
ORIGINAL PAPER

Modeling T cell responses to antigenic challenge

Dominik Wodarz

Received: 15 April 2014 / Accepted: 17 September 2014 / Published online: 1 October 2014

� Springer Science+Business Media New York 2014

Abstract T cell responses are a crucial part of the

adaptive immune system in the fight against infections.

This article discusses the use of mathematical models for

understanding the dynamics of cytotoxic T lymphocyte

(CTL) responses against viral infections. Complementing

experimental research, mathematical models have been

very useful for exploring new hypotheses, interpreting

experimental data, and for defining what needs to be

measured to improve understanding. This review will start

with minimally parameterized models of CTL responses,

which have generated some valuable insights into basic

dynamics and correlates of control. Subsequently, more

biological complexity is incorporated into this modeling

framework, examining different mechanisms of CTL

expansion, different effector activities, and the influence of

T cell help. Models and results are discussed in the context

of data from specific infections.

Keywords Virus dynamics � CTL � Mathematical

models � Computer simulations � Memory �
Correlates of control

Introduction

T cell responses are a crucial component of the immune

system in the fight against infectious diseases [1, 2]. T cells

can be broadly divided into CD4 positive helper T cells and

into CD8 positive killer T cells, also known as cytotoxic

T lymphocytes or CTL. CTL are immune cells that are

particularly important to combat viral infections. They act

by either killing infected cells or by inhibiting viral repli-

cation inside infected cells by non-lytic mechanisms. CD4

helper T cells have important regulatory roles and provide

stimuli that are required for successful CTL responses and

also B cell responses (immune cells that produce and secrete

antibodies). The interactions between T cells and infectious

agents are complex and multi-factorial, and it is difficult to

predict the outcome of such dynamics and to properly

understand the correlates of successful T cell mediated

control of infections. In this respect, mathematical models

have been very useful in complementing experimental data

[3–7]. They capture a set of biological assumptions and

follow them to their logical conclusions. They help to gain

novel insights into the dynamics, to understand unexplained

observations, and to estimate important kinetic parameters.

Mathematical models of T cell responses are the topic of

this review. Emphasis will be placed on the dynamical

interactions between viruses and CTL and the biological

messages that the models give rise to. The article will not

cover in detail the dynamics of CD4 T helper cell

responses, except in their role as helpers for the develop-

ment of successful CTL responses. CTL responses can be

modeled at various levels of biological complexity. Simple,

or minimally parameterized, models have been very useful

for understanding basic principles underlying the dynamics

of CTL responses, which would have been impossible to

achieve with experimentation alone. Such models, how-

ever, have important limitations because of their lack of

biological detail. In contrast, more complex models have

been explored that take into account more of the biology

that underlies CTL responses, although rising biological

complexity leads to a reduced ability to completely

understand the properties of the model, analytically or

D. Wodarz (&)

Department of Ecology and Evolutionary Biology and

Department of Mathematics, University of California,

321 Steinhaus Hall, Irvine, CA 92617, USA

e-mail: dwodarz@uci.edu

123

J Pharmacokinet Pharmacodyn (2014) 41:415–429

DOI 10.1007/s10928-014-9387-8



otherwise. There are advantages and disadvantages to

simpler and more complex models, and the exact structure

of the mathematical model will depend on the particular

question under investigation.

This review will start with a summary of basic virus

dynamics models upon which models for CTL responses

are subsequently built. First, the simplest types of CTL

models will be investigated, and important biological

implications that arise from them will be explored. Sub-

sequently, additional biological details will be incorporated

into this model, based on kinetic data that have become

available over the years. The models and topics explored

here are certainly only a subset of the large literature that

exists on modeling CTL responses, and the review serves

more as an introduction to the topic rather than as a com-

prehensive summary of all work that has been performed in

this context.

Virus dynamics

In order to study the dynamics of CTL responses with

mathematical models, we first need a modeling framework

to describe the basic dynamics between viruses and their

target cells. Virus dynamics can be described with a variety

of models, depending on the questions that are being asked

and on the degree of complexity that one seeks to capture

[4, 5, 7, 8]. Most models of virus infection, however, are

based upon the following framework [4, 5, 7, 8]. Consider

three populations: uninfected, susceptible target cells, S,

infected cells, I, and free virus, V. Susceptible target cells

are produced with a rate k, die with a rate d, and upon

contact with virus are infected with a rate b. Infected cells

produce free virus with a rate k, and free virus decays with

a rate u. The dynamics can be formulated by a set of

ordinary differential equations that describe the average

time-evolution of these populations. They are given as

follows.

dS

dt
¼ k� dS� bSV

dI

dt
¼ bSV � aI

dV

dt
¼ kI � uV

ð1Þ

In the equation for the virus population, the term—bSV

has been omitted because it is thought to be negligible

compared to the other terms. In many cases, it is realistic to

assume that the free virus population turns over signifi-

cantly faster than the infected cell population. In this case,

the model can be simplified by assuming the free virus

population to be in a quasi-steady state, giving rise to the

following formulation.

dS

dt
¼ k� dS� b0SI

dI

dt
¼ b0SI � aI;

ð2Þ

where b0 is given by b0 = bk/u. This system is character-

ized by two basic outcomes. (i) The virus population goes

extinct, and the system converges towards an equilibrium

where the number of susceptible target cells are at the

infection-free level. That is, S(0) = k/d; I(0) = 0. (ii) The

virus successfully established a persistent infection, and the

system converges to the following equilibrium. S(1) = a/b0;
I(1) = k/a - d/b0. Which outcome is observed depends on

a quantity called the basic reproductive ratio of the virus [4,

9]. It describes the average number of newly infected cells

generated by a single infected cell when placed in a pool of

susceptible target cells. In this model, it is given by

R0 = kb0/da. If R0 [ 1, a persistent infection is estab-

lished. In contrast of R0 \ 1, the virus population declines

to extinction. The concept of the basic reproductive ratio of

the virus is further explained in Fig. 1.

It is important to point out that this is only one out of

many different formulations that can be used to describe

virus dynamics. Even on the simplest level, without

incorporating further biological complexity, the model can

be formulated differently. For example, the infection term

b0SI can be altered such that it saturates in the number of

uninfected and/or the number of infected cells [10, 11].

While the basic outcomes tend to remain the same across

such model variations, the dynamics and the approach to

equilibria can be different. In the current context, we will

use model (2) as a basis for exploring T cell dynamics. The

reason is that it is analytically the simplest model and

suffices for demonstration of general principles.

Because model (2) will be used as a basis, the notation

will be changed for simplicity. Instead of b0, this parameter

will just be referred to as b from now on.

The simplest models of CTL dynamics

The process of CTL activation and expansion is very

complex, and no model so far has captured all aspects of

this process. For model formulation, the biological com-

plexity is reduced to a set of assumptions that are geared

towards examining specific questions. This section intro-

duces the simplest way to model CTL responses, and this

type of model has been successfully used to interpret bio-

logical data. Subsequent sections will introduce more

complicated models that introduce further biological

realism.

The model introduced here captures the CTL response in

a single variable, which is denoted here by Z. The model
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assumes that upon antigenic stimulation, the CTL prolif-

erate with a rate c. In the absence of antigenic stimulation,

the CTL die with a rate b. CTL are assumed to kill infected

cells upon contact with a rate p. The model is thus given by

the following set of ordinary differential equations, ana-

lyzed e.g. in [12].

dS

dt
¼ k� dS� bSI

dI

dt
¼ bSI � aI � pIZ

dZ

dt
¼ cIZ � bZ

ð3Þ

The parameter c has also been referred to as the CTL

responsiveness [12]. It can be thought of capturing the

many regulatory processes that drive the process of CTL

expansion. Note that naı̈ve CTL are produced by the thy-

mus with a certain rate. This production term has been

ignored in this model. Instead, it is assumed that a certain

number of naı̈ve CTL exist before the host becomes

infected, ready for expansion upon infection. This renders

the model analytically more tractable.

Model (3) is similar to Lotka–Volterra type predator–

prey models, where CTL correspond to predators and

infected cells correspond to prey [4]. How realistic this is

can be subject of debate and will be addressed further

below. However, on a basic level, this model has been

useful to shed light onto the dynamics of CTL responses to

viral infections.

Assume that the basic reproductive ratio of the virus

R0 [ 1, such that the virus can successfully establish an

infection. Now we observe two possible outcomes. If c (k/

a - d/b) \ b, then the CTL response fails to become

established. This is because the CTL responsiveness, c is

too low to ensure sustained CTL expansion. This outcome

is thus described by the following equilibrium expressions:

S� ¼ a

b
; I� ¼ k

a
� d

b
; Z� ¼ 0:

On the other hand, if c (k/a - d/b) [ b, then a sustained

CTL response develops, and the system converges to the

following equilibrium.

S� ¼ kc

dcþ bb
; I� ¼ b

c
; Z� ¼ cðbk� adÞ � abb

pðdcþ bbÞ

In a typical simulation of this system (Fig. 2), virus first

grows and stimulates the CTL. The CTL population

expands and fights the virus population. Damped oscilla-

tions occur and the system approaches its steady state.

Virus load at the steady state is determined by two

parameters. The rate of CTL proliferation or CTL

responsiveness, c, and the death rate of CTL in the absence

of antigenic stimulation, b. The higher the CTL respon-

siveness (higher value of c), and the longer the life-span of

(a)

(b)

Fig. 1 a Schematic of the basic

model of virus dynamics, model

(1). See text for details. b The

basic reproductive ratio of the

virus, R0. This measure

expresses the average number of

newly infected cells produced

by a single infected cell at the

beginning of the infection. If

R0 [ 1, the infection becomes

established. If R0 \ 1, the

infection goes extinct. If

R0 = 1, then one infected cells

on average gives rise to one

newly infected cell. This case is

a border case, and irrelevant for

practical purposes
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CTL in the absence of antigen (lower death rate of CTL,

i.e. lower value of b), the lower virus load. These are

thought to be properties of a CTL memory response, and

this concept is developed further in [13]. Because the

model is deterministic, virus load can never be reduced to

zero. Instead, however, it can be reduced to infinitely low

values which correspond to virus extinction in practical

terms (average virus load is reduced to less than one virus

particle).

The approach to equilibrium in model (3) can involve

pronounced oscillations, especially for larger values of c.

This kind of unstable dynamics is not typically observed in

data that track CTL responses and virus load over time. As

with the basic virus infection model (2), however, the

dynamics can depend on the exact formulation of the

model. Thus, variations of this basic model have been

explored. An example is saturated CTL expansion. This is

expressed by the following differential equation [14].

dZ

dt
¼ cIZ

eZ þ 1
� bZ:

The level at which CTL expansion saturates is expressed

in the variable e. The condition for the establishment of the

CTL response is the same as in model (3). If a sustained

CTL response becomes established, the system converges

to the following equilibrium.

S� ¼
bbðea� pÞ � pcd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½bbðea� pÞ � pcd�2 þ 4b2bekcp

q

2b2be

I� ¼ k� dS�

bS�

Z� ¼ bS� � a

p

This model has similar properties compared to model (3).

A higher CTL responsiveness, c, and a longer life-span of the

CTL in the absence of antigen (lower value of b), correlate

with lower virus load. In addition, however, virus load is also

a function of viral parameters, most importantly the replica-

tion rate of the virus, b. An increase in the parameter b leads

to an increase in viral load up to an asymptote. Also, if the

CTL-mediated anti-viral activity converges to zero (p ? 0),

then the number of CTL does not increase to infinity, but only

up to a defined value. Thus, inclusion of the saturation term

eliminates some biologically unrealistic features of model

(3). However, this comes at the cost of having more com-

plicated equilibrium expressions which make the model less

tractable by analytical means.

If saturation already occurs at lower numbers of CTL

(high value of e), it is possible to use a simpler version of

this model which is given by [15]

dZ

dt
¼ cI � bZ

In this model the rate of CTL expansion is simply pro-

portional to the amount of antigen, but not to the number of

CTL. The rate of CTL expansion is therefore weakened. In

this model, the CTL response can never go extinct. Instead,

if the CTL responsiveness, c, is low, the CTL persist at low

levels. Therefore, if R0 [ 1, there is only one stable equi-

librium, and this is given by the following expressions.

S� ¼
bba� pcd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½bba� pcd�2 þ 4b2bkcp

q

2b2b

I� ¼ k� dS�

bS�

Z� ¼ bS� � a

p

These equilibrium expressions have qualitatively the

same properties as those of the saturation model discussed
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Fig. 2 Simulation of the simplest model which describes CTL

dynamics, i.e. model (3). Virus growth is followed by CTL expansion,

and CTL-mediated activity reduces virus load. Subsequent damped

oscillations bring the system towards an equilibrium. The level of

virus load at this equilibrium shows how well the infection is

controlled. If virus load lies below a threshold, this indicates virus

clearance in practical terms. After expansion, the population of CTL

remains at an elevated memory level. Parameters were chosen as

follows. k = 1, d = 0.1, b = 0.1, a = 0.2, p = 0.5, c = 0.2, b = 0.1
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above. There are several other variations to describe CTL

dynamics, and they all lead to more realistic features

compared to model (3). Since they will not be used in this

article, however, they will not be discussed here, see e.g.

[16]. A note of caution: while these models do exhibit more

realistic behaviors, the saturation terms are arbitrary and

are not based on any specific biological detail. This has to

be kept in mind when interpreting modeling results.

Different CTL subpopulations

The models discussed so far capture the CTL in a single

population, Z. In reality, however, the population of CTL

can be divided into at least two subpopulations: CTL pre-

cursors or CTLp and CTL effectors or CTLe [17]. CTLp do

not have any antiviral activity, while CTLe do have anti-

viral activity. Naive CTL (which have never seen antigen

before), exist as precursors. When they become stimulated

by antigen, the population of CTLp expands. This culmi-

nates in the differentiation into CTL effectors which fight

the virus. Memory CTL are again precursor CTL without

antiviral activity. In order to attain antiviral activity, the

memory CTL need to be stimulated again.

Various attempts have been made to model effector and

memory cells explicitly. Initial work assumed that naı̈ve

CTL become an expanding population of memory precur-

sor cells, which in turn differentiate into effector CTL [13,

18–21]. This work was subsequently criticized because

researchers interpreted experimental data to paint a dif-

ferent picture [22]. According to this revised scenario,

naı̈ve cells activate and undergo clonal expansion to give

rise to effector cells first. Subsequently, they can either die

or differentiate into effector memory and central memory

cells [23, 24]. Such a model has different properties and is

characterized by different dynamics. In contrast to this

notion, however, a recent study re-examined this issue

using in vivo fate mapping and mathematical analysis to

distinguish between all possible CTL differentiation path-

ways. This study concluded that naı̈ve CTL give rise to

relatively slowly expanding central memory precursors,

which in turn give rise to faster expanding effector memory

cells and effector cells [25]. This result is much closer to

the assumptions made in the initial mathematical models

that distinguished between precursor and effector CTL [13,

18–21]. Importantly, this history highlights the difficulties

associated with rejecting models based on experimental

data. Different experimental studies can come to different

conclusions, and it is important to keep in mind the com-

plexity and consequent uncertainty of the biological sys-

tem. Furthermore, insights and interpretation of experiments

typically evolve over time, and this has to be kept in mind

for model interpretation.

With this in mind, the mathematical model will be

summarized that assumes a linear differentiation pathway

from native to memory precursor to effector cells. For

simplicity, the model includes two populations: the memory

precursors (W), and the effector CTL (Z). Naı̈ve cells are

not taken into account explicitly. Instead, the model

assumes that an initial number of CTL is present that have

just been activated from a naı̈ve state. The model is thus

given by the following set of ordinary differential equations.

dW

dt
¼ cIWð1� qÞ � bW

dZ

dt
¼ cqIW � hZ:

ð4Þ

Upon contact with antigen, CTLp proliferate, and this is

described by the term cIW. Differentiation into effectors is

described by cqIW. The parameter c describes the rate of

CTL expansion, as before. The parameter q is the proba-

bility that the precursor CTL will differentiate into an

effector CTL. CTL precursors die at a rate b, and effectors

die at a rate h. In this model, CTL memory lies in the

population of precursors, W. If the life-span of the CTLp is

long in the absence of antigen (low value of b), then the

CTLp population persists at elevated levels for prolonged

periods of time after acute infection, as observed in vivo.

On the other hand, the life-span of the effector CTL is

assumed to be short (relatively high value of h), as pro-

longed effector activity can have damaging consequences

for the host.

Assume that the basic reproductive ratio of the virus is

greater than one. A sustained immune response can become

established if c(1 - q)(k/a - d/b) [ b. In this case, the

system converges to the following equilibrium.

S� ¼ kcð1� qÞ
dcð1� qÞ þ bb

I� ¼ b

cð1� qÞ

W� ¼ Z�hð1� qÞ
bq

Z� ¼ bS� � a

p
:

According to these expressions, virus load is reduced

by a high responsiveness and a long life-span of the

memory CTLp. Therefore, this model indicates that the

memory phenotype of the CTL is crucial for virus control.

The level of virus load is independent from the parameters

of the effector CTL. These notions are further developed

in [13].

Note that the approach to the equilibrium can be more

complex compared to the simpler models discussed earlier

in this chapter. For low values of b (long life-span of CTL
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in the absence of antigen), the system takes a long time to

equilibrate. After an initial transient phase, the dynamics

lead to a quasi-equilibrium y^ at which virus load decays

only at a very small rate. Virus load at the quasi-equilib-

rium is higher than at the true equilibrium, but has similar

properties. Hence, virus load at the quasi-equilibrium can

be approximated by y^ ¼ ay�, where a[ 1. After a time

period of 1/b, the system approaches the true equilibrium,

y*. This can have implications for the control of persistent

infections at low levels [13].

Memory CTL and protection against re-infection

Model (4), distinguishing between memory and effector

CTL, can also be used to study correlates of protection

against re-infection [21], i.e. to identify which properties

of the response do or do not contribute to protection.

Immunological memory is generated when a relatively

large population of memory cells remains after the

infection has been resolved. This phenomenon is also

observed with CTL, and the ability of memory cells to

protect against re-infection has been discussed [26–28]. In

model (4), we can ask to what degree an elevated number

of memory CTL (high levels of W) protects against initial

virus growth upon infection. The number of effector cells

is not assumed to be elevated because long-term memory

is thought to persist in the precursor population. Since

effector cells are required to combat the infection, the

virus will be able to grow without inhibition at the

beginning of the secondary challenge. Thus, protection

against secondary challenge depends mainly on the

amount of time required for the CTL to migrate to the

focus of infection and to differentiate into effector cells.

In our model, this is captured in the parameter cq, the rate

of differentiation into effector cells. Figure 3 shows the

effect of increased memory CTL abundance on the size of

the peak virus load upon secondary challenge, assuming

different rates of effector cell production (cq). Increased

memory CTL levels are only protective if effector func-

tion is produced sufficiently fast (large cq) once the

pathogen has entered the host. Strikingly, if there is a

longer time delay in the production of effector function

(small cq), increasing the abundance of memory CTL

even by four orders of magnitude does not lead to a sig-

nificant reduction of the peak virus load and thus of

clinical symptoms (Fig. 3). This might contribute to the

finding that CTL-based vaccines have not been very

effective in a variety of different viral infections, a

prominent example being HIV [29].

Programmed CTL proliferation

The models discussed so far assumed that CTL require

continuous antigenic stimulation for cell division and

proliferation. That is, if antigenic stimulation was with-

drawn, the CTL would stop to proliferate. However, this

notion might not to be true. Instead, a single encounter

with antigen might trigger a program of CTL expansion

and differentiation which is independent from further

antigenic stimulation events [30–33] (Fig. 4). This is

referred to as programmed proliferation. Even if antigen is

withdrawn at any time during the expansion process, the

CTL proliferation and differentiation program can still be

completed. If this process does not result in the clearance

of the pathogen, the memory CTL are re-activated and

further expansion occurs. It has been argued that the

existence of the program significantly alters the properties

of CTL dynamics, and that conclusions reached by earlier

models might have to be revised. Hence, it is important to

construct a model of programmed CTL proliferation and

to compare its properties to those of the continuous

stimulation models discussed above. This is done as

follows

The mathematical model which describes programmed

CTL proliferation [34, 35] contains the following variables:

resting and memory CTL, M; newly activated CTL, M0;

activated CTL which have undergone i (i = 1…n) cell

divisions, Mi; and effector CTL, Z. It is given by the fol-

lowing set of differential equations.

Fig. 3 Protection against secondary challenge after virus clearance.

Plots are derived from model (4). Peak virus load upon secondary

challenge decreases with an increase in the initial number of memory

CTLp. However, this decrease in peak virus load is only significant if

the rate of effector cell production is fast and the delay between virus

entry and effector cell production is minimal (expressed in the value

of q). Baseline parameters were chosen as follows. k = 10, d = 0.1,

b = 0.001, a = 0.5, p = 1, c = 0.1, b = 0.001, h = 0.1

420 J Pharmacokinet Pharmacodyn (2014) 41:415–429

123



dZ

dt
¼ 2rmn�1 � cZ � dZ;

dMn�1

dt
¼ 2rMn�2 � rMn�1;

. . .

dM1

dt
¼ 2rM0 � rM1;

dMn�1

dt
¼ 2rMn�2 � rMn�1;

dm1

dt
¼ 2rM0 � rM1;

dM0

dt
¼ aIM � rM0;

dM

dt
¼ cZ � aIM � eM:

ð5Þ

We start with a population of resting CTL, denoted by M.

Upon antigenic encounter, these cells become activated at a

rate aIM. These activated cells are denoted by M0. Following

activation, the CTL undergo n rounds of proliferation, and

this is independent from antigenic stimulation. Proliferation

occurs with a rate 2rMi, where Mi denotes CTL which have

undergone i divisions (i = 1…n -1). The factor 2 is inclu-

ded to describe division. The nth division gives rise to

effector cells, denoted by Z. They can kill infected cells.

Effectors die at a rate dZ and differentiate back into memory

cells at a rate !Z. Memory cells are again denoted by M,

since they are resting. Thus, in contrast to model (4), this

model (5) assumes that memory cells can be generated from

effectors, and we will compare the resulting model properties

with those of the previously explored models. If the virus is

not cleared after this first round of programmed proliferation,

the memory cells are re-activated according to the same

principles as described above and undergo another round of

programmed proliferation. The only difference is that

memory cells are characterized by an elevated activation and

proliferation rate compared to naive cells (higher values of a
and r, respectively).

The acute infection dynamics are obviously different in

the program model compared to those observed in models

which assume continuous antigenic stimulation. This is

because during this phase, the response is on autopilot, and

is not influenced by antigen. The acute phase of infection

can be defined by the first round of programmed CTL

proliferation which ends with the generation of memory

cells (that is, memory cells are not restimulated). Here we

concentrate on the long-term dynamics. In this case, there

is persistent infection and restimulation of memory cells.

That is, the virus is not cleared after the first round of

(i)

antigen

… programprogram program program
+

Naïve
CTLp

Effector CTL

Actvated
CTLp Memory

CTL

Constant rate of division, independent from antigenic stimulation

(ii)

++ + + …

antigenantigenantigen antigen antigen

+

Memory
CTL

Naïve
CTLp

Actvated
CTLp Effector CTLrate of CTL expansion depends on

antigenic stimulation

Fig. 4 Schematic representations of i the programmed proliferation and ii the continuous stimulation concepts
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programmed proliferation. The properties of the program

model will be compared to those of the models which

assume continuous antigenic stimulation in this context.

Recurring rounds of CTL proliferation will be induced,

and the system will eventually converge towards a steady

state. Virus load at this steady state determines the degree

of virus control.

The equilibrium expressions are given as follows.

S� ¼ aþ gI�M�

b
;

I� ¼ e
2nc
cþd� 1
� �

a
;

M� ¼ 1

gI�
k

d=bþ I�
� a

� �

;

Z� ¼ gI�M�

p
;

M�0 ¼
aI�M�

r
;

M�i ¼ 2iM�0 ; 1\i\n� 1;

where g ¼ ð2npaÞ=ðcþ dÞ.
Virus load is determined by a number of immunological

factors. A high activation rate of memory CTL (high value

of a) and a long life span of memory CTL in the absence of

antigen (low value of e) contribute to low virus loads. Also,

the higher the number of CTL proliferations (higher value

of n), the lower virus load. The number of CTL at the

steady state is mainly determined by the rate of anti-viral

activity, p. The lower the rate of CTL-mediated anti-viral

activity, the higher the number of CTL. Interestingly, these

properties are almost identical to the properties derived

from mathematical models which assume that CTL pro-

liferation requires continuous antigenic stimulation. In fact,

the continuous stimulation models are a special case of the

programmed proliferation model in which the program is

executed with a very fast rate. This is shown mathemati-

cally as follows.

Assume that upon antigenic stimulation, the program is

executed at a very fast rate (high values of r), and that the

turnover of activated and effector CTL is significantly

faster than the turnover of memory cells. In this case, the

programmed proliferation model can be reduced to a single

equation for the memory CTL. It is given by

dM

dt
¼ c2n

cþ d
� 1

� �

aIM � eM:

This is basically the same equation as the simplest

continuous stimulation model (3), where the CTL respon-

siveness is given by

c ¼ c2n

cþ d
� 1

� �

a:

Therefore, the single CTL population in the continuous

stimulation model should be considered as the population

of memory CTL. The effector CTL population can be

assumed to be in quasi steady state and is given by

Z ¼ 2naIM=ðcþ dÞ. Consequently, the rate of killing is

described by p0I2M, where p0 ¼ 2na=ðcþ dÞ. The killing

term is proportional to the square of virus load (I) because
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Fig. 5 Comparison between the programmed proliferation model (5)

and the continuous stimulation model (3). We distinguish between

virus dynamics in the presence of a strong CTL response (which can

lead to low virus loads and clearance), and a weak CTL response

which results in persistent infection. i If the response is strong,

programmed proliferation leads to higher peak virus loads during

acute infection, but leads to more efficient clearance compared to the

continuous stimulation scenario. In the continuous stimulation model,

virus load converges only very slowly to its equilibrium value, and

this hinders clearance. The reason is that effector production relies on

continuous encounter with antigen which is limiting at low loads. ii If

the CTL are weak and persistent infection is established, both the

programmed proliferation model and the continuous stimulation

model have similar properties: they converge to the same equilibrium.

The program model takes slightly longer to converge to the

equilibrium because there is delay between induction of the response

and the generation of effectors. Parameters were chosen as follows.

(i) k = 10; d = 0.1; b = 0.05; a = 0.1; r = 5; c = 1; a = 0.01;

d = 0.5; p = 0.2; e = 0.001; (ii) k = 10; d = 0.1; b = 0.05;

a = 0.1; r = 5; ! = 0.1; a = 0.005; d = 1; p = 0.1; e = 1
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the generation of effector cells from memory cells is pro-

portional to virus load. In the simple continuous stimula-

tion model (3), the killing term is only linearly proportional

to virus load because the model does not distinguish

between memory and effector CTL. The more complicated

continuous stimulation model (4), which distinguish

between memory and effector CTL, has the killing term

essentially proportional to the square of virus load.

Given the similarities in the steady state properties of

the programmed proliferation and the continuous stimula-

tion models, we ask the question why programmed pro-

liferation exists. The answer is that the equilibrium

outcome of the model does not tell the whole story (Fig. 5).

Instead, the dynamical approach to the equilibrium pro-

vides interesting insights. We compare the properties of

programmed proliferation, model (5), to those of continu-

ous antigenic stimulation model (3). We distinguish

between two scenarios. First we assume a strong CTL

memory response which gives rise to a very low virus load

at equilibrium (practically clearance). Then we assume a

weaker CTL response which correlates with the persistence

of higher virus load at equilibrium.

Assume that the CTL response is strong (Fig. 5i).

Consider the continuous stimulation model first. Initially,

the CTL response can be very efficient at stopping viral

growth and reducing virus load. This is because higher

virus load increases the rate of CTL proliferation. As virus

load declines, however, the effectiveness of the response

becomes greatly diminished. This is because generation of

effectors requires constant antigenic stimulation, and the

amount of antigen is low. Consequently, the dynamics

enter a phase where virus load settles at a level which is

significantly higher than the predicted equilibrium and

where virus load declines at a very slow rate (Fig. 5i,

quasi-equilibrium discussed above). Now, consider the

programmed proliferation model. In this case, CTL divi-

sions are independent from antigenic stimulation. This

provides an initial disadvantage: as virus load grows, the

increased level of antigenic stimulation does not result in

faster CTL expansion and the virus can more easily grow to

high levels and cause acute pathology. As virus load is

reduced to low levels by the CTL, however, the CTL can

keep dividing despite the small amounts of antigenic

stimulation. Thus, in contrast to the continuous stimulation

model, production of effectors does not slow down

abruptly as virus load drops. Consequently, CTL-mediated

pressure is maintained at low virus loads and this results in

efficient reduction of the virus population to very low

levels or extinction. Thus, clearance can occur before the

system converges to an equilibrium (Fig. 5i). According to

these arguments, we observe a tradeoff between the ability

of the CTL to clear an infection and the ability of CTL to

reduce acute phase symptoms. If the CTL are more effi-

cient at virus clearance, they are less efficient at containing

acute virus load, and vice versa. Thus, to optimize the

fitness of the host, there should be enough programmed

divisions to ensure clearance, but no more such that acute

pathology is limited. We hypothesize that the 7–10 anti-

gen-independent CTL divisions observed in experimental

data represent this optimum.

Now assume a weaker CTL memory response (Fig. 5ii).

In this case, equilibrium virus load is higher which can

correspond to persistent infection. The same equilibrium is

reached, both in the continuous stimulation and the pro-

grammed proliferation model. The outcome of the

dynamics does not depend significantly on these model

differences. Thus, if the CTL fail to resolve the infection,

the continuous stimulation and the programmed prolifera-

tion models give rise to similar predictions.

In summary, the process of programmed CTL prolifer-

ation can enhance the ability of the response to clear viral

infections because it allows elevated CTL effector activity

to persist at low virus loads. In the context of persistent

infections, however, the properties of programmed prolif-

eration and continuous stimulation are very similar.

Therefore, it is likely that results obtained from continuous

stimulation models regarding CTL responses against per-

sistent infections remain robust in the context of pro-

grammed proliferation. Many of the results which are

based on continuous stimulation models are therefore valid.

Lytic versus non-lytic effector activity

The model explored so far assumed that CTL act by killing

infected cells. It is clear, however, that CTL also secrete

soluble factors that can prevent infection or inhibit viral

replication inside cells [36–39]. In the context of some

infections, such non-lytic CTL activity has been thought to

be more important than the lytic component [40–42]. In

fact, non-lytic CTL activity can be vital if CTL-induced

pathology should be prevented in the context of viral

infections such as in Hepatitis B and C virus infections [43,

44].

The following describes a modification of model (3) to

include both lytic and non-lytic CTL activity [15]. As

before, CTL-mediated killing is described by the term pIZ.

In addition, it is now assumed that CTL reduce the rate of

viral replication, and this is described by the expression

bSI/(qZ ? 1). Hence, the parameter p expresses the

strength of the lytic component, while the parameter q

expresses the strength of the non-lytic component of the

CTL response. The model is thus described by the fol-

lowing set of differential equations.

J Pharmacokinet Pharmacodyn (2014) 41:415–429 423

123



ds

dt
¼ k� dS� bSI

qZ þ 1

dI

dt
¼ bSI

qZ þ 1
� aI � pIZ

dZ

dt
¼ cI � bZ

ð6Þ

The model has similar properties as model (3), so a full

analysis will not be provided here. Instead, some biological

insights that arise from the model will be discussed. When

discussing virus control so far, the focus was on virus load,

and to what degree CTL responses can reduce the amount

of virus. Another aspect, however, can be equally impor-

tant, and this is the number of tissue cells that remain

during the infection and during the activity of the CTL

response. If CTL-induced killing significantly reduces the

number of tissue cells, pathology can be observed, brought

about directly by CTL activity. This is called CTL-induced

pathology or immunopathology [45, 46]. Hence, in the

current context, the number of tissue cells that remain

during a CTL response at equilibrium (as a measure of

pathology) will be considered in addition to virus load. The

distinction will be made between non-cytopathic viruses

(those that do not reduce the death rate of target cells) and

cytopathic viruses (those that cause significant cell death as

a consequence of replication).

First consider non-cytopathic viruses. The most famous

example is lymphocytic choriomeningitis virus (LCMV),

which does not kill their target cells at all [47–50]. Similar

considerations apply to viruses that cause only limited

amounts of cell death as a consequence of replication. The

outcomes for this case are shown in Fig. 6. According to

this picture, both lytic and non-lytic responses can suc-

cessfully reduce virus load. However, the effect on the total

number of target cells depends on the replication rate of the

virus. If the viral replication rate is relatively low, no sig-

nificant tissue pathology occurs whether non-lytic respon-

ses accompany the lytic activity or not (Fig. 6i). The

situation is different for faster replicating viruses (Fig. 6ii).

Now, pronounced tissue pathology can be observed if

CTL-mediated lysis is the only activity exerted by CTL.

Faster replication leads to the infection of more cells, and

ongoing CTL-mediated killing leads to CTL-induced

pathology. This effect is alleviated if CTL also act by non-

lytic mechanisms. The non-lytic activity serves to slow

down the rate of viral replication, and hence to avoid CTL-

induced pathology. Therefore, for faster replicating non-

cytopathic or weakly cytopathic viruses, a combination of

lytic and non-lytic activity is required to successfully

control the virus. Note, that while non-lytic activity can

come from CTL, a similar effect could in principle also

come about by a combination of lytic CTL and antibodies.

For LCMV, the soluble cytokine IFN-! has been shown to

reduce the rate of viral replication. With the slowly repli-

cating Armstrong strain, analysis revealed that although

IFN-!-deficient mice infected with this strain did not show

symptoms of disease, the infection was not controlled

completely and significant levels of virus could be dem-

onstrated in spleen and lungs months after infection [51,

52]. In these mice, an equilibrium was established

describing persistent LCMV replication controlled by an

ongoing CTL response. Because virus load was kept at

relatively low levels, pathology was virtually absent [51–

53]. This observation is in agreement with the theory

presented here. Because the virus replicates at a slow rate,

the model predicts that lack of non-lytic effector mecha-

nisms will only result in a small loss of virus control and

lack of severe immunopathology. The situation is different

with faster replicating LCMV strains. IFN-!-deficient

mice infected with LCMV Traub quickly lose control of

the infection despite the presence of efficient lytic effector

mechanisms. In contrast to wild-type mice, a relatively

large fraction of infected IFN-! -/- mice succumbed to

immunopathology caused by a lytic CTL response [53].

This is, again, in agreement with theoretical predictions.

Because the virus replicates at a fast rate, soluble factors

are required to significantly slow down the replication

kinetics of the virus to avoid immunopathology. The

absence of soluble mediators augments CTL-induced tissue

damage and death of the host.

Next, consider viruses that are more strongly cytopathic

(Fig. 7). Now, either a lytic response alone, or a non-lytic

response alone can successfully fight the infection without

causing significant levels of tissue pathology. A cytopathic

virus kills the target cells at a relatively fast rate and thus

causes pathology by itself in the absence of CTL. In such a

scenario, an increase in the death rate of infected cells by

CTL likely lowers the degree of pathology, because the

death rate of infected cells increases sufficiently such that

the overall spread of the virus becomes slow. For an in

depth analysis of the relationship between the virus-

induced death rate of infected cells, the CTL-induced death

rate of infected cells, and pathology, see [54]. An example

of a cytopathic virus is influenza infection in mice [55].

Recovery from murine influenza virus infection has been

shown to require intact T cell responses [55–57]. More

specifically, experiments have revealed that both CD4?

and CD8? T cells can promote recovery through inde-

pendent mechanisms [55–57]. In the absence of CD8? T

cells, the infection can be resolved by a CD4? T-cell-

dependent antibody response [58]. Absence of CD4? T

cells or B cells also does not result in loss of virus control

[59, 60]. Experiments have shown that CD8? T cells can

resolve the infection through a lytic mechanism, mediated

either by perforin or Fas [61]. The result that both lytic and

non-lytic effector mechanisms can independently clear
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influenza infection in mice is in agreement with the theo-

retical considerations presented here. Because the virus is

cytopathic, both a sufficient increase in the death rate of

infected cells and a decrease in the rate of viral replication

are expected to have a beneficial effect on the host and lead

to resolution of the disease. With cytopathic viruses, a

collaboration between both types of effector is less likely to

be required to ensure resolution of the disease, especially if

the virus challenge is not overwhelming.

CD4 T cell help and CTL responses

In the model explored so far, the rate of CTL expansion

was determined by the CTL responsiveness parameter c.

This parameter can be thought to phenomenologically

include all the factors that contribute to the regulation of

CTL responses. A particularly important regulatory com-

ponent are CD4 T helper cell responses [62–65]. T helper

cells interact with antigen presenting cells (APC) to acti-

vate them, and the activated APCs interact and activate

CTL. This process results in the activation of the CTL and

in the consequent response. The importance of helper T

cells is evident in diseases in which this help is compro-

mised. Most prominently, this occurs in human immuno-

deficiency virus (HIV) infection, where the virus infects

and kills helper T cells. The interactions between helper T

cells, APCs, and CTL have been formulated in terms of

kinetic models, and ODE formulations have been derived

[66]. According to this, the CTL dynamics explicitly taking

into account T cell help can be formulated by the following

equation.

dZ

dt
¼ ceXIZ

1þ eX
� bZ; ð7Þ

(i) Non-cytopathic, slowly replicating virus (ii) Non-cytopathic, fast replicating virus
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Fig. 6 Control of non-cytopathic viruses by lytic and non-lytic

effector mechanisms. i Slowly replicating virus. Lytic effectors alone

can achieve a similar level of virus control as a combination of lytic

and non-lytic effectors. ii Fast replicating virus. Lytic effectors alone

cannot control the infection, because it results in immunopathology.

Cooperation of lytic and non-lytic effector mechanisms can control

the infection, because non-lytic mechanisms slow down the overall

replication kinetics of the virus. Note that the effect of a non-lytic

response alone has not been plotted. This is because we consider non-

cytopathic viruses which do not kill their target cells. Since the life

span of infected cells is not reduced, absence of lysis is unlikely to

result in virus control in a short period of time. Plots are based on

model (6). Parameters were chosen as follows: k = 10; d = 0.1;

a = 0.1; q = 10; p = 1; c = 0.1; b = 0.1. For i b = 0.01; For ii
b = 0.1
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where the variable X denotes the number of helper T cells.

The rate of CTL activation and proliferation is thus a sat-

urating function of the number of helper cells with 1/e as

the half saturation constant. In the presence of large

amounts of help, the rate of CTL proliferation approxi-

mates cIZ. The level of help is given by the number of

helper cells, X, as well as the efficacy of those helper cells,

e. The higher the efficacy of help, e, the lower the number

of helper cells, X, required to induce maximal stimulation

of the CTL response.

In this model, the CTL response becomes established if

eX [ b

c~I�bð Þ, where ~I denotes virus load in the absence of a

CTL response. In other words, the CTL response only

becomes established if the amount of CD4 cell help lies

above a critical threshold. This result makes sense in that

an immune response is wasted when triggered by too low

concentrations of antigen. Equilibrium virus load in the

presence of CTL is given by Î ¼ bð1þeX̂Þ
ceX̂

. As shown in

Fig. 8, an increase in the amount of help reduces virus load

down to an asymptote, at which the helper-induced stim-

ulation of the CTL response has reached its maximum. At

the asymptote, Î ¼ b=c:

Conclusion

The article has reviewed mathematical models of CTL

responses, starting with the simplest possible model and

introducing further biological realism into this framework.

While this provides a flavor of the mathematical approaches

to studying T cell dynamics, this is by no means exhaustive.

More complex models have been analyzed in a variety of

settings. Examples are given as follows. Some modeling

approaches included an explicit description of the process of

antigen-driven T helper cell expansion [67, 68]. Other

models took into account multiple CTL clones directed

against multiple viral epitopes, with implications for

explaining the phenomenon of immunodominance [69, 70].

CTL models are often analyzed in the context of virus evo-

lution, in particular, virus evolution of antigenic escape from

CTL responses [71–74]. Similarly, the impairment of T cell

responses in viral infections, especially HIV, has been

investigated with a variety of mathematical models [20, 67,

75, 76]. The latter studies have also been used to explore

implications for using drug therapies to strengthen immunity

against viruses, which could improve the overall ability to

control infections. These different modeling approaches have

also highlighted complex and important evolutionary

dynamics that might be crucial in explaining the develop-

ment of disease caused by human pathogens. In addition,

work has been performed to quantify various aspects of CTL
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Fig. 7 Control of a virus characterized by a high degree of

cytopathicity relative to its replication rate. Both lytic and non-lytic

effector mechanisms can in principle independently control the

infection. Plots are based on model (6). Parameter values were chosen

as follows. k = 10; d = 0.1; a = 0.4; b = 0.01; q = 10; p = 1;

c = 0.1; b = 0.1

Fig. 8 Effect of CD4 cell help on virus load, according to model (7).

Virus load decreases asymptotically with increasing degrees of help.

Virus load approaches a value of b/c for high degrees of help.

Parameters were chosen as follows. c = 1, b = 0.1, e = 0.01
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dynamics, e.g. [77–88]. In general, the work developed in

this context has shown that mathematical analysis can be a

very important tool for gaining insights into the basic prin-

ciples of T cell dynamics, for interpreting experimental data,

and for defining what needs to be measured to improve

understanding. At the same time, many aspects underlying

these models remain uncertain, and this limits the their

power. The biology of T cell responses is complex, and

several processes that drive T cell activation and expansion

are not well understood, Obviously, model predictions

depend on underlying assumptions, and this has to be kept in

mind when interpreting results from mathematical studies.

As progress is made in the field, the knowledge of the bio-

logical processes that drive T cell dynamics can change and

shift, as highlighted in this review. Thus, both modeling and

experimental results should be viewed as a work in progress

that can potentially change as more data become available.
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