þ

where �Wr, �Gr , and �Lr denote the RSFs, �W , �G, and �L denote

the full SFs, and lw, lg, and ll denote the mean full

lifespans (see Appendix 1) in the Weibull, gamma, and

lognormal models, respectively. The same letters a and b
are used for all of the Weibull, gamma, and lognormal

parameters for brevity in presentation, but we emphasize

that they are entirely unrelated. We refer to a and b as the

structural parameters on the original scale.

Just as �PrðtÞ is the ratio of the surviving part of the index
population relative to the size of the index population, the

observed residual survival curve, is the ratio of the mea-

sured concentration of the surviving part of the labeled

RBCs at time t[ 0 relative to the concentration at index

time t ¼ 0. In standard mixed effects model notation, the

models in Eq. (16) are

�Wij ¼ �Wrðtij; ai; biÞ þ �ij;

�Gij ¼ �Grðtij; ai; biÞ þ �ij;

�Lij ¼ �Lrðtij; ai; biÞ þ �ij;

i ¼ 1; . . .;M; j ¼ 1; . . .; ni;

ð17Þ

where �Wij, �Gij, and �Lij denote the observed residual survival

curve corresponding to the Weibull, gamma, and lognor-

mal models, respectively, M ¼ 8 is the number of subjects,

ni is the number of observations on the ith subject, tij is the

time of the jth observation on the ith subject, and �ij is an

additive random error term, assumed normal Nð0;/2Þ (we
use /2 to denote variance of the random error to not con-

fuse with r2 used to denote the variance of the full lifespan

distribution). Thus �Wij ¼ �WðtijÞ, for example, is the

observed residual survival curve for the ith subject at the

jth time using the Weibull model. To ensure the parameter

estimates are [ 0 we write

ai ¼ expðaiÞ; bi ¼ expðbiÞ ð18Þ

and rewrite the models as

�Wij ¼ �Wrðtij; ai; biÞ þ �ij;

�Gij ¼ �Grðtij; ai; biÞ þ �ij;

�Lij ¼ �Lrðtij; ai; biÞ þ �ij;

i ¼ 1; . . .;M; j ¼ 1; . . .; ni; and

ð19Þ

ai ¼ af þ ari; bi ¼ bf þ bri: ð20Þ

We call ai and bi the individual structural parameters on the

log scale; this well known ‘‘log trick’’ [58] allows the use

of unconstrained optimization techniques. af ð¼ logðaf ÞÞ
and bf ð¼ logðbf ÞÞ denote the fixed effects, representing

the average values of the parameters (in log scale) over the

whole population from which the subjects in the sample are

drawn (the reference population), and ari and bri denote

random effects, which represent the deviations of an indi-

vidual’s parameters from the population average [58].

‘‘Mixed effects’’ refers to the presence of both fixed and

random effects in (20). The random effects vector ðari; briÞ
is modeled as multivariate normal, Nð0;WÞ, independent of
the measurement errors �ij, and independent between sub-

jects; likewise, the errors are assumed independent between

and within subjects [58].

For the distribution specified by the corresponding PDF,

the derived parameters for each individual are the functions

of corresponding ai and bi and for the population (fixed

effects estimates) are the functions of corresponding af and
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bf . For the corresponding full lifespan distribution, the

mean full lifespan (or simply mean lifespan) l and the

standard deviation r are the derived parameters that can be

computed easily using the formulas provided in Appendix

1. Other derived parameters describing RBC survival of

potential clinical importance are

1. s
95
, defined as the 95th percentile of the full lifespan

distribution, a surrogate for the maximum lifespan,

2. the mean current age, lc, defined as the mean of the

current age distribution, which is equal to the mean of

the residual lifespan distribution or the mean of the

excess lifespan distribution at index time t ¼ 0

assuming constant past production rate, and

3. the residual half-life, T50, defined as the median of the

residual lifespan distribution. Note that we use the term

half-life irrespective of whether or not the distribution

is exponential.

The values of s
95
and T50 have to be obtained numerically

as they cannot generally be expressed in closed form; any

modern statistical software has a facility to do this. An

exception is that s
95

is easily obtained for the Weibull

distribution: s
95
¼ bðlogð20ÞÞ1=a (all logarithms in this

paper are natural logarithms). The closed form expressions

for lc for the corresponding PDFs are presented in

Appendix 1. Formulas for mean residual lifespan and

steady state mean full lifespan are provided in Appendix 1.

Mathematical manipulations for efficient computation of

the different survival functions based on the Weibull,

gamma, and lognormal PDFs are also provided therein.

Results

Figure 1 shows the population fits for the 8 study subjects

using the three different models. Residual survival data for

each subject along with the respective individual fits using

the Weibull, gamma, and lognormal models are shown in

Fig. 2. The group values of root mean square errors

(RMSEs) are 0.0120, 0.0126, and 0.0129 for Weibull,

gamma, and lognormal models, respectively. Correspond-

ing fractional RMSE (RMSE/average response value) are

0.023, 0.024, and 0.025 respectively. The log likelihood

(logl) values are 358, 354, and 351 respectively. The

RMSE and logl values are shown in Table 1.

The individual weighted residuals, population weighted

residuals, and conditional weighted residuals for all of the

models were consistent with normality based on normal

probability plots (not shown) and Shapiro–Wilk tests

(P� 0:05). The population fit for the RSF along with the

computed full lifespan, current age, and excess lifespan (at

different times te after index time) SFs and corresponding

PDFs using the gamma model are shown in Fig. 3 top and

bottom panels respectively. Such a graph can easily be

computed for individual subjects too (not shown). Simi-

larly, the population and individual survival functions and

the corresponding PDFs can easily be computed using the

Weibull and lognormal models as well (not shown).

Population-level (fixed effects) estimates of the struc-

tural parameters on the original scale, af and bf , for all the
models are given in Table 2. For each of the three models,

Table 3 gives maximum likelihood estimates (top), mean

of the bootstrap estimates (middle), and the bootstrap 95%

CI of the population derived parameters l, r, s
95
, lc, and

T50. The predicted values of the individual structural

parameters on original scale are shown in Table 4 and the

values of the individual derived parameters of the RBC

survival are shown in Table 5.

The range of individual l was 97.5–128.0 days for the

Weibull, 99.6–128.4 days for the gamma, and 100.95–

128.37 days for the lognormal model. The range of r was

18.84–36.97 days for the Weibull, 18.86–35.59 days for

gamma, and 19.51–34.98 for the lognormal model. For s
95

the ranges were 149.2–160.1, 155.3–164.5, and 157.14–

165.72 days, for lc they were 55.7–65.39, 56.18–65.59,

and 48.62–63.50 days, and for T50 they were 50.1–64.0,

50.3–64.2, and 50.65–64.19 days, for the Weibull, gamma,

and lognormal, respectively.

Discussion

Various distributions have been used for the full RBC

lifespan in the literature, including the homogeneous

lifespan model [2, 23, 25, 40], in which each of the cells

has the same fixed lifespan, and the Weibull [22, 39],

gamma [40], and lognormal [60] distributions. A more

complicated model, a mixture of two Weibulls (a so-called
Fig. 1 Fitted population-level residual survival curves for data of all

8 study subjects. Inset: tail region where the models differ the most

J Pharmacokinet Pharmacodyn (2016) 43:259–274 265

123



bathtub-shaped distribution), was used by Korell et al. [11,

19, 20, 30]. (Note that there is a misplaced minus sign in

Eq. (1) in both [20] and [30]). By judicious choice of the

parameters its shape can be made to mimic senescence,

random destruction, and neocytolysis. This is a phe-

nomenological model in the sense mentioned earlier.

In the present paper three separate models, using the

Weibull, gamma, and lognormal distributions, were

employed to analyze the bioRBC data from eight healthy

adult subjects. The nonlinear mixed effects approach pro-

vided a framework for analysis of both population and

individual variability of the structural and derived parame-

ters. Because of the large number of parameters in their

model, the authors in [11, 19, 20, 30] were unable to estimate

all of them simultaneously and thus found it necessary to fix

several of them in the analysis. By contrast, we were able to

carry out complete analyses with the Weibull, gamma, and

lognormal models, each with only two structural parameters,

without fixing any parameter in advance.

The fits appear excellent visually (Figs. 1 and 2). The

fractional RMSEs (RMSE/ average response value) of

0.023, 0.024, and 0.025 respectively for Weibull, gamma,

and lognormal models together with the fact that the

residuals are consistent with normality support the use of

the NLME methodology.

In addition to routine model diagnostics we performed a

parametric bootstrap simulation (details in [21]) to confirm

the results from the NLME software (MATLAB [59]),

which are based on asymptotic theory for maximum like-

lihood and require the number of subjects to be large. The

Fig. 2 Fitted individual-level

residual survival curves for data

of all 8 study subjects
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bootstrap simulation utilizes the NLME information from

the reference population to generate a large number of

virtual datasets that duplicate the random mechanism that

generated the original data set. The confidence intervals

(CIs) of structural parameters obtained from the bootstrap

analysis are similar to those from the NLME analysis. This

shows that parameter estimation by the NLME software is

reliable even with the small number of subjects (M ¼ 8) in

our dataset. Since analytical expressions for the standard

errors (SEs) of the derived parameters are not available, we

also used the bootstrap results to quantify their SEs in order

to compute the resulting 95% CIs (=estimate �1.96 �
SE).

All three models give physiologically plausible values

for the parameters l, r, s
95
, lc, and T50 for both the pop-

ulation and the individual subjects. The agreement between

the three models is almost exact for l, r, lc, and T50, but

the gamma and lognormal models give consistently greater

values (approximately 3%) for s
95
than the Weibull. The

reason is that the full lifespan distributions are very similar

in their midranges but diverge towards the long survival

tail, where the data are sparse, and s
95
is a property of the

tail. We speculate that a data set with more reliable mea-

surements in the tail region of the residual survival curve

might provide a stronger basis for deciding which (if any)

of the models is significantly better than the others.

Techniques for more accurately enumerating bioRBCs

after removal of 95% of the initial population are currently

being developed by some of the authors (JAW, DMM, PV-

P).

Because of the small sample size there is no statistical

criterion by which to decide confidently which is the

‘‘best’’ of the three models entertained here. For some

purposes the choice of any particular model is immaterial,

and in this case the three models are about equally math-

ematically and computationally tractable; see Appendix 1.

One advantage of the gamma model in certain applications

is that a clean state space representation exists when a is an

integer. We presented such a gamma-based erythropoiesis

model that is physiologically relevant and demonstrated its

applicability using clinical data [61].

Recently, Lledo-Garcia et al. [9] gave extensive com-

parisons of three common RBC lifespan models: homo-

geneous lifespan, random destruction (RD), and transit

compartment (TC) models. The TC model contains a series

of compartments connected by first order cell transfer rates

[27]. The TC model with one compartment is the RD

model. A TC model with infinitely many compartments

converges to the homogeneous lifespan model [27]. The

TC model with 12 compartments was found by Lledo-

Garcia et al. to describe the data best based on likelihood

functions (in the form of the objective function value or

OFV, defined as minus twice the loglikelihood) and visual

predictive checks. The mean full lifespan for the 12 TC

model was found to be 91.8 days for healthy subjects,

which is substantially shorter than the normally accepted

value of around 120 days.

There can be difficulties with likelihood-based model

selection [62], especially for non-nested models [63] as

occur in [9] and in the present paper. Unless the data satisfy

the technical requirements, such as normality or indepen-

dence, for several models, as must be determined from

model diagnostics, a comparison based on likelihood may

be questionable, as the likelihood function is then just a

criterion function that is not the same for different models.

Even when such requirements are met, it is not always

clear what such a comparison means. To say, as is often

done, that the model with the higher likelihood ‘‘explains

Table 1 Goodness-of-fit and model selection criteria

Goodness of fit Model

Weibull Gamma Lognormal

RMSE 0.0120 0.0126 0.0129

logl 358 354 351

RMSE root mean squared error, logl loglikelihood

Fig. 3 Population survival functions (top panel) and PDFs (bottom)

based on gamma model. For constant past production rate the residual

lifespan, current age, and excess lifespan (for te ¼ 0) SFs and PDFs

coincide. Note the changes in excess lifespan SF and PDF depending

on the choice of te
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the data better’’ is circular, because, without some discus-

sion of the mechanism behind the data, the only sense in

which the data are ‘‘explained’’ in this situation is by the

higher likelihood. Unfortunately the probabilistic justifi-

cation of a comparison by likelihood will also be

inapplicable if the sample size is small, as is the case in

some of the studies discussed in [9] and here.

The gamma model in the current paper is equivalent to

TC model with a compartments if a is a positive integer. For
comparison we conducted NLME analyses of our bioRBC

Table 3 Population estimates

and confidence intervals for

derived parameters

Derived Parameter Model

Parameters Info Weibull Gamma Lognormal

lf NLME 115.60 116.57 116.64

Bootstrap 115.62 116.71 116.79

(CI) (109.17, 121.66) (110.81, 122.51) (111.23, 122.75)

rf NLME 24.77 24.30 24.19

Bootstrap 25.84 24.38 24.28

(CI) (20.82, 28.81) (20.53, 28.33) (20.43, 27.73)

s
95f

NLME 153.76 159.20 160.07

Bootstrap 153.95 159.51 160.40

(CI) (150.02, 158.36) (155.09, 164.00) (156.00, 165.58)

lcf NLME 60.45 60.82 57.26

Bootstrap 60.51 60.93 57.32

(CI) (58.18, 62.85) (58.77, 63.33) (54.33, 60.61)

T50f NLME 57.94 58.29 58.32

Bootstrap 57.97 58.36 58.40

(CI) (54.96, 60.90) (55.45, 61.26) (55.62, 61,37)

lf mean of the full lifespan distribution (or mean full lifespan), rf standard deviation of the full lifespan

distribution, s
95f

95th percentile of the full lifespan distribution, lcf mean of the current age distribution (or

mean current age), and T50f median of the residual lifespan distribution (or residual half-life). All the units

are in days. Top: maximum likelihood estimate (computed from NLME estimates of structural parameters);

middle: bootstrap estimate; bottom: 95 % bootstrap confidence interval. Subscript f indicates fixed effect

Table 2 Estimated population-

level structural parameters af
and bf on original scale

(subscript f indicates fixed

effects)

Method Parameter Model

Weibull Gamma Lognormal

NLME af 5.38 23.02 4.74

95 % CI (4.17, 6.58) (13.99, 32.05) (4.68, 4.80)

Unit – – –

bf 125.38 5.06 0.0421

95 % CI (119.75, 131.01) (3.31, 6.81) (0.0272, 0.0571)

Unit Day Day –

Bootstrap af 5.42 23.54 4.74

95 % CI (4.32, 6.81) (15.45,34.95) (4.68, 4.80)

Unit – – –

bf 125.39 5.15 0.0428

95 % CI (119.88, 130.64) (3.49,7.21) (0.0282, 0.0593)

Unit Day Day –

The parameters in the Weibull, gamma, and lognormal models have different meanings and are neither

related nor comparable. (i) Maximum likelihood estimates of the population fixed effects parameters on log

scale are obtained from the NLME analysis; exponentials of the estimates give the values in original scale.

Confidence intervals (CIs) on original scale are given by exp(fixed effect estimate on log scale �1.96SE)

(ii) Bootstrap estimates of af and bf are the means of the NLME estimates of 1000 virtual experiments
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data with 1–50 compartments, namely, by taking a ¼ 1 to

50 and estimating only b in each case. The smallest RMSE

(= 0.0151), fractional RMSE (= 0.029), and largest log-

likelihood (= 336), all occurred for the 22-compartment TC

model (a = 22), as shown in Fig. 3. These values were less

favorable than those for the unconstrained Weibull, gamma,

and lognormal models; in particular, the loglikelihood for

the lognormal model (= 351), which was the smallest log-

likelihood for our three models, was considerably larger

than that of the 22-compartment TC model.

It is accepted in the literature that RBC lifespan values

are tightly dispersed around a mean value for healthy

individuals. There are many diseases which impact RBC

lifespan, e.g., sickle cell disease, diabetes, chronic kidney

disease, etc. In such cases, information about the whole

distribution of RBC lifespan, in particular the mean (l) and
the standard deviation (r), may be helpful in distinguishing

between health and disease. A simultaneous estimation of l
and r of the RBC lifespan distribution has never been done

to the best of our knowledge. Typically, RBC survival

studies have been focused on quantifying an average

description, e.g., mean age (i.e mean current age according

to our definition) of circulating RBCs [3], RBC survival

(meaning the half life of the 51Cr disappearance from the

circulation) [5], half-life [4], mean lifespan [9, 11, 20, 64],

mean potential lifespan (MPL) [14], mean remaining life

Table 4 Estimated individual-level (mixed effects) structural parameters ai and bi on original scale

Model Parameter Subject Mean CV

2 3 4 5 6 7 8 9 (%)

Weibull ai 8.07 4.99 5.33 5.38 6.62 2.86 6.41 4.99 5.58 27.24

bi 135.87 128.11 123.96 125.17 132.51 109.37 130.34 119.70 125.63 6.61

Gamma ai 46.38 21.01 21.99 22.79 33.92 7.83 31.51 19.28 25.59 45.13

bi 2.77 5.65 5.23 5.10 3.67 12.72 3.87 5.75 5.59 54.83

Lognormal ai 4.84 4.76 4.72 4.74 4.81 4.56 4.79 4.68 4.74 1.87

bi 0.023 0.042 0.045 0.042 0.029 0.113 0.032 0.052 0.047 59.42

Units are the same as in Table 2. The parameters in the Weibull, gamma, and lognormal models have different meanings and are neither related

nor comparable. Subscript i indicates individual parameter

Table 5 Individual-level (mixed effects) estimates of derived RBC survival parameters

Model Derived Subject Mean CV

Parameter 2 3 4 5 6 7 8 9 (days) (%)

Weibull li 128.01 117.61 114.23 115.42 123.58 97.47 121.36 109.89 115.95 8.10

ri 18.84 26.99 24.68 24.72 21.87 36.97 22.12 25.21 25.18 21.41

s
95i

155.65 159.64 152.30 153.48 156.40 160.51 154.67 149.15 155.22 1.41

lci 65.39 61.91 59.78 60.35 63.73 55.7 62.69 57.84 60.93 5.18

T50i 64.02 59.01 57.26 57.85 61.84 50.08 60.74 55.14 58.24 7.41

Gamma li 128.42 118.69 114.98 116.23 124.33 99.63 122.02 110.77 116.88 7.63

ri 18.86 25.90 24.52 24.35 21.37 35.59 21.72 25.25 24.70 20.22

s
95i

160.93 164.24 158.05 158.96 161.40 164.48 159.83 155.27 160.39 1.93

lci 65.59 62.17 60.10 60.66 64.0 56.18 62.94 58.26 61.24 5.03

T50i 64.21 59.36 57.50 58.12 62.17 50.29 61.01 55.41 58.51 7.34

Lognormal li 128.37 119.30 115.14 116.46 124.47 100.95 122.09 110.97 117.22 7.31

ri 19.51 24.69 24.61 24.20 21.36 34.98 22.04 25.55 24.62 18.81

s
95i

162.87 163.78 159.38 160.01 162.43 165.72 161.12 157.14 161.56 1.68

lci 63.50 58.56 56.47 57.16 61.41 48.62 60.17 54.29 57.52 8.04

T50i 64.19 59.66 57.58 58.23 62.24 50.65 61.05 55.49 58.64 7.36

li mean full lifespan, ri standard deviation of the full lifespan, s
95i

95th percentile of the full lifespan distribution, lci mean current age, T50i
residual half-life. All the units are in days. Subscript i indicates individual parameter
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span [12] (this is similar to mean excess lifespan at te ¼ 0

according to our definition), etc.

The concepts of residual lifespan, current age, and

excess lifespan have often appeared in the literature, but

are not named explicitly and sometimes not treated rigor-

ously [3, 8, 33, 53, 54, 57]. Outside of RBC survival lit-

erature, the concepts of current age and excess lifespan

appear in renewal theory [65] but have not previously been

used in compartmental models, which are conceptually

different from renewal theory.

In the literature, the maximum RBC lifespan Tmax is

defined as the time when all of the labeled RBCs disappear

from the circulation [3, 11, 13]. Taken literally, this means

Tmax is the time at which the residual survival curve

decreases to zero. The determination of that time is highly

dependent on the sensitivity of the method and associated

analytical instrumentation because the proportion of

labeled RBCs becomes very small towards the tail region.

Tmax is often estimated as the time at which a linear or

nonlinear curve fitted to the residual survival curve inter-

sects the time axis. When a linear fit of the entire residual

survival curve is used, this intersection is actually an

estimate of the mean lifespan rather than the maximum [31,

33]. When a nonlinear fit is used [3, 13], the estimate is

strongly dependent on the last sample time of the residual

survival curve. The final 2 points of the residual survival

curve were extrapolated to the time axis to estimate the

maximum RBC lifespan in [3]; such an estimate will also

depend on the distance between the last two measurement

points.

We used the 95th percentile s
95

of the lifespan distri-

bution as a surrogate for the maximum lifespan; by defi-

nition, s
95
is the value such that 95% of the RBC lifespans

are \s
95
. (The Weibull, gamma, and lognormal distribu-

tions extend to infinity in the positive direction; hence have

no true maximum value). The choice of 95% is arbitrary

and is used here only for illustration. Any other percentile

could be used; in practice the choice would likely be dic-

tated by the nature of the application. The estimated pop-

ulation values of s
95
are in physiologically plausible ranges.

Recently, a new clinically relevant parameter to assess

the quality of transfused red blood cells called mean

remaining lifespan (MRL) has been introduced [12]. MRL

is analogous to the area under the curve (AUC) or mean

residence time (MRT) in PK studies. It is defined as the

AUC of the fraction of the transfused RBCs remaining in

the circulation versus time [12]. This is in fact an estimate

of mean residual lifespan described in the current paper

(lr ¼
R1
0

�PrðtÞdt ¼ lc). Measurement of MRL as descri-

bed in the paper [12] again runs into the problem of

determining when the last of the transfused RBCs have left

the circulation. For practical purposes, MRL is replaced by

MRL0:95, which is defined as the area under the curve until

the time, t0:95, when 95% of the transfused cells have

disappeared from the circulation. t0:95 is estimated by

interpolation of the curve [12]. The accuracy of MRL0:95
depends on the frequency of sampling around t0:95 and the

last sample must wait until at least 95% of the transfused

cells have disappeared, which takes approximately 3–4

months in healthy individuals.

As shown by Dornhorst [33], it follows from Eq. (9) that

the mean RBC lifespan l is given by the negative recip-

rocal of the slope of the RSF at t ¼ 0, a result that holds for

any lifespan distribution, assuming the past production rate

is constant. Thus the MPL (mean potential lifespan)

described in [14] is actually an estimate of l for each

individual (note that we use the data from [14]). The

average MPL for the eight subjects given in [14] was

115� 8 days, which is very close to our population values

of l ¼ 116� 3 for Weibull and 117� 3 for both the

gamma and lognormal (mean � SE). Similarly, the time to

disappearance of 50 % of the labeled RBCs from the cir-

culation, denoted by T50 and given as 58 � 4 days in [14],

is very close to the population residual half-lives T50 found

here (58 � 1.5 for all models).

Why use a complicated method like NLME when the

simple MPL method gives similar results? There are both

statistical and practical reasons. From the statistical point

of view, first, the average MPL in [14] is the average of the

individual MPLs obtained by simple linear regression for

each subject separately. This approach yields an overesti-

mate of the variability among individuals, and hence the

SD of the MPLs, based on only 8 subjects, is likely too

large. By contrast, NLME gives estimates and standard

errors at both the population and individual levels [58].

Second, the MPL does not model the full lifespan distri-

bution and, therefore, is incapable of providing quantitative

information about other survival parameters such as the

longest lifespans in the distribution as reflected in s
95
.

Information about the whole distribution may be helpful in

distinguishing between health and disease (e.g., sickle cell

disease). Third, the NLME framework provides standard

methodology to include covariates such as sex, age, eth-

nicity, etc. in the analysis. Fourth, NLME is well-suited to

the situation of sparse samples, which is usually the case in

clinical settings. The results of a NLME analysis can be

used to determine the minimum number, optimal timing,

and the last time point of measurement for measurements

in a new subject when only a few measurements are pos-

sible [21, 66], e.g., in infants or sick patients.

Our results in Appendix 1 allow complete, rigorous, and

computationally efficient analyses of the models considered

here (parameter estimation took under a second for Weibull

and just over a second for the gamma and lognormal models
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on a personal computer). Further, there are no constraints on

parameters during the estimation process, as in other pub-

lished models [9, 20, 30], or computational constraints, such

as the inability of the software to handle more than 30

compartments described by Lledó-Garcı́a et al. [9].

Conclusions

Starting with definitions of index population, which has

previously not been made explicit, and of birth time, death

time, full lifespan, residual lifespan, current age, and

excess lifespan, we provided mathematical descriptions of

RBC survival parameters, which remove the lack of clarity

often found in the literature. We exhibit the connections

between a compartmental (or LIDR) model for the RBC

population based on a given lifespan distribution and the

residual lifespan, current age, and excess lifespan distri-

butions, not available previously in the literature. We gave

analytical expressions for mean full lifespan, mean residual

lifespan, mean current age, and steady-state mean full

lifespan, and indicated how to compute RBC half-life and

95th percentile of the RBC lifespan distribution (s
95
). The

use of s
95

(or other percentiles) avoids the questionable

concept of Tmax often used in the literature.

Employing nonlinear mixed effects modelling, we ana-

lyzed residual survival data from biotin-labeled RBCs

using models based on the Weibull, gamma, and lognormal

distributions. The three models fit the data closely and gave

equally physiologically plausible estimates of clinically

interpretable RBC survival parameters at population and

individual levels.

Our modelling framework could be useful in studying

RBC lifespans in various diseases that affect RBC survival,

especially in situations with strongly non-linear survival

curves (e.g., sickle cell anemia). The model cannot be used

if the assumption of ‘‘stability’’ of the subject’s internal

environment is not satisfied, as may occur in the case of

blood loss and/or other significant intercurrent events (e.g.,

events leading to hemolysis). The framework also lends

itself to analyzing richer data sets containing covariates

such as age, gender, and weight.
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Appendix 1: Weibull, gamma, and lognormal
PDFs

The PDF of the Weibull distribution, denoted by wðt; a; bÞ,
is given by

wðt; a; bÞ ¼ a
b

t

b

� �a�1

e�ðt=bÞa : ð21Þ

The Weibull parameters a and b are both [ 0 and are

called the shape and scale parameters, respectively. The

mean and variance for the Weibull are

lw ¼ bC 1þ 1

a

� �
; r2w ¼ b2 C 1þ 2

a

� �
� C 1þ 1

a

� �� �2
" #

:

ð22Þ

The PDF of the gamma distribution with parameters

a;b[0 is

gðt; a; bÞ ¼ 1

CðaÞba t
a�1e�t=b; t[ 0 ð23Þ

(C denotes the Euler gamma function). Note that we write

g instead of p for the PDF of the gamma distribution. The

parameters a and b are again called the shape and scale

parameters, respectively. The mean and variance are

lg ¼ ab; r2g ¼ ab2: ð24Þ

Let X�Nða; b2Þ, i.e., normal with mean a and variance b2,
and Y ¼ eX . Then Y has the lognormal distribution with

parameters a and b, and PDF

lðt; a; bÞ ¼ 1

tb
ffiffiffiffiffiffi
2p

p exp �ðln t � aÞ2

2b2

 !
; t[ 0: ð25Þ

The mean and variance for the lognormal are

ll ¼ exp aþ b2

2

� �
; r2l ¼ expð2aþ b2Þðexpðb2Þ � 1Þ:

ð26Þ

The same letters a and b are used for the Weibull, gamma,

and lognormal parameters for brevity in presentation, but

we emphasize that the parameters in the three distributions

are entirely unrelated. The PDFs represent the full RBC

lifespan distributions in the Weibull, gamma, and lognor-

mal models respectively and the means correspond to the

full RBC lifespan.

Appendix 2: Survival functions for Weibull,
gamma, and lognormal lifespan distributions

For any lifespan distribution we have
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Z 1

t

�PðuÞdu ¼
Z 1

t

Z 1

u

pðvÞdvdu: ð27Þ

Interchanging the order of integration yieldsZ 1

t

vpðvÞdv� t �PðtÞ: ð28Þ

The full survival functions (Eq. (1)), in the case of gamma,

Weibull, and lognormal lifespan distributions are given by

�Gðt; a; bÞ ¼
Z 1

t

gðv; a; bÞdv ¼ 1

CðaÞba
Z 1

t

va�1e�v=bdv;

ð29Þ

�Wðt; a; bÞ ¼e�
t
bð Þ

a

; ð30Þ

and

�Lðt; a; bÞ ¼1� N
logðtÞ � a

b

� �
ð31Þ

respectively, where N(x) is the CDF for the standard nor-

mal Z�Nð0; 1Þ. Thus using Eqs. (9) and (28), we obtain

the residual survival function in the case of the gamma

lifespan distribution

�GrðtÞ ¼ �GcðtÞ ¼ �Gðt; aþ 1; bÞ � t

ab
�Gðt; a; bÞ: ð32Þ

Similarly, from Eq. (14) we obtain the excess lifespan

survival function for the gamma lifespan distribution

�GeðtÞ ¼
ab �Gðte þ t; aþ 1; bÞ � ðte þ tÞ �Gðte þ t; a; bÞ

ab �Gðte; aþ 1; bÞ � te �Gðte; a; bÞ
ð33Þ

Given a andb, the survival functions in Eqs. (32) and (33) are
readily calculated by numerical integration inmost statistical

packages, includingMATLAB [59]; Eqs. (32) and (33) show

that the survival functions of the residual lifetime and the

current and excess lifespan distributions are nomore difficult

to calculate than the full survival function. It also follows

from Eqs. (32) and (2) that the mean residual lifespan and

mean current age are both equal to ðaþ 1Þb=2: the integral
from0 to1 of �Gðt; aþ 1; bÞ equals ðaþ 1Þb and the integral
of t �Gðt; a; bÞ equals ab2ð1þ aÞ=2, as shown using integra-

tion by parts, u ¼ �Gðt; a; bÞ; dv ¼ tdt.

The survival functions �Gr and �Gc of the residual lifetime

and current age distributions, for the gamma lifespan dis-

tribution cannot be expressed in closed form, but there is a

closed form when a is an integer � 1. The gamma distri-

bution with a ¼ 2 has been used [61] in an erythropoiesis

model for chronic kidney disease patients.

Although the Weibull survival function (30) has a sim-

ple form, the corresponding residual survival function does

not. The integral in Eq. (9) can be expressed in terms of the

gamma survival function:

Z 1

t

e�
u
bð Þ

a

du ¼ b
a

Z 1

t
bð Þ

a
v

1
a�1ð Þe�vdv

¼ bC 1þ 1

a

� �
�G ta;

1

a
; ba

� �
:

ð34Þ

The residual, current age, and excess lifespan survival

functions, �Wr, �Wc, and �We, can now be written for the

Weibull model as follows:

�Wrðt; a; bÞ ¼ �Wcðt; a; bÞ ¼ �Gðta; 1=a; baÞ; and ð35Þ

�Weðt; a; bÞ ¼
�Gððte þ tÞa; 1=a; baÞ

�Gðtae ; 1=a; b
aÞ : ð36Þ

Using Eqs. (9), (14), (28) and (31), the residual, current

age, and excess lifespan survival functions, �Lr, �Lc, and �Le
for the lognormal model can be written as follows:

�Lrðt; a; bÞ ¼ �Lcðt; a; bÞ

¼ 1� N
logðtÞ � a

b
� b

� �

� t

ll
�Lðt; a; bÞ; and

ð37Þ

�Leðt; a; bÞ ¼
1� N

logðteþtÞ�a
b � b

� �
� ðteþtÞ

ll
�Lðte þ t; a; bÞ

1� N
logðteÞ�a

b � b
� �

� te
ll
�Lðte; a; bÞ

:

ð38Þ

From Eqs. (2) and (9) the mean residual lifespans for the

gamma, Weibull, and lognormal distributions are given by

lg;r ¼
ðaþ1Þb

2
, lw;r ¼

bCð2=aÞ
Cð1=aÞ , and ll;r ¼

expðaþ3b2=2Þ
2

, respec-

tively (using Eq. (11)); these are obviously different from the

correspondingmean full lifespans (Appendix 1).Wealso note

that, in equilibrium, the steady state residual lifespan distri-

bution has PDF pr;ssðtÞ ¼ �PðtÞ=l, which is the same as the

transient residual lifespan distribution. The steady state full

lifespan has PDF pssðtÞ ¼ tpðtÞ=l [60]. Thus the mean

residual and mean full lifespans in steady state are respec-

tively ðr2 þ l2Þ=2l (Eq. (11)) and ðr2 þ l2Þ=l. In steady

state, therefore, the mean residual lifespan is one half the

mean full lifespan. For the gamma, Weibull, and lognormal

the steady state mean full lifespans equal lg;ss ¼ ðaþ 1Þb,
lw;ss ¼ 2bCð2=aÞ=Cð1=aÞ, and lw;ss ¼ expðaþ 3b2=2Þ,
respectively. For an individual in stable condition, these dis-

tributions are what would be seen for RBCs in the circulation.
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