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Abstract One critical approach to preclinical evaluation

of anti-tuberculosis (anti-TB) drugs is the study of corre-

lations between drug exposure and efficacy in animal TB

infection models. While such pharmacokinetic/pharmaco-

dynamic (PK/PD) studies are useful for the identification of

optimal clinical dosing regimens, they are resource inten-

sive and are not routinely performed. A mathematical

model capable of simulating the PK/PD properties of drug

therapy for experimental TB offers a way to mitigate some

of the practical obstacles to determining the PK/PD index

that best correlates with efficacy. Here, we present a pre-

liminary physiologically based PK/PD model of rifampin

therapy in a mouse TB infection model. The computational

framework integrates whole-body rifampin PKs, cell

population dynamics for the host immune response to

Mycobacterium tuberculosis infection, drug-bacteria in-

teractions, and a Bayesian method for parameter estima-

tion. As an initial application, we calibrated the model to a

set of available rifampin PK/PD data and simulated a

separate dose fractionation experiment for bacterial killing

kinetics in the lungs of TB-infected mice. The simulation

results qualitatively agreed with the experimentally ob-

served PK/PD correlations, including the identification of

area under the concentration-time curve as best correlating

with efficacy. This single-drug framework is aimed toward

extension to multiple anti-TB drugs in order to facilitate

development of optimal combination regimens.
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Introduction

Amajor aim of anti-tuberculosis (anti-TB) drug development

is the identification of new combination regimens to better

treat drug-susceptible and drug-resistant TB, including TB in

human immunodeficiency virus (HIV) co-infected patients

[1]. In order to accelerate the development process relative to

sequential single-drug replacement in current three- and four-

drug regimens, a critical path to TB drug regimens (CPTR)

initiative is underway in which the unit of development is an

entirely novel multidrug combination [2]. Presently, several

novel anti-TB drug combinations have been tested inmice [3–

5] and a first multidrug early bactericidal activity (EBA) study

has been completed in humans [6].

Beyond the identification of specific drugs to test in

combination, there remains the problem of dose opti-

mization which is important both for the therapeutic ben-

efits and as a means to conserve the effective use of the

drugs [7]. However, the problem of identifying optimized

regimens for TB is especially difficult due in part to the

large number of possible doses and schedules of adminis-

tration that arise from multidrug combinations, but also due

to an incomplete understanding of the relationships among

the set of pharmacokinetic (PK), pharmacodynamic (PD),

and disease related elements that influence the outcomes of

the relevant experiments. These difficulties are illustrated

by the continuing investigations of standard anti-TB regi-

mens that have been in clinical use for more than 30 years

[8–10]. Our focus here is dose optimization in mouse TB

infection models, as they are the primary animal models in

the noted regimen-based initiative [11].
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Antimicrobial PK/PD methods provide the current basis

for preclinical dose optimization of single anti-TB drugs

[12–14]. These methods include measurements and analysis

of drug concentration-time profiles and dose fractionation

studies to determine correlations between efficacy and var-

ious PK/PD indices descriptive of drug exposure and effect.

Although preclinical PK/PD data have been informative for

optimal dosing in TB patients [15], the resource intensive

requirements of in vivo anti-TB PK/PD studies often leads

to their consideration as a secondary investigation; for ex-

ample, following an unexpected pattern of drug behavior

observed in clinical testing [16]. The multidimensional ex-

posure–efficacy relationships needed to characterize the

three- and four-drug combinations used to treat TB would

require even greater experimental resources. Preclinical anti-

TB combination studies are currently performed using a

limited range of doses that are determined primarily from

single-drug studies for new drugs, or from previously opti-

mized regimens for existing drugs [4, 17].

Mathematical modeling and simulation provides a

complementary approach to experimental methods that

may mitigate some of the practical obstacles to combina-

tion regimen based development. Compartmental PK/PD

modeling is the most commonly used approach to describe

and predict drug exposure–efficacy relationships [18].

These models, typically consisting of one or more com-

partments for drug concentration kinetics combined with

effect compartments for the drug-bacteria interaction, have

been used to predict optimal PK/PD indices for a variety of

antimicrobial drugs in both in vitro and in vivo systems

[19–21]. However, these conventional PK/PD models aim

at reducing the complexity of the drug-biological system

interactions to a minimal set of free parameters whose

values are specified by data from the types of experiments

that are to be simulated. This limits their application to

quantitative descriptions of a relatively small number of

model variables with a narrowly defined set of ex-

perimentally measurable endpoints. In contrast, physio-

logically based PK/PD models [22] incorporate

mechanistic descriptions of the exposure–efficacy rela-

tionships using variables and parameters that have

physiological and biochemical interpretations. This pro-

vides for the experimental measurement of internal model

components and a predictive capability beyond the ex-

perimental designs used for model development.

As a step toward a mathematical and computational

modeling framework capable of describing and predicting

PK/PD relationships for preclinical anti-TB regimen-based

development, we constructed a physiologically based PK/

PD model for rifampin in Mycobacterium tuberculosis in-

fected mice, including a population model for the host-

immune response to infection. As an initial application, we

calibrated the model to a subset of experimental data from

a rifampin PK/PD study in mice by Jayaram et al. [12] and

simulated a separate dose fractionation experiment to de-

termine an optimal PK/PD index for efficacy of rifampin

against TB-infected mice.

Materials and methods

Pharmacokinetic/pharmacodynamic model

The mathematical PK/PD model was constructed by

combining a physiologically based pharmacokinetic

(PBPK) model for rifampin in mice [23] with a host-effect

model (TB model) describing M. tuberculosis infection in

the lungs of mice [24]. The PBPK model provided rifampin

concentration-time profiles for the major tissues and or-

gans, including plasma and lungs, for single and multiple

oral dosing. The TB model provided the dynamics in the

lungs of (1) intra- and extra-cellular bacteria, (2) resting,

activated, and infected macrophages, (3) CD4þ and CD8þ

T cells, and (4) the cytokines IL-2, IL-10, IL-12, and IFN-

c. Both the PBPK and TB models consisted of physio-

logically parameterized ordinary differential equations, and

the two models were combined through terms for drug-

induced killing of the intra- and extra-cellular bacteria.

The drug-bacteria interaction in the lungs was described

with a sigmoidal killing term [25] added to the existing

equations for bacterial dynamics given in Friedman et al.

[24]; these new equations for bacterial cell density (B) as a

function of time (t) took the form,

dB

dt
¼ dB

dt

�
�
�
�
Host

� B � kmax �
ðfLU � CLUÞc

EC
c
50 þ ðfLU � CLUÞc

: ð1Þ

The total rifampin concentration in lungs, CLU (with fLU the

corresponding free fraction), was determined from the

PBPK model equation,

VLU

dCLU

dt
¼ QC CV � CLU=PLUð Þ; ð2Þ

where VLU is lung tissue volume, QC is cardiac output, CV

is rifampin concentration in venous blood, and PLU is the

rifampin lung/blood partition coefficient. There were three

bacterial cell density equations described by (1); one each

for extracellular bacteria and intracellular bacteria in acti-

vated or infected macrophages. The first term on the right-

hand side of Eq. (1) represents the bacterial dynamics in

the host environment in the absence of drug, with the ex-

plicit form for each of the three bacterial subpopulations

given by the corresponding equations in Friedman et al.

[24]. The drug effect parameters, kmax;EC50; and c, repre-
sent the maximum kill rate, half-maximum effect drug

concentration, and Hill coefficient, respectively. These

parameters were further distinguished as corresponding to
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either extracellular bacteria, Ex, or intracellular bacteria, In

(for bacteria inside either activated or infected macro-

phages); in the equation for extracellular bacteria, kmax ¼
kExmax; EC50 ¼ ECEx

50 ; and c ¼ cEx, and for both equations

describing intracellular bacteria, kmax ¼ kInmax; EC50 ¼
ECIn

50; and c ¼ cIn.
The complete set of PK/PD model equations were ob-

tained by combining all the equations listed in the re-

spective publications for the separate PBPK [23] and TB

[24] models into a single model structure, with the only

modification being to the three original bacterial dynamics

equations to include drug-induced bacterial killing as de-

scribed above. A diagram of the complete model structure

together with the full set of equations is given in the

‘‘Appendix’’ section. We refer the reader to the original

model publications [23, 24] for additional equation details.

The complete set of parameter values were specified first as

baseline values, followed by modification of some of these

values through model calibration to various sets of in vivo

experimental data. The initial conditions for the TB model

were specified in Friedman et al. [24] at day seven of in-

fection, with values appropriate for low-dose aerosol ex-

posure to M. tuberculosis. The initial drug concentrations

in all PBPK model compartments were set to zero.

Baseline parameter values

Baseline values for the TB model parameters and the initial

cell densities and cytokine concentrations, were chosen as

those specified for young mice in Friedman et al. [24].

With the exception of mean body weight, baseline values

for the PBPK model parameters were chosen as the mean

values listed in Lyons et al. [23]. Mean body weight was

set to 21 g [26] as representative of the 7- to 9-week old

male and female BALB/c mice used for the in vivo mea-

surements in Jayaram et al. [12]. A baseline value for fLU
was set from the rifampin unbound fraction in plasma

(fplasma) obtained from Jayaram et al. [12], as fLU ¼ fplasma �
BP=PLU [27], where BP is the rifampin blood/plasma ratio,

and PLU is the rifampin lung/blood partition coefficient.

Baseline values for the drug effect parameters were set

from the corresponding terms in the dose–response curves

for in vitro killing kinetics assays given in Jayaram et al.

[12]; the batch culture results were used for the extracel-

lular values, and the macrophage infection model results

were used for the intracellular values.

Model calibration

The PK/PD model calibration was performed using a

Bayesian Markov chain Monte Carlo (MCMC) procedure

[28, 29] applied sequentially to a set of in vivo data for

rifampin in BALB/c mice reported in Jayaram et al. [12]. A

first calibration to dose-ranging pharmacokinetic data in

uninfected mice was followed by a second calibration to

dose–response data in M. tuberculosis aerosol infected

mice.

The data obtained from the in vivo dose-ranging and

dose–response studies in Jayaram et al. [12] consisted of,

respectively; (1) mean values for 72-h rifampin plasma

concentration-time measurements after single oral doses of

0.33, 10, 90, 270, and 810 mg/kg, and (2) mean lung CFU

counts from mice treated with rifampin for 1 or 2 weeks,

where treatment started on day 28 of infection using doses

in a range of 1–270 mg/kg, administered orally 6 days/

week. The numerical values for these data were obtained

here from the corresponding published graphs by digital

extraction using g3data [30, 31] [we note that the original

individual data were not available (R. Shandil, personal

communication)]. The 72-h rifampin plasma concentration-

time measurements corresponding to the 10, 90, and 270

mg/kg doses were chosen as the calibration data from the

dose-ranging study, consistent with the results in Jayaram

et al. [12] indicating that a non-compartmental model with

a 12-h elimination half-life best described the mouse

pharmacokinetics. The dose–response data exhibited a

large amount of variability over the 2-week treatment in-

terval, particularly in the low doses; as such, we limited the

calibration data to the 1-week treatment group with lung

CFU counts measured on days 28 and 35 post infection.

The model parameters chosen for calibration were those

in the drug-bacteria interaction terms, for which the base-

line values were specified using in vitro data, together with

additional parameters that were found to most sensitively

affect model predictions for rifampin plasma concentration

and total bacterial cell density (the latter was calculated as

the sum of the intra- and extra-cellular subpopulations).

The sensitive parameters were identified using a Monte

Carlo (MC) sensitivity analysis, where each MC iteration

consisted of a simulation of the time-course of chosen

model variables, with the parameter values set by random

draws from uniform distributions bounded by �10% of

their baseline mean values. Parameter sensitivity was

assessed from correlation coefficients calculated, at speci-

fied time points, between the sampled parameter values and

model output resulting from 10,000 MC iterations.

The Bayesian procedure included the specification of prior

parameter distributions, a likelihood function, and an error

term accounting for model and measurement uncertainty. For

those parameters subject to calibration, the prior distributions

were chosen as uniform, UðM �
ffiffiffi

3
p

� SD; M þ
ffiffiffi

3
p

� SDÞ,
with mean (M) set to the baseline parameter value, and stan-

dard deviation (SD) set from a coefficient of variation (CV =

SD/M) chosen from a range of 30–50 % to represent the
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uncertainty in the mean (the
ffiffiffi

3
p

arises from parameterization

of U in terms of M and SD). All other model parameters that

were not subject to calibration were held at their baseline

values (see ‘‘Appendix’’ section). The calibration was imple-

mented using MCMC simulation, with log-transformed ex-

perimental calibration data, and a normal likelihood with a

loguniform error variance bounded between 0.01 and 3.3 [32].

The joint posterior parameter distribution was sampled using

five independent Markov chains, with convergence assessed

using the Gelman-Rubin potential scale reduction factor

(R) [33]. The calibrated model was obtained by replacing the

prior mean parameter values with their corresponding mar-

ginal posterior means, together with the remaining un-

calibrated parameters set at their default baseline values.

PK/PD model simulations

Using the calibrated PK/PD model, simulations were run for

total lung CFU’s (calculated as the product of total bacterial

cell density and lung tissue volume) and rifampin concen-

tration in plasma corresponding to the dose-ranging and

dose–response studies used for model calibration. A

simulation of the experimental dose–fractionation study

described in Jayaram et al. [12] was also run to determine a

PK/PD model prediction of the PK/PD index which best

correlated with bactericidal efficacy. For each dosage regi-

men in the dose–fractionation simulation, the PK/PD indi-

ces; AUC24=MIC, Cmax=MIC, and T[MIC, were calculated

using the experimentally measured MIC ¼ 1mg=L in serum

[12], and the model simulated rifampin plasma concentra-

tion-time output (making no distinction between plasma and

serum measurements). Here,MIC is the minimum inhibitory

concentration, AUC24 is the 24-h area under the concentra-

tion-time curve, Cmax the peak concentration, and T[MIC is

the percentage of time the plasma concentration exceeds the

MIC. The relationship between the model predicted total

lung CFU’s and each PK/PD index was summarized by a fit

to a sigmoid inhibitory Emax model of the form

E ¼ Emaxð1� Xn=ðXn
50 þ XnÞÞ, where E is the log10 CFU,

Emax is the maximum log10 CFU reduction, X is a PK/PD

index, X50 is the value of X at half-maximum effect, and n is

a shape parameter (this is a similar analysis of the model

simulated data as was originally applied to the correspond-

ing experimental data). The PK/PD index best characterizing

the bactericidal effect was selected as the index with the

highest correlation between the fitted Emax equation and the

model predicted data, as determined by visual inspection,

calculated coefficient of determination, R2, and coefficient

of variation, CV = (root mean square error)/(mean of de-

pendent variable).

To illustrate additional model features of the immune

response we simulated the time course of total lung CFU’s

together with corresponding cytokine concentrations and

macrophage and T cell densities following daily 10 mg/kg

oral dosing starting on day 28 post-infection.

Computational software

MCSim v5.4.0 [34] was used for all PK/PD model

simulations, including the MC and MCMC simulations. R

v2.15.2 [35], including the CODA package [36], was used

for statistical calculations.

Results

Calibration

The rifampin PBPK model parameters; fraction of dose

absorbed, total clearance, oral absorption rate, and muscle/

blood partition coefficient, were shown previously [23] to

have the highest correlation with the PBPK model pre-

dictions of rifampin plasma concentration, and were in-

cluded here for calibration to the dose-ranging data. The

MC sensitivity analysis for total bacterial cell density was

performed with simulations of 6 days/week oral dosing

starting on day 28 post-infection. Separate MC simulations

were run for each of 1, 30, 90, and 270 mg/kg oral doses.

Pearson correlation coefficients between the sampled pa-

rameters and predictions of total bacterial cell density were

calculated at days 28 and 35 post-infection. Parameters

with correlations of absolute value greater than 0.3, at ei-

ther of the time points and for any of the doses, were

considered sensitive. The TB model parameters; bacterial

growth rate inside infected macrophages, rate of infection

of resting macrophages, saturation for infection of resting

macrophages, and maximal carrying capacity of infected

macrophages, as well as the drug effect parameter, max-

imum kill rate for intracellular bacteria, were found to be

sensitive for predictions of total bacterial cell density, and

were included together with the remaining parameters in

the drug-bacteria interaction terms for calibration to the

dose–response data.

The baseline mean parameter values that were used to

specify the prior distributions for the calibrated PK/PD

model parameters are shown in Table 1. The prior mean

distributions and summary statistics of the marginal pos-

terior mean distributions are shown for the calibrated PK/

PD model parameters in Table 2. For the pharmacokinetic

dose-ranging calibration, each of the five Markov chains

were generated from 100,000 MCMC iterations, keeping

every fifth iteration of the final 10,000. Convergence was

obtained as R ¼ 1 for every sampled parameter. The

marginal posterior mean values and SD’s were calculated

from the aggregate of the five chains. While both fraction
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of dose absorbed and plasma clearance were updated, it is

only the ratio CL/F that is identifiable in the present study,

and while each value changed separately from prior to

posterior, the prior and posterior ratios remained ap-

proximately equal.

The prior baseline mean values of the PBPK model

parameters shown in Table 1 were replaced with their

corresponding marginal posterior mean values shown in

Table 2 for use in the second calibration to the dose–re-

sponse data. For the calibration to the dose–response data,

each of the five Markov chains were generated from

200,000 MCMC iterations, keeping every fifth iteration of

the final 10,000. Convergence was obtained as R\1:06 for

every sampled parameter. The marginal posterior mean

values and SD’s were calculated from the aggregate of the

five chains. The fully calibrated model was obtained using

the posterior mean values in Table 2, with the remaining

uncalibrated parameters kept at their baseline mean values.

Figure 1 shows simulations of rifampin plasma con-

centration-time profiles and lung CFU killing kinetics us-

ing the calibrated PK/PD model, together with the

corresponding mean experimental data from the dose-

ranging and dose–response studies in Jayaram et al. [12].

The simulated values of rifampin plasma concentration

reasonably approximate the absorption and elimination

behavior of the intermediate doses, but show larger de-

viations from experiment for the low and high doses. The

simulation for the 810 mg/kg dose describes the rate of

Table 1 PK/PD parameter

baseline mean values for

Bayesian prior distributions

Parameter (units) Mean Source

PBPK model parameters

Fa Fraction of rifampin dose absorbed 1 [23]

ka Oral rifampin absorption rate (1/day) 38.64 [23]

CLC Total rifampin clearance (L/day/kg0:75) 0.96 [23]

PM Rifampin muscle/blood partition coefficient 0.76 [23]

Drug-bacteria parameters

fLU Fraction of rifampin free in lung 0.3 [12, 23]

kExmax Maximum kill rate for extracellular bacteria (1/day) 13.82 [12]

ECEx
50

Half-maximum effect conc. for extracellular bacteria (mg/L) 1.24 [12]

cEx Hill coefficient for extracellular bacteria 0.7 [12]

kInmax Maximum kill rate for intracellular bacteria (1/day) 1.21 [12]

ECIn
50

Half-maximum effect conc. for intracellular bacteria (mg/L) 3.38 [12]

cIn Hill coefficient for intracellular bacteria 0.48 [12]

TB model parameters

aI Bacterial growth rate inside infected macrophages (1/day) 0.5 [24]

k1 Rate of infection of resting macrophages (1/day) 0.4 [24]

c1 Saturation for infection of resting macrophages (cell/mL) 106 [24]

N Maximal carrying capacity of an infected macrophage 25 [24]

Table 2 Calibration to in vivo dose-ranging and dose–response

measurements obtained from Jayaram et al. [12]: prior distributions

and posterior distribution summaries

Parameter (units)a Prior Posteriorb

PBPK model parameters

Fa U (0.48, 1.0)c 0.59 (0.07)

ka (1/day) U (18.0, 59) 36 (10)

CLC (L/d/kg0:75) U (0.46, 1.5) 0.58 (0.06)

PM U (0.10, 1.4) 1.1 (0.2)

Drug-bacteria parameters

fLU U (0.14, 0.46) 0.28 (0.08)

kExmax (1/day) U (1.8, 26) 17 (6)

ECEx
50 (mg/L) U (0.17, 2.3) 1.0 (0.6)

cEx U (0.09, 1.3) 0.62 (0.3)

kInmax (1/day) U (0.16, 2.3) 2.0 (0.2)

ECIn
50 (mg/L) U (0.45, 6.3) 4.5 (1)

cIn U (0.06, 0.9) 0.72 (0.10)

TB model parameters

aI (1/day) U (0.24, 0.76) 0.58 (0.1)

k1 (1/day) U (0.05, 0.75) 0.55 (0.1)

c1 (cell/mL) U (1:3� 105; 1:9� 106) 5:0� 105 ð3� 105Þ
N U (12, 38) 29 (5)

U (a, b); Uniform distribution over [a, b]
a Parameter definitions are given in Table 1
b Mean(SD)
c Truncated to exclude values greater than 1
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elimination, but over-predicts Cmax, while the 0.33 mg/kg

matches the early absorption data, but over-predicts the

rate of elimination. For the dose–response data simulations,

the CFU counts on day 28 and the range of CFU counts on

day 35 are well simulated by the model, but large de-

viations from model simulations are evident in the day 42

CFU data points, reflecting the large variation in this ex-

perimental data.

Simulation of dose–fractionation study

The PK/PD model simulation of the dose–fractionation study

described in Jayaram et al. [12] consisted of simulations for

total lung CFU’s on day 34 post-infection, following rifampin

dosing starting on day 28 post-infection with total doses of 2,

6, 18, 60, 180, 540, 1080, 1620, 3240, and 4860 mg/kg. Each

total dose was fractionated one, three, or six times in 144 h (6

days). For example, the 180 mg/kg total dose was adminis-

tered as a single dose on day 28, or as 60mg/kg doses on each

of days 28, 30, and 32, or as 30mg/kg doses on each of days 28

through 33. Single-dose amounts of 1080, 1620, 3240, and

4860mg/kg, and three-dose amounts of 1080and1620mg/kg,

were excluded from the simulations to match the same ex-

cluded dosing described in the original experimental study

[12]. AUC24 was calculated for each dosage regimen by nu-

merical integration of the rifampin plasma concentration-time

curve over the 144 h time interval, divided by 6. Cmax was

identified as the highest predicted rifampin plasma concen-

tration during the 144 h interval. T[MIC was calculated as the

percentage of time the rifampin concentration in plasma was

greater than theMIC over the 144 h interval.

Figure 2 shows the simulation results for model predicted

log10 CFU’s plotted against each PK/PD index together with

the Emax model fits to the simulation data. Table 3 shows the

Emax model and goodness of fit values for the PK/PD model

simulated dose–fractionation data and the corresponding

experimentally observed data from Jayaram et al. [12]. The

experimental data points used for this analysis were digitally

extracted from Fig. 2, Fig. 6B, and Fig. 6C of Jayaram et al.

[12]. We note a discrepancy between the same AUC/MIC

data plotted in Fig. 2 and Fig. 6A, with our results in Table 3

conforming to the Fig. 2 in vivo data as the correct values

(there was an approximate factor of 5 shift between the data

points in each figure with a likely plotting error in the

horizontal axis of Fig 6A). From simulation output for

AUC24 and corresponding dose (Dose (mg/kg)), we deter-

mined the relationship AUC24 ¼ a � Dose, where a ¼ 11.7,

6.08, or 2.08 (kg/L), for 6, 3, or 1 day/week dosing, re-

spectively. Using this result in the Emax equation for

AUC24=MIC we established the dose–response curves,

shown together with the corresponding 6x/week ex-

perimental data from Jayaram et al. [12] in Fig. 3.

The pattern of simulated output for the individual mice,

and the correlation of PK/PD indices with efficacy in the

order AUC24=MIC [ Cmax=MIC [ T[MIC; closely

match the experimental results presented in Jayaram et al.

[12] (these latter experimental results were not included in

our model development or calibration procedure, but were

kept as separate independent data used only for comparison

to the corresponding computational simulations). While

there is overall qualitative agreement between our

simulated results and experimental measurement, we find

disagreement in the dose fractionation results with a higher

than observed prediction of AUC24=MIC for a 1-log CFU

reduction. From our Emax equation for AUC24=MIC, a

1-log10 CFU reduction requires AUC24=MIC ¼ 368; the

corresponding value reported in Jayaram et al. [12] was

271. The difference between these observed and predicted

values can be partially attributed to the error in modeling

the rifampin plasma concentration-time profiles, most no-

tably seen in the over-prediction of exposure for the higher

doses. In the PK/PD correlation analysis of Jayaram et al.

[12], the PK plasma exposure values were determined by

simulation using a one-compartment model with first-order

a b

Fig. 1 Simulations of rifampin in vivo dose-ranging and dose–

response studies. The dashed lines are simulation outputs, and the

data points are replotted experimental data digitally extracted from

the corresponding plots in Jayaram et al. [12]. a 72-h Rifampin

plasma concentration-time profiles following single oral doses of

0.33, 10, 90, 270, and 810 mg/kg. b Total lung CFU’s following

6-days/week dosing of 0, 1, 3, 10, 30, 90 and 270 mg/kg, starting day

28 post-infection
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absorption and elimination, similar to assumptions made in

our PBPK model; as such, we expect similar plasma

modeling errors. However, the bacterial killing kinetics

were experimental values in Jayaram et al. [12] while here

they were model predicted, based on calibration to the

dose–response data in Jayaram et al. [12]. The over-pre-

diction of drug exposure in the high dose measurements

would lead to an under-prediction of the true rate of bac-

terial killing, resulting in over-prediction of exposure

necessary for the 1-log CFU reduction.

Fig. 2 PK/PD model simulation of the experimental rifampin dose–

fractionation study for TB infected BALB/c mice described in

Jayaram et al. [12]. Individual data points (diamonds) were PK/PD

model generated, with each point obtained from the simulation of

total lung CFU’s and corresponding PK/PD index calculated from

simulated plasma concentrations for each dosage regimen of the

dose–fractionation study. Solid lines are Emax equation fits (Table 2)

to the PK/PD model generated data points

Table 3 Fit of E ¼ Emaxð1� Xn=ðXn
50 þ XnÞÞ to PK/PD model predicted (Fig. 2) and experimentally observed [12] mouse rifampin dose–

fractionation data (E ¼ log10 CFU, Emax = maximum E, X is a PK/PD index, X50 is the value of X at E ¼ Emax=2, and n is a shape parameter)

X Emax X50 n R2 CV%

Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs. Pred. Obs.

AUC24=MIC 5.9 5.9 4:3� 103 3:9� 103 0.65 0.70 0.95 0.95 5.4 6.0

Cmax=MIC 5.9 6.2 5:0� 102 2:8� 102 0.63 0.57 0.78 0.81 11 9.1

T[MIC 5.8 5.7 1:1� 102 1:1� 102 4.8 11 0.66 0.46 14 18

R2: coefficient of determination.

CV%: percent coefficient of variation (of root mean square error).

Pred.: calculated from PK/PD model predicted log10 CFU versus X shown in Fig. 2

Obs.: calculated from experimentally observed log10 CFU versus X reported in Jayaram et al. [12]

a b

Fig. 3 PK/PD model simulations. a Total rifampin plasma and lung

concentration-time profiles following 10 mg/kg, 69/week daily oral

dosing. b dose–response curves for reduction in lung CFU counts

following 1 week of oral rifampin doses administered 1, 3, or 6 times

in TB-infected BALB/c mice. Experimental data (expt.) digitally

extracted and replotted from the corresponding non-zero dosing (69/

week) results in Jayaram et al. [12] (the zero dose value was

approximately 6.21 log10CFU)
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Simulation of host response

Figure 4 shows the PK/PD model predicted bacterial ki-

netics and corresponding host response from day 14

through day 42 post-infection, with daily 10 mg/kg ri-

fampin oral dosing beginning on day 28 post-infection. The

macrophage cell densities and IL-10 concentration are

most clearly seen as directly responsive to the decrease in

bacterial load as expected from the location of M. tuber-

culosis primarily in macrophages, and as IL-10 (and IL-12)

are secreted by the macrophages. Also, a lag time relative

to bacterial load is seen in the response of the T cells and

the T cell derived IL-2 and IFN-c cytokines, as expected

due to time required for T cells to detect and process

regulatory signals from the reduction in bacterial stimuli.

Discussion

The complexities of anti-TB drug therapy, including host

effects and the need for multidrug combinations, strains the

capabilities of conventional PK/PD modeling and analysis

methods for identifying new optimal regimens. Physio-

logically based PK/PD modeling can be viewed as a mul-

tiscale approach [37] that provides for integration of the

multiple aspects of dose-optimization including efficacy,

host-toxicity, antimicrobial resistance, and possible drug-

drug interactions. PK/PD models for drug treatment of TB

that include multiscale descriptions of the host-drug-bac-

teria interactions are available in the literature [38, 39].

However, while the disease components of these models

are physiologically based, the pharmacokinetic compo-

nents are either empirical models used to describe a single

drug [38], or descriptions of combination therapy using

efficacy parameters without consideration of the actual

dose or drug concentration kinetics [39]. While these

models provide useful insights into drug therapy for TB,

we envision a computational framework capable of de-

scribing whole-body multidrug PK/PD interactions which

requires a more detailed pharmacokinetic description than

was used in the available examples. Our objective here was

to establish, for a single drug, the essential computational

aspects of such a multidrug framework.

We constructed a PK/PD model for rifampin in TB-

infected mice by combining models for drug disposition

and disease through drug-bacteria interaction terms. The

model equations were numerically evaluated in a compu-

tational framework that included MC simulations to assess

parameter sensitivity, and MCMC simulations for a

Bayesian calibration procedure that provided for incorpo-

ration of experimental data from in vitro and in vivo

measurements. While we considered only a single drug in

the present study, the model structure can incorporate

multiple drugs through expansion of the pharmacokinetic

component to include additional PBPK models for each

drug of interest. These separate PBPK models can be

linked through tissue and organ compartments that corre-

spond to target sites for PK and PD interactions in a

manner described by numerous examples for PBPK mod-

eling of chemical mixtures [28, 40, 41]. As rifampin is a

potent cytochrome P450 (CYP) enzyme inducer [42], in-

clusion of CYP enzyme induction [43] into the present

PBPK model and combining with PBPK models for com-

monly co-administered antiretroviral drugs could serve as

an application to modeling dose adjustments required for

treatment of TB and human immunodeficiency virus (HIV)

a b

c d

Fig. 4 PK/PD model

simulations during days 13–44

of pulmonary bacterial load,

cytokine concentrations, and

macrophage and T cell densities

(cells per mL of lung tissue)

following a 2-week daily 10 mg/

kg oral dose of rifampin

beginning on day 28 post-

aerosol infection in TB-infected

BALB/c mice. a Bacterial load

(sum of intra- and extra-cellular

bacteria). b Cell densities of

infected (MI) and activated

(MA) macrophages. c Cytokine

(IL-10, IL-2, IL-12, and IFN-c)
concentrations. d Cell densities

of CD4þ and CD8þ T cells
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co-infections [44]. The primary aim of accounting for

physiological detail in such a modeling framework is to

better translate preclinical experimental data to the clinical

setting. PBPK modeling is becoming established in drug

development through it’s increasing use for in vitro in vivo

extrapolation and interspecies scaling [45]. Additionally,

the physiologically based framework described here con-

tains basic modeling elements for novel anti-TB drug

therapies such as those related to host-directed adjunct

therapies [46] and alternate routes of administration [47].

Our initial application of the computational framework

was the simulation of experiments described in a PK/PD

study of rifampin in M. tuberculosis infected mice [12]. In

vitro measurements of protein binding and M. tuberculosis

killing kinetics in batch culture and in macrophages, to-

gether with previously specified PBPK model parameter

values, were used to specify prior parameter distributions

that were subsequently updated by Bayesian calibration to

in vivo dose-ranging and dose–response measurements.

While the experimental measurements provided by Ja-

yaram et al. [12] presented an integrated set of data with

respect to bacterial strain, mouse models, and methods of

analysis; data from separate experiments such as from

hollow fiber systems [48] could also be used to inform

prior parameter distributions. The parameters chosen for

calibration were determined from a ranking of those most

sensitive to the experimental data used for calibration and

for which experimental measurements were most uncer-

tain. For the PBPK model we restricted calibration to

sensitive drug-dependent parameters while leaving the

measured drug independent physiological parameters at

their baseline values. The calibrated model was used to

simulate the experimental dose–fractionation study de-

scribed in Jayaram et al. [12], with a measured MIC in-

corporated into calculations for the associated PK/PD

indices. The simulated output clearly indicated a concen-

tration-dependent behavior, with the AUC24=MIC best

correlating with lung CFU’s in agreement with the results

in Jayaram et al. [12]. The predicted dose–response curve

shown in Fig. 3 (derived from the Emax model fit to

AUC24=MIC simulated data) shows the standard 10 mg/kg

dose well below the maximum response, the complete

curve showing a wide range over several orders of mag-

nitude for the dose. This result agrees with other ex-

perimental studies indicating rifampin under-dosing for TB

in mice [49], and illustrates partly the motivation for recent

and ongoing high-dose rifampin clinical trials [50, 51].

While the PK/PD model presented here is a first iteration

of model development, combining previously disparate

mathematical descriptions for the host-drug-bacteria sub-

components, these preliminary simulations indicate the

utility of a computational PK/PD approach to obtain results

that are consistent with an otherwise resource intensive

dose–fractionation experiment. Additionally, consideration

of the differences between the PK/PD model predictions

and experimental observations provides a means to im-

prove the model and the hypotheses from which the

mathematical statements are derived. In conventional PK/

PD modeling, differences between prediction and ex-

perimental observation are addressed by changes to the

model, using alternate variables and parameterizations,

without a necessarily corresponding physiological inter-

pretation. For systems-based modeling, changes to the

model are constrained by biological and physiological

hypotheses and experimentally measured parameter values.

In our case, further investigation of the model hypotheses is

suggested by the higher than observed prediction of

AUC24=MIC for a 1-log CFU reduction. The PBPK sub-

model may be improved, as we discussed in an earlier

publication [23], with a more detailed description of en-

terohepatic circulation that may better simulate the plasma

concentration-time profiles. The mathematical TB model

[24] was developed to describe early and stationary phase

bacterial growth. Experimental data describing drug in-

duced bacterial killing and the simultaneous dynamics of T

cells, macrophages, and cytokines is not currently available

for mice in the anti-TB drug literature. Such data would be

highly beneficial to better test the model predictions and to

further understand the host effect during drug treatment.

Two important areas of investigation that were not ad-

dressed by our model are the characteristic biphasic killing

kinetics observed with prolonged drug treatment [52], and

postantibiotic effect (PAE) which refers to delayed re-

growth of bacteria after drug exposure [53]. These effects

would be important for describing the full time course of

anti-TB treatment, including accounting for intermittent or

missed doses. PK/PD models for rifampin therapy in hu-

man TB described by Goutelle et al. [38], explained the

biphasic killing kinetics as arising from an initial rapid

killing of a large extracellular bacterial population fol-

lowed by a slower killing of a protected intracellular sub-

population. However, the extracellular bacterial population

in standard mouse TB infection models are a much smaller

fraction of the total than in humans [54], and preliminary

simulations with our PK/PD model (data not shown) do not

account adequately for initial rapid killing and longer term

persistence. This suggests other mechanisms for bacterial

persistence, such as cellular level stochastic processes re-

lated to phenotypic heterogeneity [55–57], may be neces-

sary to explain the long-term M. tuberculosis killing

kinetics in mice. A significant PAE for rifampin against M.

tuberculosis has been observed in vitro [58], and including

a PAE in the model would provide a mechanism for growth

inhibition during low or absent drug concentrations. Ex-

amples of PK/PD modeling with a PAE are available in the

literature [59, 60] and could be included here as a
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refinement of our current description of the drug-bacteria

interaction.

While systems based modeling may be used to explore

a wider range of questions for a particular experimental

system than conventional PK/PD modeling, the emphasis

on physiological description limits the range of systems to

which the model can be applied. The TB infection model

[24] was developed using data from standard mouse

strains such as C57BL/6 or BALB/c, and would not apply

directly to mouse strains with highly differing immune

responses, such as gamma-interferon knockout (GKO)

mice [61], or the necrotic granuloma forming C3HeB/FeJ

[62] mice. The dose, route, and bacterial strain used for

infection also play an important role in determining the

host immune response [63]. These differences in mouse

strain, bacterial strain, and other experimental conditions

would require, minimally, modification of initial condi-

tions and various parameter values, together with the

appropriate experimental measurements on which to base

these modifications. While not implemented in this

model, the physiologically based nature of the model

parameters provides a mechanism to incorporate mouse

intra- and inter-individual variability through MC

simulation. Such variability was accounted for previously

in the PBPK model [23]; however, information on the

variability of the TB model parameters was not provided

for the published model used here [24]. Such data would

be highly beneficial to better test the model predictions

and to further understand the host effect during drug

treatment. The motivation to obtain such parameter vari-

ability data, as well as data corresponding to immune

system components during drug treatment, demonstrates

the idea of model-directed experimentation, which pro-

vides support for further physiologically based model

development and a potential better understanding of the

experimental system as a whole.
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Appendix

The PK/PD model used in the present work is described by

Eqs. (3–23) and the corresponding compartmental structure

shown in Fig. 5. The equations are those from Friedman

et al. [24] and Lyons et al. [23] together with the modifi-

cations described in the ‘‘Materials and methods’’ section.

Pharmacodynamics: TB model

The TB model and drug-bacteria interactions are described

by Eqs. (3–13). The variable names, descriptions, and initial

a

b

c

Fig. 5 PK/PD model structure. a Intracellular (In) and extracellular

(Ex) bacterial populations and killing kinetics parameters. BE:

extracellular bacteria, BA: bacteria residing in activated macrophages,

BI : bacteria residing in infected macrophages, kmax: maximum kill

rate, EC50: half-maximum effect drug concentration, and c: Hill

coefficient. b Lung compartment with free rifampin drug concentra-

tion (fLUCLU) together with cell and cytokine populations (adapted

from Friedman et al. [24]). MR;MA; and MI: resting, activated, and

infected macrophages. I10; I12; I2; and Ic: IL-10, IL-12, IL-2, and IFN-

c. T4 and T8: CD4
þ and CD8þ T cells. c Rifampin PBPK model

compartments and blood flow (adapted from Lyons et al. [23])
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conditions used in the the present work are shown in Table

4. The parameter values that were not updated in the

Bayesian calibration are shown in Table 5, while the up-

dated parameters are the posterior mean values shown in

Table 2.

dBI

dt
¼ aIBI 1� B2

I

B2
I þ ðNMIÞ2

 !

þ k1n3MR

BE

BE þ c1

� k2NMI

B2
I

B2
I þ ðNMIÞ2

� n1k3BI

Ic

Ic þ c2
þ n2k4BA

I10

I10 þ c3Ic þ c4

� BI

kInmaxðfLUCLUÞc
In

ðECIn
50Þ

cIn þ ðfLUCLUÞc
In

ð3Þ

dBA

dt
¼ aABA � n2k4BA

I10

I10 þ c3Ic þ c4
þ n1k3BI

Ic

Ic þ c2

� n2lMABA � BA

kInmaxðfLUCLUÞc
In

ðECIn
50Þ

cIn þ ðfLUCLUÞc
In ð4Þ

dBE

dt
¼aEBE � k1n3MR

BE

BE þ c1
þ k2NMI

B2
I

B2
I þðNMIÞ2

� k5MABE þ n2lMABA�BE

kExmaxðfLUCLUÞc
Ex

ðECEx
50 Þ

cEx þðfLUCLUÞc
Ex

ð5Þ

dMI

dt
¼ k1MR

BE

BE þ c1
� k2MI

B2
I

B2
I þ ðNMIÞ2

� k3MI

Ic

Ic þ c2

þ k4MA

I10

I10 þ c3Ic þ c4
� lMIMI ð6Þ

dMA

dt
¼ � k4MA

I10

I10 þ c3Ic þ c4
þ k3MI

Ic

Ic þ c2
� lMAMA

þ k6MR

BE

BE þ c5

Ic

Ic þ c6
ð7Þ

dI10

dt
¼ k7MI

c7

I10 þ c7
� l10I10 ð8Þ

dI12

dt
¼ k8MA

c8

I10 þ c8
þ k9MR

BE

BE þ c9
� l12I12 ð9Þ

dI2

dt
¼ k10T4 � k11T4 þ k12T8ð Þ I2

I2 þ c10
� l2I2 ð10Þ

dIc

dt
¼ kuðtÞT4 þ kyðtÞT8
� � I12

I12 þ c11
� lcIc ð11Þ

dT4

dt
¼ kzðtÞMAI12 þ k13T4

I2

I2 þ c10
� lT4T4 ð12Þ

dT8

dt
¼ kxðtÞ MA þMIð ÞI12 þ k14T8

I2

I2 þ c10
� lT8T8 ð13Þ

The functions kiðtÞ; i ¼ fx; y; z; ug were implemented here

as kiðtÞ ¼ ki � hðt � tdelayÞ, where tdelay ¼ 14 days, and

hðxÞ ¼ 1ð0Þ for x� 0ðx\0Þ is a step function.

Pharmacokinetics: PBPK model

The PBPK model is described by Eqs. (14–23) with initial

conditions all set to zero. The subscripts, T, on the tissue

volumes, VT , drug concentrations, CT , blood flow rates,

QT , and tissue/blood partition coefficients, PT , denote ab-

breviations for the model compartments as; V: venous blood,

LU: lung, A: arterial blood, BR: brain, F: fat, SK: skin, K:

kidney, S: spleen,G: gut,GL: gut lumen, L: liver, LA: hepatic

artery,CR: carcass. Fractional tissue volumes,VTC, and blood

flow rates,QTC, were scaled to total values asVT ¼ VTC � BW
and QT ¼ QCC � BW0:75. BW is body weight, and QCC is an

allometric coefficient for cardiac output. Fractional clearance

was also scaled asCL ¼ CLC � BW0:75. Drug concentration in

plasmawas determined fromconcentration in venous blood as

Cplasma ¼ CV=BP. The parameter values that were not up-

dated in the Bayesian calibration are shown in Tables 6 and 7,

while the updated parameters are given in Table 2.

Table 4 PD model variables

and initial conditions (day 7

post-infection) used in the

present work. The variable

names, descriptions, and values

are from Friedman et al. [24]

Variable (units) Value

BI Density of bacteria residing in infected macrophages (cell/mL) 36,000

BA Density of bacteria residing in activated macrophages (cell/mL) 1000

BE Density of extracellular bacteria (cell/mL) 1000

MI Density of infected macrophages (cell/mL) 1800

MA Density of activated macrophages (cell/mL) 200

MR Density of resting macrophages (cell/mL) 5� 105

I10 Concentration of IL-10 (pg/mL) 100

I12 Concentration of IL-12 (pg/mL) 50

I2 Concentration of IL-2 (pg/mL) 10

Ic Concentration of IFN-c (pg/mL) 5

T4 Density of CD4þ T cells (cell/mL) 2� 105

T8 Density of CD8þ T cells (cell/mL) 8� 104
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VV

dCV

dt
¼
X

T

QTCT=PT � QCCV ;

T ¼ fBR;F;H;M;B; SK;K; L;CRg
ð14Þ

VLU

dCLU

dt
¼QC CV � CLU=PLUð Þ ð15Þ

VA

dCA

dt
¼QC CLU=PLU � CAð Þ ð16Þ

VT

dCT

dt
¼QT CV � CT=PTð Þ;

T ¼ fBR; F; H; M; B; SK; S; CRg
ð17Þ

VK

dCK

dt
¼QK CA � CK=PKð Þ � fR � CL � CA ð18Þ

VL

dCL

dt
¼QLACA þ QSCS=PS þ CGQG=PG � QLCL=PL ð19Þ

Table 5 Baseline PD model

parameters that were not

updated in the Bayesian

calibration procedure. The

parameter names, descriptions,

and values are from Friedman

et al. [24]

Parameter (units) Value

aE Growth rate of BE (1/day) 0

aA Growth rate of BA (1/day) 0

k2 Burst rate of infected macrophages (1/day) 0.81139

k3 Activation rate of infected macrophages (1/day) 0.023415

k4 Deactivation rate of activated macrophages (1/day) 0.28876

k5 Take up of BE by activated macrophages (mL/cell/day) 8:1301� 10�5

k6 Rate of activation of resting macrophages (1/day) 0.077068

k7 IL-10 production rate by infected macrophages (pg/mL/cell) 0.50610

k8 IL-12 production rate by activated macrophages (pg/cell/day) 0.28503

k9 IL-12 production rate by resting macrophages (pg/cell/day) 5� 10�4

k10 IL-2 production rate by T4 (pg/cell/day) 2:1873� 10�4

k11 Loss of IL-2 due to proliferation of T4 (pg/cell/day) 1:6383� 10�4

k12 Loss of IL-2 due to proliferation of T8 (pg/cell/day) 1:6383� 10�5

k13 Rate of proliferation of T4 by IL-2 (mL/pg/day) 0.16383

k14 Rate of proliferation of T8 by IL-2 (mL/pg/day) 0.016383

c2 Saturation for activation of infected macrophages (pg/mL) 50

c3 IFN-c inhibition for deactivation of activated macrophages 3

c4 Saturation for deactivation of activated macrophages (pg/mL) 1

c5 Saturation for activation of resting macrophages (cell/mL) 105

c6 IFN-c saturation for activation of resting macrophages (pg/mL) 20

c7 Saturation for IL-10 inhibition by IL-10 (pg/mL) 5000

c8 Saturation for IL-12 inhibition by IL-10 (pg/mL) 200

c9 Saturation for IL-12 production by resting macrophages (cell/mL) 5000

c10 Saturation for T cell proliferation by IL-2 (pg/mL) 50

c11 Saturation for IFN-c production by T cells and IL-12 (cell/mL) 50

n1 Average number of BI in an infected macrophage 20

n2 Average number of BA in an activated macrophage 5

n3 Threshold at which a resting macrophage becomes infected 10

lMA Death rate of activated macrophages (1/day) 0.015

lMI Death rate of infected macrophages (1/day) 0.2

l10 Decay rate of IL-10 (1/day) 7.23

l12 Decay rate of IL-12 (1/day) 1.188

l2 Decay rate of IL-2 (1/day) 1.188

lc Decay rate of IFN-c (1/day) 3

lT4 Death rate of T4 (1/day) 0.33

lT8 Death rate of T8 (1/day) 0.33

ku Rate of IFN-c production by T4 (pg/cell/day) 1:24� 10�4

ky Rate of IFN-c production by T8 (pg/cell/day) 1:24� 10�4

kz Rate of MHCII activation (mL/pg/day) 0.010532

kx Rate of MHCI activation (mL/pg/day) 0.005266
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� ð1� fRÞ � CL � QLACA þ QSCS=PS þ QGCG=PGð Þ=QL

ð20Þ

VG

dCG

dt
¼ QG CA � CG=PGð Þ þ kaAOD þ krAGL ð21Þ

dAGL

dt
¼ð1� fRÞ �CL � QLACAþQSCS=PSþQGCG=PGð Þ=QL

� kr þ kFð ÞAGL

ð22Þ
dAOD

dt
¼ � ka � AOD þ Fa � D �

X

n¼0

dðt � tnÞ ð23Þ

The summation in Eq. (14) is over all tissues draining

into the venous blood compartment; for liver,

QL ¼ QLA þ QS þ QGð Þ. The symbols AOD and AGL in Eqs.

(21–23) are the amounts of drug input to the gut and in the

gut lumen. The delta function in Eq. (23) describes pulsed

oral bolus dosing (D = dose), with times of administration,

tn; n ¼ 0; . . .; nmax � 1, with nmax the maximum number of

doses in the treatment interval.
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