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Abstract Our objective was to expand our understanding

of the predictors of Alzheimer’s disease (AD) progression

to help design a clinical trial on a novel AD medication.

We utilized the Coalition Against Major Diseases AD

dataset consisting of control-arm data (both placebo and

stable background AD medication) from 15 randomized

double-blind clinical trials in mild-to-moderate AD

patients (4,495 patients; July 2013). Our ADAS-cog lon-

gitudinal model incorporates a beta-regression with

between-study, -subject, and -residual variability in

NONMEM; it suggests that faster AD progression is

associated with younger age and higher number of apoli-

poprotein E type 4 alleles (APOE*4), after accounting for

baseline disease severity. APOE*4, in particular, seems to

be implicated in the AD pathogenesis. In addition, patients

who are already on stable background AD medications

appear to have a faster progression relative to those who

are not receiving AD medication. The current knowledge

does not support a causality relationship between use of

background AD medications and higher rate of disease

progression, and the correlation is potentially due to con-

founding covariates. Although causality has not necessarily

been demonstrated, this model can inform inclusion criteria

and stratification, sample size, and trial duration.
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Introduction

Alzheimer’s disease (AD) remains the largest unmet

medical need in neurology. AD is a progressive and lethal

disease occurring in the brain, and is the 6th most common

cause of death in the United States (US). More than

5 million Americans are living with AD. This number is

estimated to virtually triple by 2050 with the aging of the

‘‘Baby Boomer’’ generation; as a consequence, the direct

costs for care is expected to increase from $203 billion in

2013 to $1.2 trillion [1].

There is no available treatment to prevent, stop or slow

the course of AD (i.e., disease-modifying therapies). Cur-

rently, four prescription drugs are available on the US

market for AD symptomatic relief: donepezil, rivastigmine,

galantamine (acetylcholinesterase inhibitors, AChEIs), and

memantine (an N-methyl-D-aspartate receptor antagonist).

Multiple AD-modifying therapies have failed in develop-

ment due to several reasons including insufficient under-

standing of pathogenesis, diagnosis uncertainty, difficult

selection of therapeutic targets, and non-optimal clinical

trial design [2].

The Coalition Against Major Diseases: Data used in preparation of

this article were obtained from the Coalition Against Major Diseases

(CAMD) database (http://codr.c-path.org). A complete listing of

CAMD members can be found at: http://c-path.org/programs/camd/.
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This analysis presents a potential tool to enhance clini-

cal trial design from proof-of-concept through registration

studies. A disease-drug-trial model is a useful tool to aid

clinical study design by determining (1) the most respon-

sive patient population to treatment, (2) the number of

patients to be enrolled in the trial, (3) the trial duration and

the optimal timing of response measurement, (4) the opti-

mal outcome measure (e.g., different endpoints measuring

different aspects of the disease, combinations of sub-items

or composite endpoints), among others [3].

The Alzheimer’s disease assessment scale-cognitive

subscale (ADAS-cog) is a widely used, validated measure

of cognitive deterioration in clinical trials of patients with

mild-to-moderate AD dementia [4], and several models

have been developed to describe ADAS-cog. Holford et al.

[5–7] in early 1990 s’ described the effect of tacrine in the

cognitive function of approximately 2,500 patients with

AD with a linear disease progression rate. In 2010, Ito et al.

[8] conducted a summary-level model-based meta-analysis

of 52 trials and 19,972 patients with mild-to-moderate AD;

this analysis employed a linear model for disease pro-

gression and rate of progression was a function of the

disease severity. Subsequently, Ito et al. [9] performed a

patient-level model-based meta-analysis of 817 patients

from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI); that analysis identified individual covariates

influencing changes in the ADAS-cog score predicting

curvilinear disease progression rate: age, sex, apolipopro-

tein E type 4 allele (APOE*4) carrier/non-carrier [10], and

baseline disease severity. In 2011, Yang et al. [11] used an

exponential model to describe the rate of cognitive decline

in patients from the ADNI database (193 patients with AD

and 397 patients with mild cognitive impairment); where

synchronization method was developed to predict the dis-

ease progression timeline for each patient (i.e., the initial

time represents the start of the cognitive decline instead of

the time of enrollment in the ADNI trial) incorporating

changes in cerebrospinal fluid and imaging biomarkers. In

2012, Samtani et al. [12] utilized a generalized logistic

model to describe the non-linear rate of disease progression

in 191 patients with AD from the ADNI database; this

analysis evaluated wide range of covariates (e.g., imaging

volumetric brain measures, serum biomarkers, and other

baseline cognitive tests) and identified that the disease

progression rate was influenced by age, total serum cho-

lesterol, APOE*4 carrier/non-carrier, trail making test (part

B) score, and ADAS-cog at each time point. In the same

year, Rogers et al. [13] published a model-based meta-

analysis incorporating beta regression (restricting predic-

tions to the test range of 0–70) to describe the longitudinal

progression of ADAS-cog with summary- and patient-level

data; summary-level data was obtained from 73 published

trials (representing 17,235 patients), and patient-level data

was obtained from the ADNI (186 AD patients) and the

Coalition Against Major Diseases (CAMD; 3,223 AD

patients, data cut-off September 2010) databases. They

improved prediction performance by using a generalized

logistic function (via a logit transformation) along with

beta-distributed residual variability and included an eval-

uation of APOE*4 with allele count.

The goal of the present analysis is to integrate aspects

from the previously published mathematical models and

expand our understanding of AD progression. To this end,

we utilized an updated CAMD dataset consisting of con-

trol-arm data (both placebo and stable background AD

medication) from randomized double-blind clinical trials in

mild-to-moderate AD patients (4,495 patients; July 2013).

We address three critical and relevant questions to the

research community working on AD drug development:

1. whether stable background AD medications influence

disease progression,

2. whether disease severity of enrolled patients has

changed in recent years,

3. whether the number of APOE*4 alleles have different

magnitude of effect on disease progression.

For the first question, an exploratory analysis of the

longitudinal ADAS-cog mean profile stratified by patients

on placebo only versus patients on background AD medi-

cation suggests the influence of medication in ADAS-cog

trajectory. In spite of all innovations implemented by the

most recent publication on the CAMD data [13], the

apparent effect of AD medication remains to be investi-

gated. This is important given that 67 % of the patients in

the CAMD database were taking at least one AD medica-

tion as background therapy. For the second question, we

conducted an exploratory analysis on whether baseline

disease severity has changed by trial year possibly due to

changes in life style, awareness of the disease, diagnostics

and patient care. For the third question, the current larger

number of genotyped patients in the CAMD database

allows for a reevaluation of the effect of the APOE*4

variant on rate of disease progression.

To our knowledge, this is the first time in the context of

a non-linear mixed effect modeling of ADAS-cog meta-

analysis that a beta-regression with between-study, -sub-

ject, and -residual variability has been implemented in

NONMEM.

Methods

Data

Data from the CAMD database (with a cutoff in July 2013)

was utilized in this analysis. CAMD is a public–private
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consortium led by the Critical Path Institute, which brings

together government, regulatory agencies, academic insti-

tutions, pharmaceutical industry and non-profit research

organizations. CAMD, launched in September of 2008,

aims to advance new tools and methods to enhance the

development of new AD and Parkinson’s disease therapies

[14]. The consortium focuses on precompetitive sharing of

patient-level data from control arms (both placebo and

stable background AD medication) from randomized-con-

trolled-trials in AD, conducted by pharmaceutical compa-

nies that are members of CAMD. The dataset included

4,495 patients with mild-to-moderate AD from 15 studies.

The 11-item ADAS-cog (ADAS-cog11) used in this ana-

lysis was has been widely used as a primary endpoint in

mild to moderate AD clinical trials, and the same algorithm

has been used to derive ADAS-cog11 across clinical

studies in the CAMD database. Missing ADAS-cog records

or scores before placebo administration were excluded for

this analysis. Available patient characteristics include age,

sex, enrollment year in the trial, baseline mini-mental state

examination (MMSE [15]), APOE*4 genotype (allele

combinations), and background use of AD medication

(donepezil, galantamine, rivastigmine, or memantine).

Model building process

The model building followed the steps outlined in Fig. 1.

Data preparation and visualization were completed using R

(version 3.0.2; Vienna, Austria [16]). Selection of the base

model structure with incorporation of two levels of random

effects (inter-individual and residual variability) preceded

covariate model building and incorporation of a third level of

random effects for study; finally, model performance was

evaluated with goodness-of-fit and visual predictive checks.

Selection of the base model structure

Selection of the base model structure (summarized in

Table 1) acknowledged the previously published ADAS-

cog longitudinal models [5–9, 11–13] and used NON-

MEM� (version 7.3.0; Ellicott City, Maryland, USA [17]).

The most recently published ADAS-cog longitudinal

models utilized generalized logistic functions to describe

the non-linear AD progression rate [12, 13]; as such, the

Richard’s function with its analytical solution was tested

[18] (Eq. 1).

ADAScogðtÞ¼ ADAScog0 �70

ADAScog
b
0þð70b�ADAScog

b
0Þ�e�b�r�t

h i1=b

ð1Þ

where ADAScog0 is the population baseline ADAS-cog, r

is the intrinsic rate of progression, t is time in years, b is the

shape factor of the Richard’s function allowing for non-

centrality of the inflection of disease progression rate, 70 is

the maximum possible observed ADAS-cog score. Other

literature models—linear, exponential and 2-parameter

logistic models—were also tested for comparison.

Fig. 1 Schematic

representation of the model

building process
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Incorporation of three levels of random effects

Three levels of random variability were included in the

final model: inter-study, inter-individual (patient) and

residual variability. Inter-individual random effects were

tested for baseline ADAS-cog (ADAScog0) and intrinsic

rate of progression (r) parameters. Normally distributed

inter-subject variability of the intrinsic rate of progression

was estimated on the linear scale. This structure permitted

that, at the patient-level, the cognitive function could

capture improvement, decline or lack of change during the

study. Log-normally distributed inter-subject variability

was estimated for baseline ADAS-cog. This structure pre-

vented the model from predicting nonsensical negative

baseline scores at the patient-level. The same error

structures were also utilized to account for inter-study

variability in the intrinsic rate of progression and baseline

ADAS-cog. The incorporation of inter-study variability,

though, was only conducted in the final model building

process (i.e., after the covariate model building) to mini-

mize computational time.

ADAScog0ij ¼ ADAScog0 � exp gstudy
baselinei

þ gpatient
baselineij

� �
ð2Þ

rij ¼ r þ gstudy
intrinsic ratei

þ gpatient
intrinsic rateij

ð3Þ

where ADAScog0 is the population baseline ADAS-cog;

ADAScog0ij is the individual baseline ADAS-cog; r is the

population intrinsic rate of progression; rij is the individual

intrinsic rate of progression; gstudy is the inter-study

Table 1 Selection of the base model structure

Base models Disease progression rate OFV Number of

parameters

AIC

Richards function (generalized logistic model)

dADAScog

dt
¼ r � ADAScog � 1� ADAScog

70

� �b
" #

where r is the intrinsic rate of progression, t is time in years, b is

the shape factor of the Richards function, 70 is the maximum

observed ADAS-cog score

Non-linear -60,776 3 -60,756

Exponential model

dADAScog

dt
¼ r � ADAScog

Non-linear -60,687 2 -60,674

Logistic model (symmetric)

dADAScog

dt
¼ r � ADAScog � 1� ADAScog

70

� � Non-linear -60,262 2 -60,249

Linear model with rate of progression dependent on MMSE

(fractional change in slope per baseline MMSE different from

20)

dADAScog

dt
¼ r

r ¼ hr � ð1þ MMSE � 20ð Þ � hMMSEÞ
where hr is the population estimate for the intrinsic rate of

progression r, MMSE is the baseline mini-mental state

examination score, 20 is median baseline MMSE across all

subjects, hMMSE is the MMSE fitted coefficient.

Non-linear in a population level (non-

linearity introduced by the effect of

MMSE in slope)

-60,143 3 -60,123

Linear model

dADAScog

dt
¼ r

Linear -60,008 2 -59,994

Linear model with rate of progression dependent on MMSE

(exponential relationship)

dADAScog

dt
¼ r

r ¼ hr � eððMMSE�20Þ�hMMSEÞ

Non-linear in a population level (non-

linearity introduced by the effect of

MMSE in slope)

-60,008 3 -59,988

ADAS-cog is the cognition portion of the Alzheimer’s Disease Assessment Scale; MMSE is mini-mental state examination; OFV is the objective

function value. AIC is the Akaike information criterion with a per parameter penalty of 6.635
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random effect, gstudy
baselinei

�N 0;x2
baseline;study

� �
; gstudy

intrinsic ratei
�

N 0;x2
intrinsic rate; study

� �
; gpatient is the inter-individual ran-

dom effect, gpatient
baselineij

�N 0;x2
baseline;patient

� �
; gpatient

intrinsic rateij
�

N 0;x2
intrinsic rate;patient

� �
:

Residual variability was assumed to be beta-distributed

[13, 19, 20]. Because ADAS-cog is bounded between 0 and

70, the expectation for progression should be non-linear

given the ceiling and floor effects; in addition, the error

distribution should be heteroscedastic since the variance

must approach zero as their mean approach the boundaries

[19]. The combination of a logistic model with beta-dis-

tributed residuals, also known as beta regression, constrains

the model predictions to the 0–70 range.

The probability density function of the beta distribution

[20], with ADAS-cog score as the dependent variable is:

f ðADAScog; a; bÞ ¼ C aþ bð Þ
C að Þ þ C bð Þ � ADAScog a�1ð Þ

� ð1� ADAScogÞ b�1ð Þ ð4Þ

where ADAScog 2 0; 1ð Þ; a and b are shape parameters

with a pulling the density toward 0 and b pulling the

density toward 1, a[ 0, b[ 0; C(…) denotes the gamma

function.

According to Eq. 4, the probability density function

goes to zero if ADAS-cog equals 0 or 1 which explains

why ADAS-cog must belong to the open unit interval (0,1).

As a consequence the following transformation [20] of

ADAS-cog was performed:

ADAScog0 ¼ ADAScog� 0

70� 0

ADAScog00 ¼ ADAScog0 � ðn� 1Þ þ 0:5½ �
n

ð5Þ

where n is the total sample size (n = 4,495); 0 is the lowest

and 70 is the highest possible ADAS-cog score. The

rationale for the above transformation is discussed in the

supplemental material of Smithson and Verkuilen [20].

Assuming ADAS-cog*beta a; bð Þ, then:

l ¼ a
aþ b

ð6Þ

r2 ¼ l � ð1� lÞ
ðsþ 1Þ ð7Þ

where l is the expected value of the beta distribution; r2 is

the variance of the beta distribution; s ¼ aþ b. Therefore,

the dispersion of the distribution is determined by l and s.

Within NONMEM, s was estimated as a fixed effect

parameter and l corresponded to the individual ADAS-cog

prediction. The shape parameters a and b were then cal-

culated as below and substituted into Eq. 4:

a ¼ l � s ð8Þ
b ¼ ð1� lÞ � s ð9Þ

Nemes’ approximation to the gamma function was

incorporated in the model [19]:

CðXÞ� X

e

� �X

�
ffiffiffiffiffiffi
2p
X

r
� 1þ 1

15 � X2

� �5
4
�X

ð10Þ

where X represents a, b, or (a ? b) in the probability

density function (Eq. 4).

The NONMEM Laplacian estimation method was used

to take into account the second derivative of the inter-

individual variability parameters.

Covariate model building

Although age and MMSE may have undergone variation

over time, we have considered only baseline values for

modeling purpose. Only 6 of 15 studies had APOE*4

genotype information; for other studies, genotype was not

performed or genetic data was not provided. APOE*4 was

categorized as 0 (non-carrier), 1 (heterozygous), 2

(homozygous), and 3 (unknown). There were no missing

values for the other covariates.

The selected base model structure (Richard’s function)

intrinsically accounts for disease severity on the rate of

progression (i.e., ADAS-cog score at a specific time point).

MMSE was not included in the covariate model building

because it is an alternative measure of cognitive impair-

ment or disease severity. Similar to what was demonstrated

Fig. 2 Linear regression between observed baseline ADAS-cog and

MMSE score. ADAS-cog scores presented in the table were

calculated based on the linear regression equation. Observations

were slightly jittered to aid interpretation
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by Ito et al. [8], baseline MMSE scores were highly cor-

related with baseline ADAS-cog scores (Fig. 2). In addi-

tion to the covariates reported in the literature, we

investigated the effect of stable background AD medication

and patient enrollment year in the trial.

Before performing the covariate model building, we

examined the presence of correlation among the covariates

of interest. Figure 3 shows that there was a correlation

between the patient enrollment year in the trial (START)

and APOE*4 genotype (APOE4) as well as use of AD

medication (COMED). In trials before *2001, APOE*4

genotyping was not performed and controls were not taking

AD medication. For this reason, the patient enrollment year

in the trial was not included in the covariate model

building. Each covariate was tested as predictor of baseline

ADAS-cog and intrinsic rate of progression using a step-

wise covariate model building in Perl-speaks-NONMEM

(PsN, version 3.5.4; Uppsala, Sweden [21]).

An exploratory analysis on how baseline disease severity

changed from 1994 to 2008 was conducted and compared to

literature data. The literature data (summary-level) from

1990 to 2008 was obtained from Ito et al. [8] and updated

with studies through 2010. This updated dataset was used in

the disease progression model by Rogers et al. [13].

Model selection criteria

Overall model selection was guided by objective function

value (OFV, NONMEM version 7.3.0; Ellicott City,

Maryland, USA [22]) and Akaike information criterion

(AIC [23]) with a per-parameter (k) penalty of 6.635

(AIC = 6.635k ? OFV, equivalent to v2 with 1 df,

P = 0.01). In addition, goodness-of-fit plots were gener-

ated. Ill-conditioning of the parameter space was assessed

by inspecting the eigenvalues of the covariance matrix. The

ratio of the largest to the smallest eigenvalue (i.e., condi-

tion number) was not to exceed 1,000.

Once the final model was identified, 500 datasets iden-

tical in structure and covariate values to the original dataset

were simulated, using the parameter estimates from the

final model to evaluate the model performance. The lon-

gitudinal ADAS-cog scores over time stratified by covari-

ate were generated and visually compared with the

observed data (visual predictive check, VPC) at each

selected percentile (5th, 50th, 95th). The model was also

run using the Markov chain Monte Carlo Bayesian esti-

mation method to obtain confidence intervals for the

parameter estimates.

Results

Data summary

Table 2 describes the patient characteristics stratified by

study. Patients with mild and moderate stage of the disease

were approximately equally distributed for the combined

studies. From the 15 studies, 8 studies had control arms on

Fig. 3 Correlation among covariates and histograms of available

covariates over year. AGE: age in years; START: patient enrollment

year in the trial; APOE4: 0 is APOE*4 non-carrier, 1 is APOE*4

heterozygous, 2 is APOE*4 homozygous, 3 is unknown genotype;

COMED: use of background AD medication
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stable AD medication (66.7 %). From the 42.8 % of the

patients with known APOE*4 genotype across all studies,

42 % were non-carriers (0 alleles), 44 % were heterozy-

gous (1 allele), and 14 % were homozygous (2 alleles)

for this genetic variant which aligns with previous reports

[24].

Base model selection

Base models were tested for each of the literature-reported

model structures as described in the methods section with

model forms, characteristics, and AIC presented in

Table 1. Richard’s function, a 3-parameter or generalized

logistic model (Eq. 1), was the most appropriate to

describe AD progression over time as assessed by AIC.

Richard’s function allowed for an asymmetric, inverted,

concave relationship between disease progression rate and

severity (Fig. 4). The parameter b allowed for asymmetry

with respect to the inflection point which was estimated to

occur at an ADAS-cog of *52.

Final model

Richard’s function was utilized as the base model for the

covariate model building. The final model parameter

estimates are presented in Table 3. NONMEM code is

presented in the Appendix. The identified covariates of

baseline ADAS-cog were sex and APOE*4 genotype.

Baseline ADAS-cog was lower for males when compared to

females and increased with the number of APOE*4 alleles.

The identified covariates of rate of progression were age,

APOE*4 genotype and AD medication status. Patients who

were younger, on stable background AD medication, and

with more APOE*4 alleles had a higher rate of progression.

The count of APOE*4 alleles (when known) showed a

linear allelic effect on disease progression. In addition, the

estimated average number of APOE*4 copies in patients

with unknown genotype was very similar to the observed

average number of copies in patients with known genotype

(0.78 vs. 0.72, respectively). As consequence, we consid-

ered APOE*4 genotype as a continuous variable in the final

model and imputed missing allele count as 0.72. Impor-

tantly, similar estimates were obtained for APOE*4 effect

on both baseline and rate of progression when the model

was run excluding patients with imputed genotype. The

model-predicted average ADAS-cog progression stratified

by covariates is presented in Fig. 5. Although patient

enrollment year in the trial was not included in the covariate

model building, Fig. 6a depicts patient enrollment year in

the trial versus the baseline MMSE and shows that the

Table 2 Patient characteristics by study in the CAMD database

Study Duration

(weeks)

Sample

size

Age

(mean ± SD)

Female (%) APOE*4 alleles (%) Baseline

MMSE

(mean ± SD)

Baseline

ADAS-cog

(mean ± SD)

Background use

of AD medication

(%)0 1 2 NA

1000 12 66 74 ± 9 54.5 – – – 100.0 21 ± 4 20 ± 7 100.0

1009 12 164 74 ± 6 55.5 53.0 36.6 9.8 0.6 21 ± 4 24 ± 12 0.0

1013 78 718 74 ± 8 50.1 – – – 100.0 21 ± 3 24 ± 9 80.5

1014 78 642 75 ± 8 56.2 – – – 100.0 21 ± 3 21 ± 8 75.5

1055 52 139 73 ± 8 58.3 – – – 100.0 19 ± 4 25 ± 10 0.0

1056 54 480 73 ± 8 56.5 41.0 41.7 17.3 0.0 20 ± 4 24 ± 10 99.8

1057 54 488 74 ± 8 61.3 43.9 46.9 9.2 0.0 19 ± 4 25 ± 11 99.6

1058 24 160 72 ± 9 59.4 51.9 38.8 9.4 0.0 20 ± 4 25 ± 10 0.0

1105 80 323 73 ± 9 51.1 32.8 38.1 11.1 18.0 21 ± 4 22 ± 10 99.1

1131 24 57 75 ± 9 59.6 – – – 100.0 24 ± 1 21 ± 4 0.0

1133 30 162 73 ± 7 61.1 – – – 100.0 19 ± 5 28 ± 12 0.0

1135 30 272 71 ± 9 55.5 – – – 100.0 20 ± 4 25 ± 10 0.0

1137 24 216 76 ± 8 50.5 – – – 100.0 17 ± 4 28 ± 10 100.0

1138 24 202 77 ± 8 57.4 – – – 100.0 17 ± 3 28 ± 10 0.0

1142 78 406 76 ± 8 55.9 30.0 42.9 17.2 9.9 21 ± 3 23 ± 9 91.1

Total – 4,495 74 ± 8 55.5 18.0 18.9 5.9 57.2 20 ± 4 24 ± 10 66.7

Range [12, 80] [57, 718] – [50.1, 61.3] – – – – – – [0.0, 100.0]

The study number is a unique study identifier in the CAMD database

APOE*4 apolipoprotein E type 4 allele, AD Alzheimer’s disease, SD standard deviation, NA not available
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baseline disease severity has only slightly changed from

1994 to 2008 (from approximately 19.5–20.7, P \ 0.0001;

based on the linear regression analysis in the individuals

who were not on background AD medication). This finding

is in agreement with the literature (summary-level) data

presented in Fig. 6b.

Inter-individual variability was larger than inter-study

variability. The inter-individual variability for baseline

ADAS-cog was about twofold higher than that of the rate

of progression (0.395 vs. 0.203, respectively). The inter-

study variability was lower for both baseline ADAS-cog

and rate of progression (0.099 vs. 0.026).

Table 3 Base and final model parameter estimates

Parameter Base model

parameter estimates

Final model

parameter estimates

Final model parameter estimates

(95 % CI lower, upper) from Markov

chain Monte Carlo Bayesian

hbaseline 21.7 22.2 22.3 (22.0, 22.6)

hsex (male) – 0.953 0.955 (0.934, 0.976)

hapoe4 (centered at 0.72) – 0.0372 0.0379 (0.013, 0.063)

hintrinsic rate ðyear�1Þ 0.147 0.153 0.153 (0.143, 0.163)

hage (centered at 75) – -0.024 -0.024 (-0.031, -0.017)

hapoe4 (centered at 0.72) – 0.195 0.199 (0.078, 0.320)

hcomed (no AD medication) – -0.302 -0.303 (-0.446, -0.160)

b 7.15 6.91 6.97 (5.58, 8.36)

SD of gpatient
baseline

0.405 0.395 0.399 (0.389, 0.408)

SD of gpatient
intrinsic rate

0.206 0.203 0.206 (0.197, 0.215)

SD of gstudy
baseline

– 0.099 0.094 (0.034, 0.129)

SD of gstudy
intrinsic rate

– 0.026 0.024 (0.003, 0.034)

s 87.8 87.5 87.3 (85.4, 89.2)

SD is standard deviation; gpatient is the inter-individual variability; gstudy is the inter-study variability. Inter-study variability was not introduced

in the base model. The covariate relationships were as following: ADAScog0 ¼ hADAScog0
� SEX � APOE40 and r ¼ hr � AGE � APOE400 � COMED.

Where: SEX ¼ hsexðmaleÞ; APOE40 ¼ 1þ h0apoe4 � ðAPOE4� 0:72Þ, with 0.72 corresponding to the median value; AGE ¼ 1þ hage � ðAGE � 75Þ,
with 75 corresponding to the median value; APOE400 ¼ 1þ h00apoe4 � ðAPOE4� 0:72Þ, with 0.72 corresponding to the median value;

COMED ¼ 1þ hcomedðno AD medicationÞ, with 1 corresponding to patients on AD medication

Fig. 4 Non-linearity of rate of disease progression estimated with the Richard’s function. Dashed line is the estimated inflection point of 52
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Evaluation of model performance

Model selection criteria suggest the appropriateness of

the model in describing the longitudinal changes in

ADAS-cog score. The residuals plots (Supplementary

Figure S1) did not indicate a trend of the residuals

versus the population predictions and time. The observed

ADAS-cog scores versus individual predictions approxi-

mated the identity line; the same was not quite observed

for population predictions, likely due to the skewness in

ADAS-cog scores. Figure 7 shows the VPCs stratified by

study, number of APOE*4 alleles and use of background

AD medication. Most of the observed data lie within the

5th and 95th percentiles of the simulations, and the

observed and predicted percentiles are similar indicating

reasonable estimation. In addition, the condition number

from the Laplacian estimation method was 473 and the

final parameter values were estimated with good preci-

sion when utilizing the Markov chain Monte Carlo

Bayesian estimation method, and shrinkage was minimal

for inter-study, inter-individual, and residual variability

(Table 3).

Fig. 5 Model predicted average ADAS-cog progression
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Discussion

This work utilized the accumulated knowledge on AD

progression through the ADAS-cog longitudinal models

available in the literature and expanded our understanding

of the predictors of AD progression rate. In this analysis,

we tested all model structures published previously [5–9,

11–13] and chose a generalized logistic function (i.e.,

Richard’s function) to describe changes in ADAS-cog over

time for patients with mild-to-moderate AD dementia. This

analysis also incorporated a mixed-effects beta regression

along with a third level of random effect for study in

NONMEM.

Our analysis shows that an average (i.e., typical) patient

with mild-to-moderate AD in the CAMD database is rep-

resented by a 75-year-old female on standard-of-care AD

therapy and APOE*4 status unknown (i.e., genotype

information was not available). We considered APOE*4

genotype as a continuous variable in the final model and

imputed missing allele count as 0.72 (i.e., the observed

average number of alleles in patients with known geno-

type) as described in the results section. This patient would

enter a study with a baseline ADAS-cog score of 22.2 and

an initial rate of progression of 3.4 ADAS-cog points/year.

The estimated baseline ADAS-cog agrees with the

observed average baseline ADAS-cog score of 24 reported

in the Table 2. The rate of progression aligns with the work

conducted by Rogers et al. [13] who reported a rate of

natural disease progression of 3.97 ADAS-cog score/year

for an average 75-year-old female with MMSE of 21 and

APOE*4 heterozygous. According to the mapping function

proposed in Fig. 2, an MMSE of 21 corresponds to an

ADAS-cog score of 22.4. Compared to the baseline ADAS-

cog of an average patient, males had a *5 % lower

baseline value; APOE*4 non-carriers and homozygous, a

*2.7 % lower and *4.8 % higher baseline value,

respectively (Fig. 6). Compared to the initial rate of pro-

gression for such an average patient, individuals who are

not on AD medication had a *30 % lower progression

rate. Additionally, APOE*4 non-carriers had a *14 %

lower progression rate, while APOE*4 homozygous have a

*25 % higher rate (Fig. 5). In addition, younger baseline

age was associated with higher rate of progression (i.e., a

70-year-old had a *12 % higher, and an 80-year-old, a

12 % lower initial rate when compared to a 75-year-old

patient).

The asymmetric, inverted, concave relationship between

AD progression rate and severity was appropriately

described by the Richard’s function. This function

describes an increase in the rate of change when ADAS-

cog is below the inflection point, and a decrease in the rate

of change when ADAS-cog is above the inflection point

(Fig. 4). The restriction in the rate of increase in ADAS-

cog score is imposed by the second term of the Richard’s

Fig. 6 Observed baseline disease severity over year. a Circles

indicate each individual patient data, and line is the weighted linear

regression. b Circles indicate mean values from each published trial,

size of the circle is proportional to the number of patients in the trial,

line is the weighted linear regression by number of patients in the

trial, and shaded area is the standard error
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function (Eq. 1): as ADAS-cog scores approach 70, the rate

of change tends to zero, reflecting a vertical asymptote in

rate or plateau in score (Fig. 4). This is coherent with what

is seen in clinical practice: patients with very severe AD

dementia tend to experience loss of speech which com-

promises their ability to perform the tasks that compose the

ADAS-cog scale [4]. As a consequence, ADAS-cog scores

mathematically plateaus, and the worsening in cognitive

impairment can no longer be captured by the scale (i.e.,

ceiling effect). In severe AD dementia, other clinical

endpoints are recommended, for instance, the Severe

Impairment Battery [25]. Another aspect is that the shape

parameter of the Richard’s function allows for an inflection

point that is not restricted to the midpoint of the scale. In

this analysis, the estimated inflection point of 52 is closer

to the top of the scale, and similar to the inflection point of

46 estimated in the previous work utilizing CAMD data

[13].

The incorporation of beta-distributed residual variability

along with a logistic model constrained the model predic-

tion within the realistic range of ADAS-cog scores of 0–70.

The variance of the beta distribution depends on the

expected value and s as shown in Eqs. 6 and 7. This

accommodates the heteroscedasticity of the residual vari-

ability because the variance is lower when ADAS-cog

scores are close to the boundaries. In our analysis, we

estimated a s of 87.5. For example, for an expected ADAS-

cog score of 22.2, the calculated standard deviation of the

beta distribution is *0.05.

The predictors of baseline ADAS-cog were sex and

APOE*4 genotype; whereas the predictors of rate of pro-

gression were baseline age, APOE*4 genotype and AD

medication status. Their effects were statistically signifi-

cant based on the 95 % confidence intervals which did not

include zero (Table 3). Previous AD models showed a

faster disease progression rate related to increase in disease

severity [8, 9, 12], younger baseline age [9, 12, 13],

APOE*4 carrier status [9, 12, 13], and female [9, 13]. The

Richard’s function intrinsically accounts for the effect of

disease severity in the rate of progression by considering

the ADAS-cog score at any time point (e.g., rate of pro-

gression increases with ADAS-cog score below the

inflection point); hence, all covariates associated with a

higher rate of progression have additional effects given a

certain disease severity.

The effects of APOE*4 genotype on the rate of AD

progression is noteworthy. Our analysis indicates an addi-

tive allelic effect on disease progression (Fig. 5b). This is a

novel finding for the AD research community. Although

the APOE*4 has been associated with a higher rate of

disease progression in previous publications, Ito et al. and

Samtani et al. modeled the APOE*4 genotypes as two

categories (i.e., non-carriers vs. carriers) [9, 12]. Rogers

et al. [13] modeled APOE*4 genotype as three categories

(i.e., non-carriers, heterozygous and homozygous) but the

estimated rate of disease progression in heterozygous did

not statistically differ from that in non-carriers. APOE*4

has been implicated as the strongest risk factor for devel-

oping late onset AD but the mechanism remains unclear

[10, 26]. It has been hypothesized that the APOE*4 variant

is associated with build-up of amyloid plaques in the brain,

a hallmark of AD pathology believed to contribute to

neuronal death [10]. For example, Corder et al. [27]

reported that the risk for AD increased from 20 to 90 %

and the average age of disease onset decreased from 84 to

68 years with increasing number of APOE*4 alleles in 42

families. Also, Xu et al. [28] reported that one APOE*4

allele has been associated with increased risk of mild

cognitive impairment, whereas two APOE*4 alleles have

been associated with increased risk of dementia suggesting

that APOE*4 homozygous patients have a very short

transition through the mild cognitive impairment stage.

Therefore, our findings are coherent with prior findings of a

significant allelic effect on disease progression.

The effect of AD medication status on the rate of pro-

gression should be interpreted with caution. In this ana-

lysis, we have observed a faster progression in patients on

stable background AD medications compared to those who

are not receiving AD medication (Fig. 5a). First, the

number of patients who are not receiving AD medication in

studies longer than 30 weeks represents a minor sample

size (N = 475, *15 %) as compared to the total number

of patients in such studies (N = 3,196). Second, the current

standard-of-care medications for AD are AChEIs or/and

memantine, which are all approved as symptomatic drugs

(i.e., not disease modifying). As a consequence, these drugs

are expected to have an effect equivalent to a reduction in

the baseline ADAS-cog (i.e., offset effect), but not to affect

the rate of disease progression. Therefore, the higher rate of

disease progression in patients on stable background

medication is unexpected. Third, if patients who are on AD

medication truly had a higher baseline ADAS-cog, their

disease should progress at a higher rate according to the

Richard’s function (the rate of change in ADAS-cog

increases with ADAS-cog score below the inflection point;

Fig. 4). However, this higher ‘‘true’’ baseline hypothesis

would not fully explain the [20 % higher rate of pro-

gression with patient on stable background medication

considering the relatively small symptomatic effect of

AChEIs or memantine (e.g., the effect size of AChEIs is

2–4 points decrease in ADAS-cog [8]). One possible

explanation is that patients who are already on stable

background AD medication are in a more severe stage of

the disease than patients who are not, and this is not ade-

quately captured by baseline MMSE and ADAS-cog; in

this case, the underlying disease progression is faster in
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Fig. 7 Visual Predictive Check (VPC) from N = 500 Simulations.

Solid and dashed black lines are observed median, 5th and 95th

percentiles, and shaded areas are corresponding predicted intervals

from the final model. Horizontal red dashed line is ADAS-cog

baseline (22.2) for an average patient with mild-to-moderate AD in

the CAMD database. A difference variance structure was used for

Study 1131 in which patients with milder AD were enrolled (Color

figure online)
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patients on AD medication, which would not be modified

by purely symptomatic agents, like the ones received by

this population. In studies 1013 (81 % of the patients on

AD medication) and 1014 (76 % of the patients on AD

medication), patients on AD medication had an average

higher baseline ADAS-cog and faster disease progression

(Fig. 8). A possible more convincing explanation is that

potential confounders are not available in the CAMD

database; for instance, other aspects besides cognition (i.e.,

impaired ability to function and perform in daily life,

behavioral problems and co-morbidities) that lead clini-

cians to diagnose AD and prescribe medications [29, 30].

No single assessment tool can capture the multifaceted

aspect of AD progression; hence, decisions as to treatment

strategies were made not only on the basis of a single

outcome measure. Therefore, the current knowledge does

not support a causality relationship between use of stan-

dard-of-care medications and higher rate of disease pro-

gression. This observed correlation is likely due to

underlying information currently unavailable in the trials

integrated within the CAMD database, which can help

explain several additional aspects of AD progression. It is

also noted that AD medication is a significant covariate

only for the rate of progression and not for the baseline

ADAS-cog. There are two possible explanations for this:

(1) in studies 1013 and 1014, the number of patients who

are not on AD medication is much smaller when compared

to the number of patients who are on AD medication

(Fig. 8); (2) except studies 1013 and 1014, the other studies

had only patients who either used or did not use back-

ground AD medication; hence, large inter-individual and

inter-study variability may have masked the AD medica-

tion effect for baseline ADAS-cog.

Limitations of this analysis include the need to develop

a dropout model utilizing this updated CAMD database.

The average dropout was estimated as 14 % (95 % CI

10–17 %) using a random effects meta-analysis model

(metafor package in R), which accounts for between-study

variability and heterogeneity. Thus, accounting for missing

data becomes important when conducting simulation-based

diagnostics or clinical trial simulations. Although the VPC

presented in Fig. 7 does not seem greatly compromised,

dropout should be accounted for when utilizing this model

as a clinical trial simulation tool. An average higher

baseline ADAS-cog—26.1 (95 % CI 23.9–28.3) versus

23.8 (95 % CI 22.5–25.0)—and an average older age—

75.8 (95 % CI 74.7–76.9) versus 73.9 (95 % CI

73.0–74.7)—was estimated for patients who dropped out

using a random effects meta-analysis model. This is in

agreement with the dropout model developed by Rogers

et al. [13] Second, we have only utilized data from the

CAMD database, hence, control-arm data. For this reason,

we were not able to differentiate between underlying nat-

ural disease progression and placebo effect in the clinical

trials. Based on a summary-level meta-analysis of 52 trials,

Ito et al. [8] estimated that the maximum placebo effect

occurred at around 11 weeks, and disappeared within a

year. Third, because year of enrollment was found to be

correlated with availability of APOE*4 genotype infor-

mation and AD medication status, we have not systemati-

cally tested its effect on ADAS-cog baseline and rate of

progression. However, year of enrollment versus the

Fig. 8 Mean observed ADAS-cog score for CAMD studies 1013 and 1014. Area of the points is proportional to the number of patients at each

time point
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baseline MMSE indicates that the baseline disease severity

has only slightly changed from 1994 to 2008 (Fig. 6a).

Fourth, other biomarkers such as cerebrospinal fluid and

imaging volumetric brain measures could not be tested as

predictors of disease severity or progression due to the

unavailable biomarker information in the current CAMD

database.

In summary, to our knowledge this is the first work that

evaluates the effect of stable background AD medication

(vs. placebo only) and the effect of APOE*4 genotypes

across 15 clinical studies using patient-level data from the

CAMD database on baseline ADAS-cog and its rate of

progression. We also investigated whether baseline disease

severity had changed between older and more recent trials,

possibly due to changes in life style, awareness of the

disease, diagnostics and patient care. Our model suggests

that faster AD progression is associated with younger

baseline age and higher number of APOE*4 alleles, after

accounting for baseline disease severity. APOE*4, in par-

ticular, seems to be implicated in the AD pathogenesis, and

genotyping is especially important for reducing variability

in trial results. To be interpreted with caution, patients

entering studies on stable background AD medications

appear to have a faster progression than those without

background AD medication. The current knowledge does

not support or implicate a causality relationship between

use of background AD medications and higher rate of

disease progression, and the association, if validated, might

be due to confounding covariates. Although causality has

not necessarily been demonstrated, these factors can inform

inclusion criteria and stratification, sample size, and trial

duration. Finally, this work expands our understanding of

the predictors of AD progression and our model informs

relevant aspects to help design a clinical trial on a novel

AD medication.
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