
ORIGINAL PAPER

Ubiquity: a framework for physiological/mechanism-based
pharmacokinetic/pharmacodynamic model development
and deployment

John M. Harrold • Anson K. Abraham

Received: 16 October 2013 / Accepted: 24 February 2014 / Published online: 12 March 2014

� Springer Science+Business Media New York 2014

Abstract Practitioners of pharmacokinetic/pharmacody-

namic modeling routinely employ various software pack-

ages that enable them to fit differential equation based

mechanistic or empirical models to biological/pharmacolo-

gical data. The availability and choice of different analytical

tools, while enabling, can also pose a significant challenge in

terms of both, implementation and transferability. A pack-

age has been developed that addresses these issues by cre-

ating a simple text-based format, which provides methods to

reduce coding complexity and enables the modeler to

describe the components of the model based on the under-

lying physiochemical processes. A Perl script builds the

system for multiple formats (ADAPT, MATLAB, Berkeley

Madonna, etc.), enabling analysis across several software

packages and reducing the chance for transcription error.

Workflows can then be built around this package, which can

increase efficiency and model availability. As a proof of

concept, tools are included that allow models constructed in

this format to be run with MATLAB both at the scripting

level and through a generic graphical application that can be

compiled and run as a stand-alone application.

Keywords MATLAB � ADAPT � PBPK � Berkeley

Madonna � Graphical user interface

Introduction

Pharmacokinetic (PK) modeling of clinical population data

is a well defined field in terms of the overall process and

scope of analysis. Standard PK models are often used to

describe drug disposition and the modeling workflow has

been systematized around common data file formats, con-

trol streams that define the model structure, and modeling

software (e.g. NONMEM). Clinical pharmacodynamic

(PD) modeling, while more complicated, fits well into this

paradigm of a modeling workflow with well defined inputs

and expected outputs. This is partly a product of the reg-

ulatory environment, which requires a well documented

and reproducible process that can be scrutinized.

In the pre-clinical discovery space, mathematical mod-

eling and simulation is being applied to a wide range of

problems including: understanding the impact of tissue

distribution on efficacy and toxicity [1–3]; multi-scale

models of in vivo efficacy [4]; identifying the ideal prop-

erties of molecules [5]. While these modeling activities can

result in systems ranging from simple fit-for-purpose

compartmental models to complex descriptions of phar-

macological systems, they are being used increasingly to

aid and influence project teams earlier in the development

cycle [6, 7]. Compared to population-based pharmacosta-

tistical modeling approaches that are typically used to

analyze clinical data, preclinical PK/PD and systems

modeling efforts may not be as structured and well defined.

Electronic supplementary material The online version of this
article (doi:10.1007/s10928-014-9352-6) contains supplementary
material, which is available to authorized users.

J. M. Harrold (&) � A. K. Abraham

Translational Modeling & Simulation, Department of

Pharmacokinetics, Dynamics, and Metabolism, Pfizer

Worldwide R&D, 200 Cambridgepark Drive, Cambridge,

MA 02140, USA

e-mail: jharrold@amgen.com

A. K. Abraham

e-mail: anson.k.abraham@pfizer.com

Present Address:

J. M. Harrold

Pharmacokinetics & Drug Metabolism, One Amgen Center

Drive, Thousand Oaks, CA 91320, USA

123

J Pharmacokinet Pharmacodyn (2014) 41:141–151

DOI 10.1007/s10928-014-9352-6

http://dx.doi.org/10.1007/s10928-014-9352-6

By pulling heavily from diverse subject matter areas

such as systems biology, engineering, and physics, systems

modelers have access to many computational tools. This

creates an accommodating environment for individuals

with the expertise, as many tools can be utilized to perform

an analysis and deliver outputs to the project team. How-

ever, because of the resources required for model genera-

tion and the desire to apply models more broadly, the

model itself is a significant portion of the final product. A

key drawback is having a model ensconced in a single

software package that limits (by user expertise) the ability

of others to use the model. Translating each individual

model between software packages is cumbersome, time

consuming and error prone.

These issues can be addressed directly by defining the

model development workflow around this objective of

increasing access to models. There are many facets to this

problem, which center on the development of a way to

abstractly describe the relevant components of a system. In

this context, there are several languages currently available

and in development, each with their own set of tradeoffs.

The General Algebraic Modeling Language (GAMS),

provides a convenient way to describe sets of information

[8], and is typically used to characterize systems of alge-

braic equations for constrained optimization. While these

tools have been implemented in analyzing PKPD systems

[9], they remain on the periphery. At the preclinical and

translational level, a significant portion of the analysis tools

focus on systems described by coupled sets of ordinary

differential equations (ODEs). For defining sets of ODEs

there are several tools ranging from very general options

such as Modelica [10], with implementations across several

fields, to the more specific systems biology markup lan-

guage (SBML) [11], originally designed to describe bio-

chemical networks. This is also currently an active area of

interest within the PK/PD community, as can be seen by

the recently released PharmML specification [12] and the

accompanying draft specifications for a Model Coding

Language [13] from the Drug Disease Model Resource.

PharmML is a comprehensive effort aimed at integrating

population PK/PD software. The approach pursued in the

work presented here is to strike a parsimonious balance

between comprehensiveness and utility: a human readable

text file that simplifies both describing the elements of a

system and dissemination of the model.

Hence, the ‘‘Ubiquity’’ framework presented here

attempts to accomplish three specific tasks: (i) simplifying

the programming complexities associated with implement-

ing systems models (multiple parameterizations, intricate

descriptions of physiology, etc.); (ii) automate implemen-

tation of models across multiple software platforms in order

to reduce obstacles to interoperability; and (iii) provide

individuals with little or no modeling experience with the

means to interrogate and explore the response of models to

changes in both system parameters and dosing regimens.

This was accomplished by defining a file format for

describing a system that is software independent, and once

compiled can produce human-readable input files for mul-

tiple software platforms. A deployable, standalone graphical

user interface (GUI) was built on top of this framework that

would allow anyone to operate the model.

Materials and methods

Workflow overview

The basic methodology presented here is outlined in Fig. 1.

A system file with a well-defined set of descriptors is

created. This file, intended to be a canonical source of

information about the system describing aspects such as

basic parameter information, default dosing details etc., is

then converted using a supplied Perl script into many dif-

ferent output formats that currently include MATLAB

(m-file and C) (2012b, The Mathworks, Natick, MA), ADAPT

(version 5) [14], Berkeley Madonna [15], PottersWheel

(version 3) [16], and Monolix [17, 18]—portions of gen-

erated output are shown in the included listings. The

MATLAB files that are generated can then be read with the

supplied GUI, which can be run either from within

MATLAB or compiled as a stand-alone executable.

Model description: system.txt

Central to the methodology here is the creation of the

‘‘system.txt’’ file that is intended to describe different

aspects of a system that can be characterized by a coupled

set of ODEs. Each line in the file is interpreted by the

presence of a model descriptor. This includes the ability to

specify parameters (primary system and static secondary

parameter), default inputs (bolus and infusion rates),

compartmental or state information, and model outputs.

While it is possible to simply define differential equations,

it is also possible to break a system down into component

pieces and characterize it according to these components

which include: equilibrium relationships, reaction rates,

inter-compartmental transport, and turnover processes. The

rates specified by these elements are combined additively

by the build script, which creates the input files for multiple

software platforms.

Implementation details

The supplemental material contains a ‘template’ folder that

can be used as a starting point to develop a system. Included

in this folder is a system_help.txt file that contains all of the

142 J Pharmacokinet Pharmacodyn (2014) 41:141–151

123

descriptors used in the system file format as well as details of

how they are used. The system.txt file can be created directly

(starting with system_template.txt) or one of the system.txt

files from the case studies discussed below can be copied

into this directory.

To build the system, the accompanying Perl script can

be run directly (build_system.pl). Upon execution, the Perl

script will look for the file system.txt in the current

directory and generate several files in the transient subdi-

rectory. These files are intended to serve as input and

intermediate files for different analysis software. For

example many files with the prefix ‘auto’ are created, and

these are intended to be used within MATLAB to facilitate

analysis within that software. Most of these are used

internally, but a few are intended to be used directly by the

user.

Specifically, the file auto_fetch_system_information.m

produces a data structure that contains descriptive informa-

tion about different aspects of the system. This includes

default parameter values, mapping information between

names and variable indices (e.g. the parameter Vp is the

fourth parameter in the parameter vector), and default dosing

information. To facilitate running the model at the scripting

level, the file auto_simulation_driver.m is created with all

the components a user needs to execute the model at the

command line. Lastly, MATLAB produces simulation out-

put in vector form. This requires the user to remember, for

example, that the second output is the metabolite concen-

tration in the serum. To assist in accessing this information

and reduce the chance for user error, auto_map_

simulation_outputs.m can be used to convert the normal

simulation output into a data structure with named fields

corresponding to the names (states, outputs, and timescales)

used in the model. Alternatively, the same files with the

‘auto’ prefix are called by the GUI to run the model

interactively.

While the Perl script can be run directly, it can also be

run from analysis software which allows system calls. For

example it can be run from within MATLAB using the Perl

interpreter that ships with MATLAB (see build_system.m).

Fig. 1 Model development workflow: A single file describing the

system, processed by an included Perl script, produces the same

model for several different modeling applications (currently including

MATLAB, ADAPT, Berkeley Madonna, MONOLIX, and Potters-

Wheel). The MATLAB files are used by the included GUI allowing

non-modelers to examine the model. Annotations indicate sample

input (system from Fig. 2a) and generated output for the MATLAB C

(auto_common_block.h, auto_odes.h, auto_remap_odes.h, auto_out-

puts.h), ADAPT (target_adapt_5.for, target_adapt_5-default.prm),

and Berkeley Madonna (target_berkeley_madonna-default.txt)

J Pharmacokinet Pharmacodyn (2014) 41:141–151 143

123

a

b

144 J Pharmacokinet Pharmacodyn (2014) 41:141–151

123

The purpose here is to streamline the workflow where the

system is described completely (including documentation

and references) in a single file that automatically generates

the components necessary to perform an analysis in the

software appropriate for the task at hand. The Perl script

also generates multiple files which have a target prefix

followed by a text description of the software meant to read

that file (e.g. target_monolix-default.txt). These are inten-

ded to form the basis for developing workflows around

these tools.

The utility of this methodology will be explored through

case studies of increasing complexity, each intended to

demonstrate different advantages of this framework. For

each case study, the indicated folder will contain the sys-

tem.txt file describing the system, an analysis.m file to run

the model within MATLAB, and the components of the

template directory need to support execution of the script.

Results

Simple systems

The simplest way of representing a given PK/PD system is

through a series of ODEs. In Fig. 2a. A description of a

parent drug with two-compartment disposition and metab-

olite formation is shown (supplement folder: case_-

study_odes). This example, adapted from the ADAPT Users

manual [14], contains six system parameters, three states

described by ODEs, two observable outputs (serum parent

and metabolite levels) and one infusion input. The descrip-

tors needed to characterize this system are shown to the right

of the model diagram with comments denoted with the hash

(#) symbol.

System parameters are denoted by \P[followed by

seven columns of information: name, value, lower bound,

upper bound, units and a grouping. Next, the rate of infu-

sion is specified by the \R:?[descriptor with information

separated by semicolons. The word ‘infusion’ denotes the

name this infusion will have elsewhere in the simulation.

Each infusion needs a line indicating the times in which the

rate of infusion changes and the level in which it will

change. This is referred to as the ‘type’ of rate information

being specified. In this example, the rate of infusion begins

at 100 at time zero and the rate switches to zero at time

one. This is the default rate but it can be modified through

the application or at the scripting level. If the dosing units

are different from those in which the system has been

parameterized, the ‘scale’ (set to 1 here) is multiplied by

the values supplied by the user in order to obtain the system

units. The last column of information contains the units in

which the dose is applied. Like bolus inputs described later,

this allows dosing information to be specified in units the

end-user is likely to be familiar with (e.g., infusing a drug

in mg/min) and have them automatically converted into

units convenient for modeling (e.g., nM/hr when modeling

reaction equilibria). The \ODE:?[descriptor defines the

differential equation for a given state. Here the states are

Mpb, Mpt, and Mmb, the mass of parent drug in the blood,

the mass of the parent drug in the tissue, and the mass of

the metabolite in the blood (by default the initial value for

all ODEs is zero). Lastly we specify the observable outputs

using the \O[descriptor.

Characterizing a system with process-centric

descriptions

The system shown in Fig. 2b describes an intravenously

injected antibody interacting with a membrane-bound

serum target [19] which drives an indirect biomarker

response by stimulating the synthesis of a biomarker [20]

(supplement folder: case_study_processes). This exam-

ple expands on the previous parent metabolite system by

introducing some new concepts. This system begins as that

in Fig. 2a, with a listing of the system parameters. The

population estimates of parameters for mAb disposition

taken from Dirks and Meibohm [21] were used in this

example. Next clearances and volumes are converted to

first-order rate constants (kpt, ktp, etc.), the second-order

rate constant of association (kon) is defined and the steady-

state synthesis rate constants (ksyn,R and ksyn,M) are calcu-

lated. These are referred to as static secondary parameters

(defined with\As[) because they do not change during the

course of an individual simulation. Similarly, secondary

parameters can also be used to perform variable transfor-

mations (i.e., exponentiation). While static secondary

parameters do not change during the course of the simu-

lation, it is sometimes necessary to create intermediate

values that evolve over time. In this example STIM is

defined as a dynamic secondary parameter (\Ad[), and

can be defined in terms of states, infusion rates, and pre-

viously defined secondary parameters. The \I[descriptor

is used to define the nonzero initial conditions, which can

be any combination of numeric values, system parameters,

or static secondary parameters.

This model also contains dosing information specified

by the \B:?[descriptor. The first line specifies the bolus

b Fig. 2 a Parent-metabolite model demonstrating the creation of

system parameters, infusion inputs, ordinary differential equations

describing the evolution of the system in time and model outputs;

b Target-mediated drug disposition system with complex internali-

zation where the drug/target complex stimulates biomarker synthe-

sis—providing examples of how to define a system in terms of the

underlying process (inter-compartmental movement, turnover pro-

cesses, and equilibrium relationships) as well as how to specify

secondary parameters, nonzero initial conditions, and bolus inputs

J Pharmacokinet Pharmacodyn (2014) 41:141–151 145

123

times in weeks. While the units of time used in the simu-

lation are hours, it may be more convenient from an end

user perspective to provide dosing in terms of weeks. The

‘scale’, allows the end user to convert the time in input

units to simulation units. Each compartment or state to

receive a dose requires an additional entry with the ‘events’

keyword. The state name is specified as well as the amount

to be injected. Similar to the time entry, the amount can be

specified in units different than that of the system. In this

case the amount is specified in mg while the state (Cp)

is modeled in concentration units. The scale converts the

dose in mg into nanomoles and divides by the volume

(Vp) resulting in a dose in nM. As with initial conditions,

scaling can be done using both system and static secondary

parameters.

Model construction is more commonly accomplished by

writing ODEs that represent the system. However, it can be

advantageous to simply describe the underlying processes

which govern the system. The movement between com-

partments Cp and Ct is characterized using the \C[
descriptor. On the left side the concentration in plasma

(Cp), the volume of that compartment (Vp) and the rate

constant of distribution from plasma (kpt) is specified

(delimited by semicolons). To the right of the \C[
descriptor the concentration in tissue (Ct), volume of the

tissue (Vt) and rate constant of distribution to plasma (ktp)

are specified. This entry is then used to construct the rel-

evant components of the ODEs for Cp and Ct.

The turnover of the receptor R is characterized using the

\S:?[descriptor. This allows the user to simply list rates of

production to the left of the descriptor and rates of loss to the

right (multiple values separated by a semicolon). In this case

the rate of receptor synthesis (ksyn,R/Vp) is balanced out by

the degradation rate (kdeg,R•R) at steady-state. Similarly the

turnover of the biomarker (BM) was incorporated using the

\S:?[descriptor with the synthesis modulated using the

previously defined dynamic secondary parameter STIM.

Next the equilibrium relationship between the drug and the

receptor is described using the \=?:?=[descriptor. This is

intended to be written like an equilibrium reaction with the

reactants specified to the left and the products on the right

separated by plus signs. The forward and reverse rates are

then placed in the descriptor. Lastly the systemic elimination

of the drug and the target mediated elimination of the

complex are added using the \ODE:?[descriptor men-

tioned previously. When the Perl script builds the system,

each of the statements are applied additively.

Model parameterization

Typically models are parameterized for a single situation.

However, it can be useful to consider the same system

in a different context (different species, healthy versus

diseased, etc.). In Fig. 3a, a compartmental system for

antibody disposition is shown. In the left portion, a two

compartment system describing antibody disposition in

humans [21], and to the right the system is parameterized

as a one compartment system for mice [22]. This can be

accomplished in the same system.txt file using parameter

sets (supplement folder: case_study_parameterizing).

Information about parameter sets is specified using the

\PSET:?[descriptor. When system parameters are created

using the \P[descriptor, these parameters define the

default parameter set. To give the default parameter set a

more verbose description, the descriptor \PSET:default[
is used. Alternatively a second parameter set can be created

by simply using a short name to label that parameter set

(e.g.\PSET:mouse[). This makes a copy of the default set

and then individual parameters can then be overwritten as

needed (e.g., \PSET:mouse:Q[).

Parameter set information will manifest in different ways.

As will be seen later, it can be selected by the user in the

stand-alone application. These parameter sets can be selected

explicitly at the scripting level in MATLAB. For the different

output formats, a separate file is generated for each parameter

set. In this example, the ADAPT output is stored in three

files. First there is a Fortran file that contains the ODEs and

output definitions (target_adapt_5.for). Next, there are two

parameter files that are created (target_adapt_5-default.prm

and target_adapt_5-mouse.prm). These contain the parame-

terizations for the human and mouse with similar files gen-

erated for the other output types.

Reducing repetitive tasks with mathematical sets

An objective of this framework is to make model devel-

opment more fluid. One way this has been accomplished is

through more natural process-centric descriptions of the

system mentioned above. Similarly some systems can

become laborious to code due to the repetitive or combi-

natorial nature of the system. As an example consider the

organs of a physiologically based pharmacokinetic model

(PBPK). This is essentially the same set of ODES, the

mathematical structure of which is identical, repeated for

each organ. When modeling interactions such as those in

an anti-drug antibody (ADA) assay, there are different drug

species, possibly the target, and a distribution of ADAs

(both concentration and affinity) participating in many

competing equilibrium reactions forming many different

complexes. Enumeration of these relationships and writing

the ODEs describing these interactions can quickly become

intractable. To address these, the ability to create mathe-

matical sets has been incorporated.

A mathematical set example is shown in Fig. 3b, which

describes the interactions that can occur in a ligand-binding

assay (supplement folder: case_study_sets). In this case a

146 J Pharmacokinet Pharmacodyn (2014) 41:141–151

123

a

b

Fig. 3 a A two-compartment model of mAb disposition in humans

(left) reduced down to a one-compartment model in mice (right) in the

same system file through parameterization; b Modeling the effects of

target contamination in a sample (TS) on assay output using

biotinylated target (TB) and fluorescently labeled target (TL) as the

pull-down and signaling molecules in an assay used to measure drug

levels (D) in serum using mathematical sets to enumerate all of the

different equilibria that exist in the assay

J Pharmacokinet Pharmacodyn (2014) 41:141–151 147

123

drug D is being detected by mixing biotinylated target (TB)

with fluorescently labeled target (TL). Normally at equi-

librium, drug D complexes with both TB and TL present

that would be pulled down and provide a measurable sig-

nal. In this case, we want to understand the interference of

target present in the sample (TS) on the signal. This nec-

essarily involves accounting for all of the possible dimer

and trimer complexes that can occur.

Mathematical sets are defined using the \SET:?[
notation. In this example two identical sets TSi and TSk are

defined with the members TL, TB and TS. A set is used by

simply referencing it by name within curly braces {} in any

of the descriptors defined above. For example, the drug

(D0) and target (T0_TS) concentration in the sample and

the concentration of the reagents in the assay (T0_TB and

T0_TL) are specified as system parameters. These are

identified as initial conditions using the\I[descriptor. For

the drug this is simply done by specifying D0. For the three

different target species this is done with a single entry (\I[
{TSi} = T0_{TSi}). This initial condition assignment is

expanded internally and repeated for each member of the

set TSi. Similarly, the drug with one binding site is also

specified using the equilibrium descriptor.

These demonstrate how to use sets to reduce repetitive

tasks. Next it is necessary to enumerate all of the different

complexes that can form when the drug is fully bound. To

do this, an equilibrium descriptor is used which contains

both sets (TSi and TSk). When multiple sets are present in

a descriptor, every combination is enumerated. It is this

combinatorial enumeration that necessitates creation of two

identical sets. The system is initialized in terms of the total

amount of each monomeric species present. After simula-

tion to steady-state, various complexes will form and the

measured output ‘Signal’ is specified as the total number

trimers with both a TB and TL present. By varying the

value of T0_TS the sensitivity of the assay to sample

impurities can be ascertained.

Using sets requires a certain level of abstraction but this

can significantly reduce the amount of coding necessary to

represent complex systems. In Fig. 4a single organ is

shown for a PBPK model of monoclonal antibody dispo-

sition [23] (supplement folder: case_study_pbpk). All

mass flows entering and volumetric flows leaving an organ

have been defined abstractly such that the physiological

connectivity is maintained. This allows a single set of

ODEs to be written for each compartment within an organ

(ORG) in the set notation. These are shown in the lower

portion of Fig. 4. These equations are then expanded out to

characterize all of the organs. While the diagram contains a

portion of the system descriptors, the system.txt file con-

tains all of the elements required to implement this model

(including examples of performing summations across

sets).

Standalone application

Each model created using this framework can be accessed

using different target applications previously mentioned.

To further extend the utility of the framework, a deployable

application is provided to allow basic access to the system.

The application with the TMDD system from Fig. 2b

running is shown in Fig. 5. The different parameter sets in

the model are available through a pull-down menu, and by

selecting a set it will update the values in the table below.

The system file is used to determine which parameters can

be seen/modified and how they are grouped. Basic dosing

information is also picked up from the system file. If a

loading dose is desired, this can be described in detail and

chronic dosing can be achieved by repeating the last dose at

a specified interval. General infusion information can also

be modified from within the GUI as well. Placeholders for

both input types must be created in the system file in order

for them to be modifiable at the application level.

Basic plot controls have been implemented to allow the

user to explore the system behavior. This can allow the

user to examine different dosing scenarios, identify how

modifying parameters can impact the system, and compare

different model outputs. This tool is intended to be a model

exploration tool and to provide immediate graphical out-

put. If the user prefers to create figures in other software,

there is a comma separated variable (CSV) export option as

well. This option creates three time-stamped files. The first

is the CSV file containing columns for different timescales,

each of the states in the model, as well as all of the model

outputs. A screenshot of the interface is also created as well

as a text file with the current parameter values. These last

two files are intended to provide the user with the context

surrounding the CSV export.

To inform the end user about the model structure,

bounds on parameters, inherent assumptions, etc., it is

possible to embed a model diagram containing this infor-

mation. This is done by saving the information in a figure

called system.jpg in the same directory as the system.txt

file, and it will be visible through the ‘View Model’ button

in the application. By default, the application runs the

model according to the values specified in the GUI. It may

be desirable to modify components of the system internally

based on the user input. For example, it may be more ideal

to have a user specify a mean and standard deviation

information as input parameters and to sample from the

resulting distribution before running the simulation. This

can be accomplished using call back routines (see sys-

tem_help.txt for more information).

While a model can be run from the GUI directly from

within MATLAB, it is also possible to create a deploy-

able application. The template contains a file called

build_exe.m, which will compile the GUI into an executable.

148 J Pharmacokinet Pharmacodyn (2014) 41:141–151

123

In order to deploy the resulting executable, it is necessary

for the end user to install the MATLAB Compiler Runtime

(MCR) (available within the MATLAB distribution). Both

the compiled application and the MCR can be distributed

royalty free.

Discussion

Currently there are a number of modeling tools available to

inform decisions with regard to drug discovery and

development. While some software provides utility in

terms of ease of use, other packages are valued for the

granular control they provide. These applications are fur-

ther differentiated in terms of the type of analyses they

support (simulation, estimation, sensitivity analysis, etc.).

In a heterogeneous environment where people of many

backgrounds use a diverse set of tools, interoperability can

become quite challenging. The workflow and tools pre-

sented here represent a step towards addressing this issue.

The text-based format introduced here is intended to

provide the modeling and simulation scientist with a flexible

set of methods for describing a physiological system in

mathematical terms and creating the source files needed to

take advantage of several tools and/or software platforms.

Handing over the underlying model to different users with

different software preferences has been challenging and

extremely time consuming. Adoption of this tool will now

make this task easier and avoid transcription errors when

implementation of the model is required across different

software platforms. Building on concepts from the text

based structure of NONMEM [24] control files, it is possible

to construct a system by simply entering the system

parameters, secondary parameters, and ODEs. Alternatively

Fig. 4 Organ component of a PBPK model of mAb disposition

demonstrating the utility of using mathematical sets to define

components of a system. The mass flows entering the organ and

volumetric flows leaving the organ are defined using the equations

(right) with the ODEs for all organs in the system written using the set

notation (bottom)

J Pharmacokinet Pharmacodyn (2014) 41:141–151 149

123

it is possible to simply describe the underlying processes that

govern the system. By using mathematical sets, coding

intractable systems becomes manageable and complex sys-

tems are easier to implement. Special care has been taken to

ensure that the resultant output files, while crafted in an

automated fashion, are readable to facilitate modification if

necessary. This is aimed at increasing the number of end

users who have an interest from a model creation standpoint.

The deployable application provides a less intimidating way

to explore models within the project team setting as well as

allowing a user with no programming skills to inspect the

system.

The examples provided here are intended to be intro-

ductory in nature. Features not mentioned explicitly, for

example the creation of piecewise continuous functions

using if/then statements, are possible. As with all other

features, these are outlined in detail the system_help.txt

file. However, given the objective of making the same

system available in several pieces of software, there are

limitations that are implicit. Characteristics that are

integral to a given system and not widely implemented

across software will be difficult to implement in this

format. For example a system dependent on delayed

differential equations is intrinsically linked to this feature,

and are not currently implementable in the current

framework. As such, the current framework is limited to

defining systems that can be described by a set of cou-

pled ODEs.

As outlined above, several different output formats are

currently supported. Extension to support other software

which take text input is straightforward, and the benefit

being that all models previously developed in this frame-

work are instantly available on the newly supported soft-

ware. Case studies discussed above were generally limited

to the structural model, but variance parameters and error

models can be specified and are included in relevant files

(see ADAPT input files). Keeping with the concept of

having a canonical input file, the current plan is to more

fully include support for population components as well.

This information will then be included in corresponding

outputs types (currently Monolix and ADAPT). Further-

more, based on interest the model and support files for

other software will be added as well.

Acknowledgments We would like to express our appreciation to

Indranil Bhattacharya, Itrat Harrold, Ryan Nolan, Robert Parker, and

Yulia Vugmeyster for critical review of the manuscript.

References

1. Lipscomb JC, Haddad S, Poet T, Krishnan K (2012) Physiolog-

ically-based pharmacokinetic (PBPK) models in toxicity testing

and risk assessment. In: Johanson G (ed) In technologies for

toxicity. Springer, New York, pp 76–95

2. Abuqayyas L, Balthasar JP (2012) Application of knockout mouse

models to investigate the influence of FccR on the tissue distribution

Fig. 5 Stand alone application

allowing users with no

programming experience to

utilize any model developed

using this framework: (1)

Different parameter sets can be

selected using the pull-down

menu, repopulating the

parameter table with the subset

of parameters specified as

editable; (2) loading doses can

be entered (a dose value for

each time specified) and the last

dose can be repeated in order to

simulate chronic dosing

schedules; (3) infusions can also

be modified by the user; (4)

basic plotting controls are

available to specify the desired

outputs to be shown, y-axis

scale, etc. while users can have

more control by using the CSV

export option

150 J Pharmacokinet Pharmacodyn (2014) 41:141–151

123

and elimination of 8C2, a murine IgG1 monoclonal antibody. Int J

Pharm 439:8–16. doi:10.1016/j.ijpharm.2012.09.042

3. Jones HM, Dickins M, Youdim K, Gosset JR, Attkins NJ, Hay TL

et al (2012) Application of PBPK modelling in drug discovery

and development at Pfizer. Xenobiotica 42:94–106. doi:10.3109/

00498254.2011.627477

4. Iyengar R, Zhao S, Chung S-W, Mager DE, Gallo JM (2012)

Merging systems biology with pharmacodynamics. Sci Transl

Med 4:126–227. doi:10.1126/scitranslmed.3003563

5. Luu KT, Kraynov E, Kuang B, Vicini P, Zhong W-Z (2013)

Modeling, simulation, and translation framework for the preclin-

ical development of monoclonal antibodies. AAPS J 15:551–558.

doi:10.1208/s12248-013-9464-8

6. Chien JY, Friedrich S, Heathman MA, Alwis DP, Sinha V (2005)

Pharmacokinetics/pharmacodynamics and the stages of drug

development: role of modeling and simulation. AAPS J 7:544–559.

doi:10.1208/aapsj070355

7. Lavé T, Parrott N, Grimm HP, Fleury A, Reddy M (2007) Chal-

lenges and opportunities with modelling and simulation in drug

discovery and drug development. Xenobiotica 37:1295–1310.

doi:10.1080/00498250701534885

8. Rosenthal RE (2006) GAMS—a user’s guide. GAMS Develop-

ment Corporation, Washington, DC

9. Harrold JM, Parker RS (2009) Clinically relevant cancer che-

motherapy dose scheduling via mixed-integer optimization.

Comput Chem Eng 33:2042–2054. doi:10.1016/j

10. Fritzson P (2011) Introduction to modeling and simulation of

technical and physical systems with modelica. Wiley, Hoboken

11. Hucka, M (2010) The systems biology markup language (SBML):

language specification for level 3 version 1 core. http://sbml.org/

Documents/Specifications. Accessed 24 November 3013

12. Moodie, S L, Swat, M J, Kristensen, N R, Le Novère, N (2013).

PharmML: the pharmacometrics markup language. Drug disease

model resource. http://www.ddmore.eu/pharmml. Accessed 24

November 2013

13. Holford, N (2013). Model Coding Language Specification Draft 5

version 0.8. Drug Disease Model Resource. http://www.ddmore.

eu/mdl. Accessed 24 November 2013

14. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s

guide: pharmacokinetic/pharmacodynamic systems analysis

software. Biomedical simulations resource. University of South-

ern California, Los Angeles

15. Macey R, Oster G, Zahnley T (2000) Berkeley Madonna user’s

guide, Department of Molecular and Cellular Biology. University

of California, Berkeley

16. Maiwald T, Timmer J (2008) Dynamical modeling and multi-

experiment fitting with PottersWheel. Bioinformatics 24:

2037–2043. doi:10.1093/bioinformatics/btn350

17. Lavielle M, Mentré F (2007) Estimation of population pharmaco-

kinetic parameters of saquinavir in HIV patients with the

MONOLIX software. J Pharmacokinet Pharmacodyn 34:229–249.

doi:10.1007/s10928-006-9043-z

18. Chan PLS, Jacqmin P, Lavielle M, McFadyen L, Weatherley B

(2010) The use of the SAEM algorithm in MONOLIX software

for estimation of population pharmacokinetic-pharmacodynamic-

viral dynamics parameters of maraviroc in asymptomatic HIV

subjects. J Pharmacokinet Biopharm 38:41–61. doi:10.1007/

s10928-010-9175-z

19. Mager DE (2006) Target-mediated drug disposition and dynam-

ics. Biochem Pharmacol 72:1–10. doi:10.1016/j.bcp.2005.12.041

20. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic

models of indirect pharmacodynamic responses. J Pharmacokinet

Biopharm 21:457–478. doi:10.1007/BF01061691

21. Dirks NL, Meibohm B (2010) Population pharmacokinetics of

therapeutic monoclonal antibodies. Clin Pharmacokinet 49:633–659.

doi:10.2165/11535960-000000000-00000

22. Vieira P, Rajewsky K (1988) The half-lives of serum immuno-

globulins in adult mice. Eur J Immunol 18:313–316. doi:10.1002/

eji.1830180221

23. Shah DK, Betts AM (2012) Towards a platform PBPK model to

characterize the plasma and tissue disposition of monoclonal

antibodies in preclinical species and human. J Pharmacokinet Bi-

opharm 39:67–86. doi:10.1007/s10928-011-9232-2

24. Beal SL, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM

user’s guides. (1989–2009). Icon Development Solutions, Ellicott

City

J Pharmacokinet Pharmacodyn (2014) 41:141–151 151

123

http://dx.doi.org/10.1016/j.ijpharm.2012.09.042
http://dx.doi.org/10.3109/00498254.2011.627477
http://dx.doi.org/10.3109/00498254.2011.627477
http://dx.doi.org/10.1126/scitranslmed.3003563
http://dx.doi.org/10.1208/s12248-013-9464-8
http://dx.doi.org/10.1208/aapsj070355
http://dx.doi.org/10.1080/00498250701534885
http://dx.doi.org/10.1016/j
http://sbml.org/Documents/Specifications
http://sbml.org/Documents/Specifications
http://www.ddmore.eu/pharmml
http://www.ddmore.eu/mdl
http://www.ddmore.eu/mdl
http://dx.doi.org/10.1093/bioinformatics/btn350
http://dx.doi.org/10.1007/s10928-006-9043-z
http://dx.doi.org/10.1007/s10928-010-9175-z
http://dx.doi.org/10.1007/s10928-010-9175-z
http://dx.doi.org/10.1016/j.bcp.2005.12.041
http://dx.doi.org/10.1007/BF01061691
http://dx.doi.org/10.2165/11535960-000000000-00000
http://dx.doi.org/10.1002/eji.1830180221
http://dx.doi.org/10.1002/eji.1830180221
http://dx.doi.org/10.1007/s10928-011-9232-2

	Ubiquity: a framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic model development and deployment
	Abstract
	Introduction
	Materials and methods
	Workflow overview
	Model description: system.txt
	Implementation details

	Results
	Simple systems
	Characterizing a system with process-centric descriptions
	Model parameterization
	Reducing repetitive tasks with mathematical sets
	Standalone application

	Discussion
	Acknowledgments
	References

