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Abstract Improving the quality of exposure–response

modeling is important in clinical drug development. The

general joint modeling of multiple endpoints is made

possible in part by recent progress on the latent variable

indirect response (IDR) modeling for ordered categorical

endpoints. This manuscript aims to investigate, when

modeling a continuous and a categorical clinical endpoint,

the level of improvement achievable by joint modeling in

the latent variable IDR modeling framework through the

sharing of model parameters for the individual endpoints,

guided by the appropriate representation of drug and pla-

cebo mechanism. This was illustrated with data from two

phase III clinical trials of intravenously administered mAb

X for the treatment of rheumatoid arthritis, with the

28-joint disease activity score (DAS28) and 20, 50, and

70 % improvement in the American College of Rheuma-

tology (ACR20, ACR50, and ACR70) disease severity

criteria were used as efficacy endpoints. The joint modeling

framework led to a parsimonious final model with rea-

sonable performance, evaluated by visual predictive check.

The results showed that, compared with the more common

approach of separately modeling the endpoints, it is pos-

sible for the joint model to be more parsimonious and yet

better describe the individual endpoints. In particular, the

joint model may better describe one endpoint through

subject-specific random effects that would not have been

estimable from data of this endpoint alone.

Keywords Discrete variable � Multivariate analysis �
Population pharmacokinetic/pharmacodynamic modeling �
NONMEM � Rheumatoid arthritis

Introduction

Exposure–response (E–R) modeling has become more

impactful in drug development by allowing optimal dosing

selection and potentially providing better understanding of

drug’s mechanism of action. Clinical trial endpoints are

often disease scores that are either continuous or ordered

categorical. For example, in rheumatoid arthritis (RA), two

types of commonly used efficacy endpoints are the 28-joint

disease activity score using CRP (DAS28) and 20, 50, and

70 % improvement in the American College of Rheuma-

tology disease severity criteria (ACR20, ACR50, and

ACR70) [1]. Parsimonious and informative E–R modeling

of such endpoints is important in clinical development,

especially at late stage in which appropriate decisions rely

on accurate predictions that often require the use of models

more complex than landmark analyses using direct corre-

lation between exposure metrics and response [2].

A widely used class of E–R models includes the Types

I–IV indirect response (IDR) models [3]. For continuous

clinical endpoints, these models could be directly applied

even though their origin of use was to describe physio-

logical variables, and their presumed consistency with the

mechanism of drug action lends confidence to the model

predictions. For discrete clinical endpoints, IDR models

may be applied by means of the latent variable approach,

most notably applied for ACR20, ACR50, and ACR70.

Hutmacher et al. [4] initiated the latent variable IDR model

for ACR20. Hu et al. [5] extended the latent variable

approach to simultaneously model ACR20, ACR50, and
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ACR70, while making the model more parsimonious [6].

The latter approach allows the placebo effect terms to be

estimated separately using only placebo data, which facil-

itates the ease of initial parameter estimate selection. An

equivalent form of its underlying IDR model was also used

earlier on other clinical endpoints for psoriasis [7, 8]. Hu

[2] substantiated the mechanistic rendition of latent vari-

able IDR models by deriving the latent variable represen-

tations for common scenarios that ordered categorical

endpoints may be applicable, and summarized related

theoretical characteristics and practical implementations.

It is not uncommon that two clinical endpoints are

considered of similar importance, such as DAS28 and ACR

responses in RA trials, where each has been used as the

primary endpoint. In addition, multiple clinical endpoints

may measure similar disease status and share the use of

some similar information, e.g., both DAS28 (CRP) and

ACR20/50/70 use tender and swollen joint counts, as well

as CRP. While a panel of clinical endpoints are more

informative than a single endpoint in clinical interpretation,

they are usually modeled separately in practice [9]. The

natural question is whether the same conclusions could be

reached by considering these endpoints (1) individually;

(2) separately yet together, or (3) jointly. This could be

answered to some extent using individual modeling; how-

ever the joint modeling approach directly addresses the

consistency among the three methods through shared

parameters. In addition, joint modeling facilitates the

simulation of correlated endpoints, thus the correct evalu-

ation of joint decision criteria based on both endpoints. The

correlation between the endpoints should indicate the level

of similarity between the disease components measured by

the endpoints. Indeed, a strong correlation between DAS28

and ACR response has been shown (e.g., [10]).

More importantly, when multiple clinical endpoints

measure similar disease status, as with DAS28 and ACR20/

50/70, the joint model framework provides the advantage

of allowing the exploration of similar fixed effect and

between-subject variability (BSV) parameters, guided by

mechanistic rationale. Furthermore, joint modeling allows

the remaining unexplained residual correlations to be

estimated at the within-subject random effect level. For

continuous endpoints, this can be easily handled by

assuming a multivariate normal distribution for the resid-

uals. For categorical endpoints, this can be accommodated

by the latent variable framework, albeit the implementation

is complex [11]. In the case of a continuous and a cate-

gorical endpoint, Hu et al. [12] provided a conditional

approach to allow for the implementation of the joint

model in NONMEM [13], a widely used software appli-

cation for E–R modeling. Specifically, the residual corre-

lation is modeled at the latent variable level with a

bivariate normal distribution, and a negative correlation

coefficient indicates that, given the structural and BSV

model parameters, the chance of achieving ACR response

criteria increases as DAS28 decreases. While estimating

the residual correlation may not affect individual endpoint

predictions, it improves the prediction of joint probability

distribution of the endpoints, more specifically the assess-

ment of the proportion of subjects achieving desirable

responses simultaneously in more than one endpoint. This

has been well established in statistical literature [11].

The objective of this manuscript was to explore the level

of improvement that joint modeling may gain in contrast to

separate modeling of a continuous and a categorical end-

point measuring the same disease status. Both approaches

were applied to model the DAS28 score and ACR20,

ACR50, ACR70 response, using data from two previously

published phase III clinical trials for the treatment of RA

for which we published a latent variable IDR model of the

ACR20, ACR50, ACR70 response previously [6]. The

results indicated that improved fit of ACR data could be

achieved by leveraging subject-specific random effects

whose estimation were made possible only with DAS28

data.

Methods

Data and information used for E–R modeling

The DAS28 score and ACR20, ACR50, ACR70 response

were available in data from two phase III, parallel, placebo-

controlled clinical trials of intravenously administered

mAb X, Study 1 [14] and Study 2 [15], in patients with

active RA despite prior use of methotrexate (MTX) ther-

apy. Data used were the same as in the E–R modeling of

ACR20, ACR50, ACR70 response described previously

[6], with the additional inclusion of DAS28 scores. Briefly,

Study 1 investigated the mAb X dose regimen of 2 mg/kg

given at Weeks 0, 4, and every 8 weeks thereafter, briefly

written hereafter as the q8 weekly regimen. Study 2 studied

the mAb X dose regimens of 2 and 4 mg/kg given every

12 weeks. Both trials had MTX as placebo control arms,

and subjects on the placebo arms were switched to the

active arms of mAb X ? MTX at Week 16, at which time

they were eligible for early escape. The numbers of sub-

jects in the E–R modeling dataset were 395, 197, 129, 126,

and 129 respectively for the following treatment arms:

mAb X 2 mg/kg ? MTX q8 weeks (Study 1), placebo 1

(MTX, Study 1), mAb X 2 mg/kg ? MTX q12 weeks

(Study 2), mAb X 4 mg/kg ? MTX q12 weeks (Study 2),

and placebo 2 (MTX, Study 2).

Both studies had data through Week 48 available for

analysis. At least ten serum concentration measurements of

mAb X per patient were scheduled over the study period.
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DAS28, ACR20, ACR50, and ACR70 responses were

evaluated at the time of each treatment administration in

both studies. Study 1 had an additional evaluation at Week

2.

A population PK analysis using a two-compartment

structural model implemented in NONMEM was per-

formed using data from patients available for E–R mod-

eling and additional data from other studies. The model

described the data adequately and the details of the PK

study data and analysis are described elsewhere. Results

were consistent with a previous confirmatory analysis [16].

Empirical Bayesian parameter estimates were then used in

a sequential modeling approach for the E–R modeling

discussed below.

The final dataset contained 8474 DAS28 score and 7535

ACR response data points from 976 patients. More detailed

description on study designs can be found in Hu et al. [6].

E–R model

The E–R model is specified by the DAS28 score and ACR

response components along with the residual correlation

model.

DAS28 score component

DAS28 scores were modeled by adopting a semi-mecha-

nistic approach applied in earlier E–R analyses [7] as

DAS28 tð Þ ¼ b � fDAS28;p tð Þ � fDAS28;d tð Þ þ e ð1Þ

where DAS28(t) is the observed DAS28 score, b is base-

line, fDAS28,p(t) is placebo effect, fDAS28,d(t) is drug effect,

and e * N(0, r2) represents the within-subject variability.

The placebo effect was modeled empirically as

fDAS28;p tð Þ ¼ b Fp;DAS28 1 � exp �rDAS28tð Þ½ � ð2Þ

where 0 B Fp,DAS28 B 1 is the fraction of maximum pla-

cebo effect and rDAS28 is the rate of onset. The drug effect

was modeled with

fDAS28;d tð Þ ¼ b 1 � Fp;DAS28

� �
Emax 1 � RDAS28 tð Þ½ � ð3Þ

where 0 B Emax B 1 represents fraction of maximum drug

effect and, following a previous approach [7, 8], the drug

effect was assumed to be driven by a latent variable

RDAS28(t) governed by:

d RDAS28ðtÞ
dt

¼ kin;DAS28 1 � Cp

IC50;DAS28 þCp

 !

� kout;DAS28 RDAS28ðt)
ð4Þ

It was further assumed that at baseline RDAS28(0) = 1,

yielding kin, DAS28 = kout, DAS28.

The BSV on the parameters constrained to be between 0

and 1, i.e., Emax and Fp,DAS28, were modeled with normal

distributions after a logit transformation. The BSV on other

parameters were modeled with lognormal distributions.

Correlation between BSV was assessed with the corre-

sponding multivariate normal distributions..

ACR response component

As in previously implementations [6], the three endpoints

ACR20, ACR50, and ACR70 were combined into one

ordered categorical endpoint ACR having 4 possible out-

comes: ACR = 1, if achieving ACR70; ACR = 2, if

achieving ACR50 but not ACR70; ACR = 3, if achieving

ACR20 but not ACR50; and ACR = 4, if not achieving

ACR20. To facilitate residual correlation modeling [12],

the following mixed-effect probit regression was used

instead:

U�1 prob ACR� kð Þ½ � ¼ ak þ fp;ACR tð Þ þ fd;ACR tð Þ þ g

ð5Þ

where U is the normal cumulative distribution function,

k = 1, 2, or 3, ak are monotonically increasing in k, and

g * N(0, x2) represents inter-subject variability. As in

previous applications [2, 6, 12], ak were re-parameterized

as (a2, d1, d3) with d1, d3[ 0 such that a1 = a2 - d1 and

a3 = a2 ? d3, in order to stabilize parameter estimation.

The placebo effect was modeled with a previously used

exponential function [4, 9]:

fp;ACR tð Þ ¼ �Fp;ACR exp �rp;ACRt
� �

ð6Þ

In the latent variable level representation, this has the same

form as Eq. 2 as shown by Hu [2]. It is more flexible than

that used in Hu et al. [6] and was chosen here to allow

exploration of similarities between the endpoints. For the

same reason, it is assumed that the drug effect is driven by

a latent variable RACR(t), governed by the same form as

Eq. 4;

dRACRðtÞ
dt

¼ kin;ACR 1� Cp

IC50;ACRþCp

 !

� kout;ACR RACRðt)

ð7Þ

where Cp is drug concentration, and kin,ACR, IC50,ACR, and

kout,ACR are parameters in a Type I IDR model. It was

further assumed that at baseline RACR(0) = 1, yielding

kin,ACR = kout,ACR. The reduction of RACR(t) was assumed

to drive the drug effect through:

fd tð Þ ¼ fd;ACR tð Þ ¼ DEACR 1 � RACR tð Þ½ � ð8Þ

where DEACR is a parameter to be estimated that deter-

mines the magnitude of drug effect. We have previously
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shown that this representation of drug effect is equivalent

to that of a change-from-baseline [6], and that DEACR may

be interpreted as the baseline of the latent variable [2]. The

mechanistic interpretation of the latent variable represen-

tation of Eqs. 5–8 is the same as that of Eqs. 1–4 [2], which

allows for easy exploration of shared parameters between

the DAS28 and ACR models.

DAS28-ACR joint model and residual correlation

Equations 1–8 were first fitted to DAS28 and ACR data

separately, and then simultaneously with shared parameters

explored. The joint model allows the potential residual cor-

relation between ACR and DAS28 responses to be modeled

using a bivariate normal distribution of e = (eDAS28, eACR)

with a correlation parameter q. Further details on the joint

model likelihood specification and NONMEM implemen-

tation code were given in Hu et al. [12].

Model estimation and evaluation

The sequential PK/PD modeling approach was used by first

fixing the previously obtained individual empirical Baye-

sian estimates of PK parameters. PK/PD model parameter

estimation was implemented in NONMEM, using the

LAPLACE method for early exploration and the importance

sampling (IMP) method for key model runs. The NONMEM

objective function value (OFV) approximates -2 times

loglikelihood. A change in NONMEM objective function

value of 10.83, corresponding to a nominal p value of 0.001,

was used as a criterion of including an additional parameter.

Visual predictive check (VPC) was used for model evalua-

tion by simulating 500 replicates of the dataset and com-

paring simulated and model-predicted DAS28 score and

ACR response frequencies over the treatment period.

Results

Figure 1 shows the observed DAS28 time course by

treatment group. High variability was apparent, both

between and within subjects. In addition, baseline DAS28

in Study 1 appeared to be notably larger than that in Study

2.

Initial DAS28 model

Equations 1–4 were fitted to the DAS28 data. Early mod-

eling explorations using the Laplace option could not

reliably estimate any more BSV terms than those on b and

IC50, and led to a sizable estimate (%5, or[70 %) for BSV

on IC50. While parameter estimate appeared reasonable,

standard error estimation appeared unstable. Since the

adequacy of the Laplace approximation degrades as the

magnitude of BSV increases, the IMP estimation option in

NOMEM was used for key model runs. An additional

parameter bs was used to account for the baseline differ-

ence between Study 1 and Study 2, and BSV terms were

included on b, pDAS28, IC50,DAS28 and Emax, with a full

variance–covariance matrix accounting for their correla-

tions. Attempting to reduce the BSV terms or the correla-

tion parameters or to include additional BSV terms resulted

in either notably worsening or lack of sufficient improve-

ment in the fit. Table 1 shows the parameter estimates.

Estimation precision was reasonable, with standard errors

(SE) generally a magnitude lower than the estimates. SE is

presented instead of the often used relative standard errors

in order to provide appropriate comparison of estimation

precision among different models. Figure 2 shows the VPC

results, where high variability of the observed data is

consistent with Fig. 1. Overall, the model reasonably

described the observed data trends.

Time (weeks)

D
A

S
28

2

4

6

8

0 10 20 30 40 50

PBO 1

0 10 20 30 40 50

2 mg/kg q8w

0 10 20 30 40 50

PBO 2

0 10 20 30 40 50

2 mg/kg q12w

0 10 20 30 40 50

4 mg/kg q12w

Observed Smoothing splineFig. 1 Observed 28-joint

disease activity (DAS28) scores

by treatment group overlaid

with smoothing spline
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Initial ACR model

The model described by Eqs. 5–8 was applied to the ACR

response data. Table 2 shows the parameter estimates.

Estimation precision was reasonable. IC50 and Kout esti-

mates were similar to those obtained previously [6]. From a

theoretical perspective, DE estimate from logistic regres-

sion could be expected to be larger than from probit

regression by approximately a factor of 1.8 (%
ffiffiffiffiffiffiffiffiffiffi
p2=3

p
),

due to the fact that variances for the standard logistic and

the standard normal distributions are p2=3 and 1 respec-

tively. Taking account of this difference, differences

between the DE estimates did not appear to be unexpected.

Other parameter estimates were different in part due to the

earlier use of a reduced placebo model. Estimation preci-

sion was reasonable, with SEs at generally a magnitude

lower than the estimates. VPC results are shown in Fig. 3,

which are similar to those in the previous analyses [6] as

could be expected [2]. As previously noted, the high

observed placebo responses at Weeks 20 and 24 may be

due to early escape [6].

Joint E–R model

The base scenario of fitting Eqs. 1–8 simultaneously with

no shared parameters between the DAS28 and ACR model

component is equivalent to estimating the DAS28 and

ACR models separately. Indeed, the sum of the OFVs of

the DAS model and ACR models was nearly identical to

the OFV of the simultaneously fitted model with no shared

parameters. From Tables 1 and 2, the rate parameters,

namely rDAS28 and kout, appeared similar between the

endpoints, along with IC50. Indeed, this was substantiated

by the joint model evaluations showing insignificant OFV

change for sharing each parameter in the joint model.

This result motivated the question of whether further

similarities between the endpoints could be found. It could

be hypothesized that, based on binding, a single latent

variable could govern both endpoints through IDR models.

The similarity of the Kout parameters suggested the possi-

bility of using a single IDR model instead of two. If so, the

latent variable may not be separately identifiable from

DAS28. The question however is in what sense the placebo
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Fig. 2 Visual predictive check

of the 28-joint disease activity

(DAS28) score for the initial
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scores are overlaid with the

90 % prediction intervals (PI) of

their model predictions at

planned observation times by
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and drug effect could be considered similar for both end-

points, particularly because DAS28 and ACR endpoints

have different scales. This rationale motivated the use of

DAS28 change-from-baseline as ACR endpoints are

defined as change-from-baseline and the latent variable is

defined only up to a constant [2, 4]. Following the notation

and motivation provided by Hu [2], this led to the fol-

lowing ACR model in place of Eqs. 5–8:

U�1 prob ACR � kð Þ½ � ¼ ak� M tð Þ þ g ð9Þ

where M(t) = Lm[fDAS28,p(t) ? fDAS28,d(t)]/b is the scaled

change-from-baseline DAS28 score model prediction given

in Eq. 1, with BSV terms as given in the initial DAS28

score model.

Fitting Eqs. 1–4 and 9 simultaneously to the DAS28 and

ACR response data resulted in a NONMEM objective

function decrease of over 2000, indicating a significant

improvement of the fit, despite using four fewer parameters

than the base scenario. Including the residual correlation

between DAS28 and ACR responses further reduced the

NONMEM objective function by over 1900. This was

considered as the final model, with parameter estimates of

the DAS28 and ACR response components given in

Tables 1 and 2, respectively.

Table 1 shows that for DAS28, the joint model parameter

estimates and associated SEs were generally similar to those

obtained with the initial model using only DAS28 data.

Table 2 shows that for ACR, the joint model used no addi-

tional parameters for the placebo and drug effects other than

the scaling parameter Lm. Estimates of the intercept

parameter a2 between the initial and joint models are not

directly comparable, as the average intercept value is

determined up to a constant with the latent variable [2].

Estimates of d1 and d3, the intercept differences, were similar

between the initial and joint models. The estimate of x2 was

smaller in the joint model, due to the fact that the treatment

effect predictor M(t) in Eq. 9 contains BSV components

whereas Eqs. 6–8 do not. This contribution of BSV com-

ponents of the DAS28 model is the main explanation for the

improved fit of the joint model in light of the NONMEM

objective function decrease of over 1900 mentioned above.

Coupled with a high absolute value of correlation parameter

estimate (0.655) shown in Table 1, this confirms that the two

endpoints measure the same component of the disease.

VPC results of the joint model for DAS28 was visually

indistinguishable from Fig. 2, and thus is not shown. This

is consistent with the similarity between the parameter

estimates of the joint and the separate models. VPC results

of the joint model for the ACR response are shown in

Fig. 4. It is noted that the VPC results of the joint model

before incorporating the residual correlation component

were visually indistinguishable from Fig. 4 and are not

shown. The results appeared largely similar to Fig. 3;T
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where differences occurred, it may appear difficult to

determine whether the joint model or the individual ACR

model prediction better represent reality. However, it is

reasonable to expect that the ACR70 response rates for the

placebo arms to be small in early treatment periods, and the

joint model prediction in Fig. 4 is better than the separate

ACR model prediction in Fig. 3. This may be attributed to

the more reasonable partitioning of BSV onto additional

model parameters under the joint model instead of only at

the intercept level under the separate ACR model. It can be

seen that under Eq. 5, the expected ACR response rate at

time of (or near) 0 is given by [2, 17]

E prob ACR � k½ �f g ¼ Uðak=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p
Þ ð10Þ

and that the larger predicted ACR70 response rate in the

separate model was caused by the larger x2 estimate. In

contrast, the joint model had part of this BSV component

partitioned onto other parameters, namely through BSV

terms on b, pDAS28, IC50,DAS28 and Emax, none from which

contributed to the BSV of ACR responses at time near 0

since M(0) = 0, which led to the smaller overall BSV

predictions near time 0. This therefore suggested that the

latent variable joint model may partition the BSV more

appropriately by allowing it to vary over time, as opposed

to remaining constant under the separate model.

In order to understand the source of improvement in the

joint model fitting, it may be tempting to examine the OFV

changes in the DAS component and ACR component.

However this would be exceedingly difficult, because the

two components are not independent without conditioning

on the BSV terms. Nevertheless there are two relevant

observations in comparing the separate and the joint mod-

els: (1) in the DAS component, changes of parameter esti-

mates and associated SE were minor, and the VPC results

were virtually unchanged; (2) in the ACR component, the

original BSV variance x2 was markedly reduced in the joint

model. These suggested that the improvement in OFV

mostly came from the ACR component, through the pres-

ence of the additional BSV terms in the latent variable.

Discussion

Our analysis supported and utilized the relatedness

between DAS28 and ACR responses that are designed to

measure the same disease component through shared
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structural model component along with the related BSVs

and the residual correlation. A common view on the

modeling of multiple endpoint is that, while joint modeling

may improve the overall fit as measured by the likelihood

or predictions of correlated responses, it would not affect

the descriptions or predictions of the individual endpoints

[11]. On the other hand, the joint model for DAS28 and

ACR responses developed here improved the characteri-

zation of the ACR response, in a manner unrelated to the

residual correlation component. This is due to the fact that

the number of random effects used to describe ACR

response actually increased by three under the joint model,

namely through the BSV terms under the latent variable

M(t) in Eq. 9. The estimation of these additional random

effects could not be reliably supported by ACR data alone

[6], and was made possible only with the added DAS28

data under the joint model framework. This feature may

hold more generally when the endpoints include both the

continuous and the categorical types, where the continuous

endpoint data may support random effects not estimable

from the categorical endpoint data alone, and thus resulting

in better description of the categorical endpoints. This

demonstrates more clearly the improvement achievable by

the joint modeling approach than the previous applications

[11, 12]. It is noted that the joint approach requires con-

siderably more effort and computational time. On the other

hand, categorical endpoint modeling alone typically cannot

support the estimation of more than one BSV term. It is

noted that the magnitude of BSV at the intercept level

determines the response probability together with under-

lying exposure, as can be seen in Eq. 10 (see more details

in Hutmacher and French [17]). The question thus arises on

how this would affect model predictions, especially the

associated variability. The joint model can provide valu-

able insights into this important question in clinical

development.

A study effect term was used to account for baseline

DAS28 differences between the two studies. Estimation

results of the remaining parameters were similar to those in

an earlier model without the study effect on baseline.

However, the VPC of this earlier model showed systematic

differences between the model predicted and observed data

trends, which could easily lead to doubt regarding the

predictive ability of the model. The study effect has
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descriptive but not predictive value, and the inclusion of

such covariates should be exercised with caution. As sub-

jects are randomized only within the studies and not to

them, the study effect on baseline served the purpose of

adjusting for imbalances between studies. Inclusion of

study effect on other model components could easily lead

to interpretation difficulties and is thus generally not

advisable.

An often encountered practical difficulty with IDR

modeling is to explain the nature of the underlying E–R

relationship to unfamiliar audiences. It is especially diffi-

cult to illustrate how it influences the time course of the

response, since the E–R relationship can only be plotted

under a theoretical steady-state infusion, which may be of

little help to understand the actual response in clinical

applications where dosing periods are often at their half-

lives or longer. However, IDR models have been used

increasingly in E–R modeling of clinical endpoints and

have certain advantages compared with other approaches

such as the Markov transition approach or direct correla-

tions between the primary efficacy endpoint and simple

exposure metrics using area under drug concentration–time

curve (AUC) or trough drug concentration (Ctrough) [2]. In

practical applications, placebo effects have been modeled

in different forms under the IDR models and may be

broadly classified as 1-pathway and 2-pathway approaches

[2, 18]. In part due to the lack of mechanistic under-

standing, practical choices were perhaps often made

according to the relative ease of implementation in the

particular application, and may differ even when multiple

endpoints were obtained from the same trials [9]. Main-

taining consistency of mechanism interpretations of the

model forms for the different endpoints is important to

allow joint modeling to fully achieve its benefits.
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