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Abstract The immune system is designed to protect the

organism from infection and to repair damaged tissue. An

effective response requires recognition of the threat, the

appropriate effector mechanism to clear the pathogen and a

return to homeostasis with minimal damage to self-tissues.

T cells play a central role in orchestrating the immune

response at all stages of the response and have been the

subject of intense study by both experimental immunolo-

gists and modelers. This review examines some of the more

critical questions in T cell biology and describes the latest

attempts to address those questions using approaches that

combine mathematical modeling and experiments.
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Introduction

The main function of the immune system is to protect the

organism from infection with pathogens. This is achieved

by an elaborate network of cells and secreted molecules

that together coordinate a successful immune response.

Three main stages of an immune response can be charac-

terized; (1) recognition i.e. is the perceived threat a danger

to the organism?; (2) removal of the pathogen that is

achieved via a variety of effector mechanisms and (3)

return to homeostasis which involves contraction of

expanded immune cell populations and repair of damaged

tissues. Each of these stages has generated a great deal of

interest from both experimental immunologists and

modelers.

Recognition of a pathogen occurs at two main levels.

Cells of the innate immune system, such as dendritic cells

(DC), macrophages, natural killer (NK) cells possess

receptors for pathogen associated molecular patterns

(PAMPs) such as lipopolysaccharide (LPS), bacterial

DNA, viral RNA and others. These pattern recognition

receptors (PRR) include toll-like receptors (TLR) [1, 2],

NOD-like receptors (NLR) [3], RIG-I-like receptors (RLR)

and C-type lectin receptors (CLR) [4], which are specific

for various pathogen-specific structures. An additional

stimulus is required to fully activate the innate immune

system in the form of damage associated molecular pat-

terns (DAMPs) or alarmins, which are released from dead

or dying cells and are indicative of an invasive pathogen.

Many DAMPs, including HMGB1, uric acid, ATP, DNA,

bind to the same PRR as a PAMP and may initiate the same

inflammatory responses [5]. Thus, the innate immune

system recognizes a pathogen invasion and detects tissue

damage. The second level of recognition is mediated by

cells of the adaptive immune system, namely T and B cells,

which express clonally restricted receptors that have a high

degree of specificity for their target antigens. Each B and T

cell expresses a unique receptor that displays a high degree

of specificity and sensitivity. As discussed in more detail

below the recognition of antigen by T cells, mediated by

the T cell receptor (TCR), has been a topic of intense study.
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DCs activated by pathogens in the peripheral tissues

migrate to draining lymph nodes (LNs) where they present

antigen to specific B and T cells. B cell receptors (BCR)

recognize antigens in their natural conformation, whereas

the TCR recognizes peptide fragments of the same antigen

bound in the groove of major histocompatibility complex

(MHC) molecules. Once BCR and TCR encounter their

specific antigen, an adaptive immune response is initiated

which results in the expansion of specific cells, differen-

tiation into appropriate effectors, and the generation of B

and T cell memory [6, 7].

The immune system has developed a wide array of

effector mechanisms to deal with specific pathogens, since

infection with extracellular bacteria, viruses, parasites such

as Helminth worms, etc., pose very different challenges.

Thus, T cells have evolved the ability to differentiate into

several different subsets whose effector functions are best

suited to deal with a specific pathogen threat. T helper

(Th)1 cells secrete interferon (IFN)-c, which is required for

optimal macrophage activation, cytotoxic T cell maturation

and for infections caused by intracellular organisms such as

viruses and certain bacteria. Th17 cells secrete interleukin

(IL)-17, which acts to attract neutrophils to the site of an

infection with extracellular bacteria. Th2 cells secrete IL-5,

IL-4 and IL-13, which activate eosinophils in infections

with Helminth worms. How does the naı̈ve T cell deter-

mine which type of pathogen is causing an infection? DCs

migrating from the site of infection carry this information

to the naı̈ve T cell, because the interaction of pathogens

with specific PRR on the DC triggers the production of

unique sets of cytokines that drive the differentiation of

specific Th subsets. For example, IL-12 induced following

interaction with several TLRs drives Th1 differentiation,

IL-23 produced following activation of other PRRs stim-

ulates Th17 differentiation.

Successful elimination of a pathogen depends on the

correct choice of effector response, and there are instances

where the wrong choice is made and the infection is not

cleared. An example of this is the lepromatous form of

Mycobacterium leprae infection, which causes leprosy [8].

In these cases an inappropriate Th2 response is generated

that fails to control the growth of this intracellular bacte-

rium and there is widespread bacterial dissemination

resulting in nerve damage. In contrast infected individuals

who generate Th1 responses to this pathogen develop the

tuberculous form of the disease, which is characterized by

low bacterial burden and a granulomatous reaction that

walls off the infection. Damage to nerves still occurs in this

form of leprosy but it is caused by the immune response

and the bacterial growth is controlled.

The case of tuberculous leprosy highlights the impor-

tance of the return to homeostasis. Even when a Th1

response is initiated to respond to Mycobacterium leprae

infection macrophages are unable to completely clear the

infection and a persistent and chronic infection ensues. It is

important to prevent over-activation of effector cells and to

turn these off when the pathogen has been cleared. This is

achieved through immunosuppressive mechanisms,

including the generation of both cytokines such as IL-10,

IL-27 and TGF-b, and regulatory T (Treg) cells [9–11].

Defects in Treg and IL-10 may lead to complete clearance

of a pathogen but, often, with severe immunopathological

consequences [12, 13].

Thus, the regulation of the immune response at all of

these stages is critical to ensure the elimination of invading

pathogens while preventing excessive immune-mediated

tissue damage [14]. When these regulatory mechanisms fail

disease may result. For example a defect in the ability of

immune system to distinguish between an invading and

dangerous pathogen and self-tissues can result in autoim-

mune disease, such as type 1 diabetes or multiple sclerosis.

Excessive immune recognition of commensal bacteria in

the gut can lead to inflammatory bowel diseases, such as

Crohn’s disease and ulcerative colitis. Early on we realized

the value of mathematical and computational modeling in

attempting to understand these complex interactions [15–

18]. Experimentalists tend to examine the role of a par-

ticular protein or cell in the system by creating model

systems in which the protein of interest is either removed

from the system, by gene targeting, or over-expressed. This

reductionist approach has yielded many important insights

but also has limits. For example when the cytokine IL-2

[19], an important growth factor for T cells in vitro, was

knocked out in a mouse model, no defects in T cell pro-

liferation in vivo were observed [20]. Rather, the mice

developed signs of autoimmunity and excessive T cell

activation [21], which was subsequently attributed to the

non-redundant role of IL-2 in the development and main-

tenance of Treg cells [22, 23]. There are many such

examples, both in and out of the literature, in which tar-

geted gene deletion in a mouse fails to show the expected

phenotype. These findings reveal both a great deal of

redundancy in the immune system, such that other factors

can replace one that is missing, and also pleiotropy, as

demonstrated by the IL-2 example, where previously

unknown functions of a protein are revealed. Predicting the

effect of such manipulations on phenotype is difficult

because it involves the interplay of complex and competing

mechanisms, such as feedback loops and competition that

resolve in a context-dependent manner [24]. Computational

modeling allows us to build representations of the system

as a whole, which can be used to test hypotheses and

provide predictions that can then be tested experimentally.

There are many other important and interesting ques-

tions that are covered in other contributions to this issue,

and in this article we are choosing to focus on issues related
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to T cell recognition, activation and regulation. These are

topics that are pivotal to the immune response, due to the

central role that T cells play in orchestrating the immune

response and these have motivated a large number of

modeling studies. This review will also highlight how

technological advances in the study of immune responses

are providing new quantitative data that inform computa-

tional models and may lead to new insights into T cell

dynamics and function.

Big questions in T cell immunology

T cell recognition of antigen has been a subject of intense

study for many years and the discovery of MHC restriction

[25] led to intense speculation concerning the nature and

structure of antigen receptors on T cells. The fact that T

cell recognition required the presence of self MHC mole-

cules led to speculations that T cells express two receptors;

one for MHC and one for antigen. The description of the

elegant structure of MHC molecules [26] clarified the issue

when it was revealed that MHC molecules contain a pep-

tide-binding groove into which small peptides derived from

self and foreign antigens could bind. In addition it was

shown that the well known polymorphic regions of MHC

genes were localized to the peptide binding groove [27],

thus giving each MHC allele the ability to bind a unique set

of peptides. Further structural analysis of the TCR [28, 29]

revealed that this structure binds components of both MHC

and peptide. Unlike the high affinities with which immu-

noglobulin binds antigen, TCR have very low measured

affinities for the peptide (p)MHC complex [30, 31]. The

low affinity of this interaction is in contrast to the high

degree of specificity and sensitivity exhibited by the TCR.

This raises important questions about how T cell acquire

these receptors, what is necessary for T cell activation and

how does the signal received from the TCR determine the

T cell fate following activation.

How is the T cell repertoire generated and maintained?

T cells develop in the thymus where they acquire different

TCRs, through random DNA rearrangements. Interaction

with self MHC is required for a cell to survive during the

process of positive selection, but cells expressing TCRs

that interact too strongly with self pMHC complexes are

deleted in negative selection. It is thought that positive and

negative selection are governed by different activation

thresholds in the developing thymocyte [32]. Thus, the

TCR/pMHC affinity required for positive selection is lower

than that needed for negative selection. Modeling in this

area has focused on many aspects of T cell development

[33] including the role of the thymic involution on TCR

diversity [34, 35], how signals are integrated by developing

thymocytes [36] and the population dynamics of develop-

ing T cells [37–39]. Early ordinary differential equation

(ODE) models of population dynamics in the thymus used

measurements of the proportions of different thymocyte

populations to infer the dynamics of thymic selection [40].

These models concluded that most thymocytes fail to pass

the positive selection step and predicted that positive

selection signaled proliferation of selected thymocytes.

More recently a multi-compartment ODE model, which

tracks lymphocyte populations in distinct parts of the

immune system (i.e., blood, spleen, and LNs), used data

from studies in which dividing thymocytes were specifi-

cally depleted to calculate kinetic parameters for the flux

and steady state levels of relevant thymic populations [41].

Sinclair et al. [39] have taken advantage of detailed

experimental data using a transgenic system in which T cell

development can be turned on at selected times and thy-

mocyte differentiation can be followed over time. These

data suggested that the observed asymmetric differentiation

of CD8 versus CD4 T cells could be explained by increased

death rate in the CD8 population [39]. Another more recent

model [38] used novel experimental data from bim -/-

NUR77GFP mice [42]; NUR77 is downstream of TCR

signaling and levels of NUR77 expression are directly

proportional to the strength of TCR signal whereas the

proapoptotic molecule Bim is necessary for negative

selection. These data provided estimates for the number of

thymocytes undergoing positive and negative selection and

thus allowed a more detailed kinetic study of thymocyte

differentiation incorporating death rates, proliferation and

selection rates [38]. These and other models [33] have

developed quantitative estimates of the lifetimes of the

individual thymocyte populations and the timing of the

selection steps during T cell development. Most of these

models assume that TCR engagement depends on the

overall affinity of the pMHC/TCR interaction [33], i.e., the

total number of TCR that are engaged with pMHC at a

given time, but recent data suggest that the duration of the

TCR engagement also plays an important role in thymic

selection [43–45].

The result of thymic differentiation is the generation of a

diverse repertoire of T cells that are restricted to self MHC,

lack autoreactivity and maintain enough diversity to

withstand pathogen challenge. Another feature of T cell

recognition is that it has been estimated that individual

TCR may crossreact on a wide array of pMHC complexes

with shared structural features [33, 46, 47]. In addition, the

influence of so-called coagonist peptides on T cell activa-

tion was shown in a recent study, which combined mod-

eling and experiments, to depend on the affinity of the co-

receptor CD8 for individual MHC class I molecules [48].

In this context a coagonist peptide is derived from

endogenous proteins, is unable to stimulate T cells alone
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but enhances the recognition of agonist peptides [49].

Recently it has been observed that virus-specific T cells

with a memory phenotype, indicative of prior activation,

are found in individuals who had never previously been

exposed to that virus [50, 51] suggesting a protective role

for this cross-reactivity. These studies were possible

because of new technology allowing the isolation of rare

antigen-specific T cells in a polyclonal population using

soluble pMHC tetramers [52]. As a result of these studies

estimates for the frequencies of antigen-specific T cells

have been made [53] and these range from 1 in a million to

90 in a million T cells. Recent technical advances in deep

sequencing, flow cytometry, spectratyping and analysis of

T cell precursor frequencies have allowed for more quan-

titative assessments of TCR diversity [54]. Spectratyping is

a method by which the length of the CDR3 region of TCR

a and b chains can be determined and this gives an indi-

cation of the diversity of the TCR sequences within a

population; diverse T cell populations exhibit a normal

distribution of CDR3 lengths whereas a population domi-

nated by a small number of clones may only have one of

two CDR3 lengths that dominate [55]. Several statistical

approaches have been developed to analyze spectratyping

data [56–58] and these have been used to estimate the size

of the repertoire [59]. Advances in next generation

sequencing allow for detailed sequence analysis of TCR

gene diversity at various stages of development and new

estimates of diversity are being generated using these data

[47]. One challenge with the sequencing data is that each a
and b chain is sequenced separately and it is not possible to

know how they are paired unless the T cells are first

cloned, although novel single cell techniques are now

making it possible to pair individual TCR chains [60]. New

analysis tools are being developed to handle the large

amount of data that is generated from these sequencing

platforms [61]. In addition, advances in single cell

sequence analysis will allow more accurate assessments of

diversity [60, 62], and combined with isolation of T cells

with a given specificity [63] a deeper understanding of how

the naı̈ve T cell repertoire is generated and how it changes

following antigen exposure will be obtained.

Treg cells arise in the thymus following interaction with

self pMHC class II complexes and there has been a great

deal of interest in analyzing the Treg repertoire. A recent

study performed high throughput sequencing of TCR genes

from defined human T cell populations [64] and this

showed considerable overlap between sequences derived

from T cell subsets with different functional properties. A

more recent study demonstrated that increased TCR

diversity in Treg was necessary for optimal suppressive

function [65]. In a commentary to this study Wing and

Sakaguchi proposed a simple mathematical model that

explained these findings [66]. This model states that the

degree of protection from autoimmunity is proportional to

the number of Treg cells with specificity for the self-anti-

gen in question. A prediction from this model is that mouse

strains, or individuals, which develop autoimmunity have a

reduced Treg repertoire diversity. This prediction has been

validated in the non-obese diabetic mouse, which sponta-

neously develops type 1 diabetes [67].

Treg induction following peripheral stimulation of naı̈ve

T cells is also critical to determining that nature and

strength of the immune response to antigen. Mathematical

modeling has recently been used to explore the factors that

lead to variability in the level of Treg induction in response

to different types of stimulation. We have recently inves-

tigated the role of TCR signaling strength in the induction

of FoxP3? Treg via the interaction of multiple signaling

pathways, as discussed in more detail below [Miskov-Zi-

vanov, 2013]. Another study combined CFSE labeling and

careful quantification of apoptotic cells to determine how

differential regulation of both proliferation and cell death

can create conditions favorable and unfavorable for Treg

induction [68].

How do T cells get activated?

There are two major challenges faced by the immune

system in mounting a specific T cell response to a given

antigen: (1) the low precursor frequency of T cells specific

for a given foreign pMHC; and (2) the small number of

antigen-containing pMHC complexes presented by each

DC in the draining LN. Understanding how the immune

system overcomes each of these challenges has generated a

great deal of interest from modelers and experimental

immunologists.

It has been known for some time that naı̈ve T cells are

constantly circulating between LN and blood [69, 70] and

that this circulation involves interactions between T cells

and self pMHC necessary for survival [71–73]. Early

attempts at quantitating the migratory behavior of lym-

phocytes used the adoptive transfer of radiolabeled cells

followed by enumeration of their location at various time

points after injection [74, 75]. Based on such results

a partial differential equation (PDE) model was developed

[76] that was able to approximate the experimental results.

In this model, the blood, spleen, and lymphatic systems

were modeled as separate compartments and in addition the

spleen and lymphatic compartments were spatially

resolved in one dimension to model T cell transport

dynamics. Interestingly this model suggested that T cells

do not simply enter and exit LN but they also encounter

and interact with other cells within the LN [76].

Advances in intra-vital imaging have allowed the direct

visualization of T cell DC interactions within a living LN

and thus the actual interaction times can now be measured
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[77, 78]. A recent study determined the transit times of

CD4 and CD8 T cells through lymph nodes using these

techniques [79]. Labeled T cells were adoptively trans-

ferred, the drug FTY720 was administered to block

sphingosine-1-phosphate receptors and sequester lympho-

cytes in LN and cells were counted in multiple LN [79].

These experiments revealed that CD4 T cells spend less

time in LN compared with CD8 T cells (12 h vs 22 h). In

addition these studies also showed that the duration of the

contact between DC and CD4 T cells depended on the

presence of MHC [79], and this has also been shown in an

antigen specific system [80]. In this last study it was shown

that the overall avidity of the TCR/pMHC interaction was

more important than pMHC density in determining contact

time [80].

These new and more quantitative data have been used to

develop more detailed models of lymphocyte trafficking

and activation [81–84]. An ODE-based model [82] was

used to model the efficiency with which an antigen-specific

T cell migrates through LN and finds the DCs that are

presenting the cognate antigen. The results of this model

suggest a trade-off between transit times and pMHC den-

sity such that detection of a low abundance pMHC is

optimal when transit times are slow. Fast transit times

favor a more rapid response when the relevant pMHC is in

high abundance [82]. Another modeling study using a

hybrid two-compartment model reached similar conclu-

sions [81]. In these studies the LN is modeled using a 3D

agent based model (ABM) [83] and the blood compartment

is modeled using ODEs. The model considers T cell traf-

ficking as well as the generation of primary and secondary

immune responses in CD4 and CD8 T cells [81]. This

model demonstrated that T cell fate was determined in part

by the relative abundance of pMHC such that low abun-

dance favored the development of memory CD4 T cells,

whereas intermediate pMHC levels led to CD4 effector T

cells. [81]. Interestingly, CD8 T cells required higher levels

of pMHC to achieve these fates compared with CD4 T

cells.

When a naı̈ve T cell encounters a DC presenting the

cognate pMHC complex, a series of signaling events are

triggered by the interaction, resulting in activation, prolif-

eration and differentiation of the T cell. T cell activation

has fascinated immunologists and modelers for many years

since it is unclear how T cells can have such a high degree

of specificity and sensitivity when the interaction between

TCR and pMHC has an inherently low affinity [85, 86].

Early models proposed that T cells engage in serial trig-

gering [87] along with kinetic proofreading [88–90]. In

these models TCR are internalized following engagement

with pMHC thereby ‘‘counting’’ the number of interactions

(serial triggering) and each interaction stimulates a series

of conformational changes in the TCR as it encounters

ligands. This provided an explanation for the observed

differences in activation profiles between agonist and non-

stimulatory ligands [91]. These models associated the

degree of T cell activation with the duration of the inter-

action between T cell and DC and more recent imaging

analyses of T cell/DC interactions have leant support to this

notion [80, 92].

TCR activation leads to a complex series of early and

late signaling events [93]. Many of the early signaling

responses follow a digital pattern of response with the

number of responding cells in a population increasing over

time [86, 94]. This has led to several models based on

feedback loops and leading to digital responses necessary

for full activation based on ERK [94] or Ras activation

[95]. Another important signaling mediator is calcium and

a rise in intracellular calcium levels occurs within seconds

following TCR stimulation. A recent multi-compartment

quantitative model of calcium dynamics investigated the

role of the calcium release activated channel (CRAC) in

controlling calcium levels, concluding that CRAC played a

predominant role in preventing calcium depletion in T cells

[96].

These early signaling events are followed by the for-

mation of an immunological synapse (IS), an ordered

structure in which TCR and signaling molecules are clus-

tered in the center and they are surrounded by a ring of

adhesion molecules, such as LFA-1 [97, 98]. New imaging

techniques have allowed for a better understanding of the

formation and potential function of the IS [99], although its

exact role in T cell activation is still being debated [98].

New advances in imaging and the development of specific

tools are further defining the important role that the IS

plays in communications between cells of the immune

system [98].

Many of the signaling cascades stimulated in T cells are

also found in other cells and one good example is the

activation of the NFjB pathway, which plays an important

role downstream of TCR signaling. This pathway has been

extensively studied in multiple systems and has also been

the subject of many models [100]. Recently, modeling of

this pathway has been used in the development of

approaches to identify signal-specific pharmacological

targets [101]. In this study the topology of signaling hubs in

the NFjB pathway along with dynamical modeling were

used to identify pharmacological targets that would inhibit

responses to one input signal without disrupting responses

to other signals and also to reshape temporal responses to

select desirable features and suppress undesirable ones.

This approach proved successful in identifying some

stimulus-specific inhibitors in the context of the NFjB

response to LPS and TNF [101], and could also be applied

to development of specific inhibition strategies in T cells.

The fact that T cells also contain many of the signaling
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pathways that have been widely studied in other cell types

suggests that it will be useful to integrate models that have

been developed for other systems into modeling of T cell

responses.

How the immune response is regulated by the strength

of the TCR signal

Signaling via the TCR not only stimulates T cell activation

and proliferation but it has become apparent that the dif-

ferentiation of naı̈ve T cells into specific Th subsets is

influenced by the perceived strength of the TCR signal. It

has been known for many years that the dose of a stimu-

lating antigen or pathogen has important implications for

the nature of the immune response [102, 103]. In these

studies it was observed that the development of cell-med-

iated or humoral immunity was controlled by the dose of

the immunizing antigen [102]. This was later found to

depend on Th1 and Th2 responses respectively and it was

possible to alter the nature of the response by altering the

dose and thereby the TCR signal strength [104, 105]. This

has important consequences in the context of infection as

demonstrated by the Leishmania infection model. Certain

mouse strains develop an inappropriate Th2 response to

this infection, which proves fatal. It was shown that

exposing these mice to a low dose of bacteria would induce

a Th1 response that was then able to protect the mice from

subsequent infection with the higher and potentially fatal

dose [103]. The differentiation of Th cell subsets involves

the expression of unique transcription factors that drive the

production of the signature cytokines produced by each of

the Th subsets. It is known that Th differentiation requires

the presence of certain signature cytokines in the milieu:

IFN-c for Th1 cells, IL-4 for Th2 cells, TGF-b for Treg

cells and IL-6 and TGF-b for Th17 cells. These cytokines

act by inducing transcription factors that augment the

production of relevant cytokines and induce expression of

specific cytokine receptors that are required for full dif-

ferentiation and maintenance of the phenotype [106].

Several models have been developed that address Th cell

differentiation networks [107–110], although these models

did not take TCR signal strength into account. Because of

the large number of cytokines, receptors, and signaling

components involved in these processes, these models have

used more coarse-grained modeling approaches than the

studies cited so far. In such models, some or all of the

variables are restricted to a small number of possible val-

ues, reducing the number of states of the system and sim-

plifying formulation of the model, as we will discuss in

more detail below. One cost of such simplifications is that

quantitative factors, such as TCR signal strength, are more

difficult to incorporate into the model, but, as we also

discuss below, it is possible to do so.

We have been interested in this phenomenon in the

context of the differentiation of Treg from naı̈ve T cells.

We [111] and others [80, 112–114] have shown that Foxp3

expressing Treg are induced when naı̈ve T cell are exposed

to low doses of antigen. This has been correlated with

signaling via the Akt/mTOR pathway [115, 116] such that

the degree of Akt/mTOR signaling is inversely correlated

with the induction of Treg [111]. Treg that are expanded

following low dose antigen are able to prevent autoimmune

diabetes in vivo [112, 117]. We developed a mathematical

model, based on Boolean logic, to further understand how

TCR signal strength could contribute to Treg expansion

and induction [118]. The model was developed through an

iterative process of reading the literature, tuning the com-

ponents and interactions, and comparison with experi-

mental data, which was particularly important for

calibrating the time scales of various processes. The

components of the signaling pathway are depicted as ele-

ments within the model, and each element has only a small

number of possible states—either ON or OFF in the case of

most variables, or OFF, LOW, and HIGH in the case of a

few critical variables, such as TCR and PI3K. Figure 1a

presents the overall structure of the model showing model

components as nodes and positive and negative influences

between these elements as arrows with pointed and flat

arrowheads respectively. This diagram is translated into an

executable model by constructing update rules for each

element. At each point in time, the overall state of the

network is represented by the values of each of the vari-

ables in the system. The value of each element at the next

time step is determined from the current values by the

rules, which for each element take the form of logical

functions of the influencing elements involving the basic

logic operators AND, OR and NOT. For example, Akt, the

element circled in red in Fig. 1a, is updated according to

the rule

AKT0 ¼ PDK1 and MTORC2

which means that the next value of AKT is ON only if both

PDK1 and MTORC2 are ON and otherwise the next value

is OFF. If the rule used ‘‘or’’ instead of ‘‘and’’, AKT would

become ON if either MTORC2 or PDK1 were ON. A

‘‘trajectory’’ corresponding to a single cell containing this

network evolving in time is simulated by selecting an ini-

tial set of values for the network elements representing the

resting state of the cell plus the initial stimulation that is

applied in the experiments, e.g., stimulating TCR and

CD28. Different methods exist for updating the state of the

network through application of the rules [119]. In our work

we have chosen an asynchronous stochastic scheme that

takes into account stochastic variation among cells [118].

We then compute a large number of individual trajectories

and plot the percentage of cells exhibiting a given
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characteristic, e.g., expression of IL2 or FoxP3, as shown

in Fig. 1b. These results can be directly compared with

experimental results obtained from flow cytometry

(Fig. 1c). A major advantage of this kind of modeling is

that signaling pathways can be followed from the cell

surface to the end result of gene transcription without

having to determine the large number of kinetic constants

needed in an ODE based model.

The model made several predictions that we were able

to verify experimentally [118]. In particular the model

predicted that the induction of Treg by adding TGF-b to a

high TCR signal strength scenario would not result in

reduced Akt/mTOR signaling, which was confirmed in

experiments. More significantly, we found that the mod-

eling of low TCR signal strength most accurately repro-

duced the experimental results when the duration of the

TCR engagement was reduced [118]. Interrupting the TCR

signal after varying periods of time revealed the plasticity

of the activated T cells. Thus, if the TCR signal was

allowed to persist throughout the course of the experiment

only Th cells were generated, whereas if the signal was

interrupted after a period of time a mixed population of

cells was generated that included Th, Treg, and also non-

activated cells [118]. Another important insight that we

gained from the model was that Treg cells take longer to

stabilize as a phenotype than Th cells (Fig. 1b). Subsequent

experiments confirmed this prediction (Fig. 1c). The model

also allowed us to examine the trajectory of cells destined

to become Th or Treg and identified the importance of the

lipid phosphatase PTEN in determining the ultimate cell

fate. Several new avenues of experimental research are

being pursued based on these predictions. These results

suggest that a population of T cells has the capacity to

differentiate down several paths. It seems likely that dif-

ferences in the behavior of individual cells are related to

the observed heterogeneity in the expression levels of

critical proteins in the TCR signaling cascade [120].

Treg expansion and differentiation is optimized by low

TCR signal strength but other factors also play an impor-

tant role in Treg biology [121]. These include the cytokines

Fig. 1 Computational modeling of T cell differentiation. a Signaling

network governing differentiation. Nodes represent network elements,

which include external ligands such as MHC and IL-2, receptors, such

as TCR and IL-2R, signaling intermediates such as Ras, Akt, and

JAK3, and transcription factors such as AP-1, NF-AT, and FoxP3.

Edges represent interactions between these elements with pointed

arrowheads representing activation, blunt arrowheads representing

inhibition, and dashed lines representing translocation of molecules

between cellular compartments. The state of a given element in the

network, such as Akt (circled in red) is updated according to the states

of its incoming influences—PDK1 and mTORC2 in the case of Akt.

b Simulated time courses of the percentage of cells destined to

become IL-2? Th cells (blue line) or Foxp3? Treg cells (red line). In

this simulation the TCR signal was interrupted after 6 times steps and

the appearance of Th and Treg cells were followed at each time step.

Results represent the combined trajectories, from a total of 1,000

simulations, leading to Th (390/1,000) or Treg (419/1,000) outcomes.

c Corresponding experimental results for percentages of purified

CD4? T cells stimulated on plates coated with anti-CD3 antibody at

high (blue line) and low (blue line) dose in the presence of soluble

anti-CD28 antibody. High dose stimulation results in rapid stabiliza-

tion of the Th (Foxp3- CD25?) phenotype whereas Treg (Foxp3?

CD25?) cells take much longer to appear in low dose stimulation.

Results shown are mean ± SEM of three similar experiments (Color

figure online)
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IL-2, TGF-b, IL-10 and costimulatory pathways such as

CD28, PD-1. IL-2 plays a critical role in the development

and homeostasis of Treg; this is illustrated by the complete

lack of Treg in mice deficient for the signaling chain of the

IL-2R [122]. Treg constitutively express the high affinity

IL-2R (CD25) whereas conventional Th cells only tran-

siently express this receptor following activation. In addi-

tion, Treg do not make IL-2 whereas Th cells are the main

source of IL-2 that is used by both Th and Treg to stimulate

proliferation and expansion. Models of this interaction

between the cells have illustrated how Treg can ‘‘steal’’ IL-

2 from neighboring Th cells thereby not only ensuring their

own survival but suppressing the proliferation of the Th

cells [123]. Defects in IL-2 production have been associ-

ated with autoimmune diseases such as type 1 diabetes

[124, 125] and this has been correlated with a decrease in

Treg [124]. Due to its initial description as a T cell growth

factor, IL-2 was also used clinically for the treatment of

cancer with the aim of boosting T cell responses which

were further enhanced by the addition of complexes of IL-2

with anti-IL-2 [126]. However, it was observed that

depending on the type of complex used the result could be

either expansion of CD8 T cells or Treg [126]. This phe-

nomenon has been explored in models with the aim of

developing the best therapeutic strategies for the use of IL-

2 to boost Treg and therefore prevent autoimmunity [127,

128]. A recent model has also suggested that collective

decisions by a population of cells are important in deter-

mining whether T cells become activated and that IL-2

availability may be one of the mechanisms by which this is

achieved [129]. This is a situation where computational

modeling can be of great benefit for the optimal design of

an immunotherapy because intuition generally fails in

systems that can exhibit such complex dynamics. Simi-

larly, modeling has been used to optimize therapeutic

intervention with anti-CD3 antibodies [130]; a therapy that

involves a short-term course of low dose anti-CD3 anti-

bodies in combination with islet antigens designed to boost

antigen-specific Treg and preserve islet function [131,

132]. This model has identified several biomarkers that can

be used to predict who may respond to this form of therapy

[130].

Modeling approaches and communication

between modelers and experimentalists

The field of modeling in immunology has advanced a great

deal since the early days and this is in part due to an

increasing awareness among immunologists of the need for

modeling to increase insights into complex biological

processes. In addition, more modelers are becoming

familiar with the experimental techniques that are used and

there is an increasing number of individuals who are

trained in both disciplines [133, 134]. The improvements in

technology have also made it possible for detailed quanti-

tative measurements to be made. There is however still a

need for closer collaboration and communication. For

example modeling TCR activation has involved the use of

deterministic ODE-based models that have focused on the

earliest steps in T cell activation [94, 135, 136]. The

development of rule-based approaches has simplified the

development of complex models and has allowed the use of

continuous as well as stochastic simulation methods [137].

Because these models require detailed quantitative data

that may not be available in many cases, alternative

approaches based on logical (aka Boolean) modeling have

also been used to model T cell differentiation. Logical

models do not require detailed quantitative measurements,

but rather allow the development of complex qualitative

networks and several have been developed to investigate T

cell activation [118, 138, 139] and differentiation [108,

109, 118]. The models of Th cell differentiation focused on

the interactions between cytokines, cytokine receptors,

signaling molecules and transcription factors in defining a

network and identifying scenarios for Th cell differentia-

tion and plasticity [108, 109].

One concern with the present modeling efforts is that

few published models are ever revisited or used by other

investigators. Different tools and approaches are often used

to address similar questions and it can be difficult to

compare results from these kinds of models. In addition,

the field is in need of more developed systems immunology

approaches [140, 141]. These are models that incorporate

the spatial and time scales of the whole immune response.

These would include molecular and signaling events

occurring within the cell, cellular interactions and then

effects on the tissue or organism as a whole. Multi-com-

partment models of antigen presentation [142] and of

lymph nodes [81] have been developed. A recent study

described a novel methodology that can be used to capture

the dynamics of complex biological systems using data

from multiple levels of intra and inter-cellular behavior

[143]. This method uses algorithmic information theory

and the study was able to perform successful analysis of the

response of Th and Treg cells to heat shock proteins [143].

Another issue is that experimentalists are often intimidated

by the technical aspects of modeling and thus may fail to

see the value of the exercise. Several modeling platforms

have been developed that allow non-professional modelers

to build models and test out ideas in an easy to use platform

[144, 145]. These use graphic interfaces that are familiar to

immunologists, although at this stage the models are

mainly focused on the signaling aspects.

In conclusion, modeling of events in T cell differentia-

tion, activation and function have proved to be extremely

valuable in helping to elucidate the role of these important
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cells in the immune system. There are now numerous

modeling approaches and platforms available and a chal-

lenge for the future will be the coordination of these

diverse methodologies. Many new therapies are targeting T

cell immune functions, such as IL-2 or immune checkpoint

blockade in cancer [146], and modeling is likely to play a

key role in optimizing these approaches and in identifying

new ones
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