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Abstract The target-mediated drug disposition (TMDD)

model has been adopted to describe pharmacokinetics for

two drugs competing for the same receptor. A rapid bind-

ing assumption introduces total receptor and total drug

concentrations while free drug concentrations CA and CB

are calculated from the equilibrium (Gaddum) equations.

The Gaddum equations are polynomials in CA and CB of

second degree that have explicit solutions involving com-

plex numbers. The aim of this study was to develop

numerical methods to solve the rapid binding TMDD

model for two drugs competing for the same receptor that

can be implemented in pharmacokinetic software. Algebra,

calculus, and computer simulations were used to develop

algorithms and investigate properties of solutions to the

TMDD model with two drugs competitively binding to the

same receptor. A general rapid binding approximation of

the TMDD model for two drugs competing for the same

receptor has been proposed. The explicit solutions to the

equilibrium equations employ complex numbers, which

cannot be easily solved by pharmacokinetic software.

Numerical bisection algorithm and differential representa-

tion were developed to solve the system instead of

obtaining an explicit solution. The numerical solutions

were validated by MATLAB 7.2 solver for polynomial

roots. The applicability of these algorithms was demon-

strated by simulating concentration–time profiles resulting

from exogenous and endogenous IgG competing for the

neonatal Fc receptor (FcRn), and darbepoetin competing

with endogenous erythropoietin for the erythropoietin

receptor. These models were implemented in ADAPT 5

and Phoenix WinNonlin 6.0, respectively.

Keywords Target-mediated drug disposition � Gaddum

equation � Erythropoietin � FcRn � Therapeutic antibody

Introduction

The term ‘‘target-mediated drug disposition (TMDD)’’ has

been utilized to describe the phenomenon that the dispo-

sition and elimination of a certain drug are significantly

affected by binding to its target [1]. Classic examples of

drugs exhibiting TMDD pharmacokinetics include thera-

peutic antibodies and protein hormones [2]. Many of these

drugs usually exert their effect through competing for the

same receptor (or target) with endogenous substances.

Interactions of exogenous drugs with endogenous species

are frequently ignored in analyses of pharmacokinetics of

the former. Advances in biotechnology made it possible to

modify the receptor binding affinity of such drugs to the

point that the drug substance and endogenous substance

affect pharmacokinetics or efficacy of each other substan-

tially. Important examples include hematopoietic growth

factors and therapeutic antibodies.

Hematopoietic growth factors are endogenously pro-

duced glycoprotein hormones that stimulate the prolifera-

tion and differentiation of hematopoietic progenitor cells

[3]. Some well-known lineage-specific growth factors are

erythropoietin (EPO), thrombopoietin (TPO) and granulo-

cyte colony-stimulating factor (G-CSF). Examples of their

therapeutic counterparts are epoetin (recombinant human
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EPO), filgrastim (recombinant human G-CSF) and romi-

plostim (analogue of TPO) [4]. These therapeutic agents

compete with endogenous substances for hematopoietic

growth factor receptors expressed on the precursor cells

and stimulate their proliferation and differentiation [3].

Exogenous therapeutic antibodies compete for the

neonatal Fc receptor (FcRn) with endogenous immuno-

globulins G (IgG). FcRn is known to play an important

role in extending the half-life of IgG compared to

other antibody isotypes as well as in maintaining IgG

homeostasis in the system circulation [5]. The well

accepted mechanism for IgG protection by FcRn involves

the IgG uptake into the endosomes by fluid phase

endocytosis and binding to FcRn. At acidic endosomal

pH condition (pH 6), the IgG/FcRn complex is returned

to the plasma membrane where the bound IgG is released

back into the circulation at physiological pH whereas the

unbound IgG undergoes degradation in lysosomes. Based

on this mechanism, a lot of effort has been made to

engineer IgG with enhanced binding affinity for FcRn at

pH 6 as a strategy to improve IgG systemic persistence

which may lead to a potential improvement in IgG-based

therapy [6, 7].

A general TMDD pharmacokinetic model has been

proposed by Mager and Jusko [8]. In this framework, it is

assumed that a single species of drug molecule binds to its

target through a second-order rate constant (kon) and a first-

order dissociation constant (koff), forming a drug-target

complex. When an exogenous drug competes for the same

target with an endogenous substance, a TMDD model with

two species of molecules competitively binding to the same

target has been used [9, 10]. In this situation, different PK

properties and binding processes for two molecular species

have been introduced into the model.

Since the binding and dissociation rate constants

(kon and koff) are usually not estimable with the available

pharmacokinetic data, rapid binding (RB) and quasi-

steady-state (QSS) TMDD models have been developed for

a single drug situation, in which these rate constants were

replaced with the equilibrium dissociation constant KD

(RB) or KSS (QSS) [11, 12]. Consequently, the concentra-

tion of the drug-target complex can be explicitly expressed

as a function of free drug concentration [11]. When two

molecular species competitively bind to the same target,

the concentration of drug-target complexes from two spe-

cies can be expressed in terms of free drug concentrations

by means of the Gaddum equations [13].

The calculation of free drug concentration for the RB or

QSS TMDD model for two molecular species competing

for the same target is mathematically challenging. When a

single drug binds to its target, the free drug concentration

can be calculated by solving a quadratic equation and

explicitly expressed under RB or QSS assumption [11].

However, when two species of molecules compete for the

same target, the free concentrations of these two species

are solutions to a system of two quadratic equations with

two variables. This provokes a difficulty in implementing

such a model, especially in PK software. In the following

sections we introduced the rapid binding TMDD model

describing two drug species competing for the same target.

Our major objective was to propose different methods

solving the system equations that can be emulated in PK

software. The utilization of these methods was demon-

strated through two case studies involving an erythropoi-

esis-stimulating agent competing with the endogenous EPO

for erythropoietin receptor and a monoclonal antibody

competing with the endogenous IgG for FcRn.

Theoretical

The TMDD model for two drugs competing for the same

receptor is shown in Fig. 1. The symbols and notations of

this model are similar to the general TMDD model with

one drug [8]. As shown in Fig. 1, the key feature of this

model is that two molecular species (CA and CB) compet-

itively bind to the same receptor (R). Free drugs in the

central compartment (CA and CB) bind to the free receptor

(R) at the second-order rate (konA and konB) to form drug-

receptor complexes (RCA and RCB). The drug-receptor

complexes (RCA and RCB) can either be dissociated at the

first-order rate (koffA and koffB) or be internalized and

degraded at the first-order rate (kintA and kintB). Free drugs

(CA and CB) can also be removed from the central com-

partment by the first-order elimination process (kelA and

kelB) or be distributed to the tissue compartment at the first-

order rate (ktpA, ktpB, kptA, kptB). Free receptors (R) are

synthesized at the zero-order rate (ksyn) and degraded at the

first-order rate (kdeg). The input rates (InA(t) and InB(t)) can

account for any process (zero-order infusion, first-order

absorption, etc.) except for intravenous (IV) bolus that may

require additional model components. The differential

equations are as follows:

dCA

dt
¼ InAðtÞ � konAR � CA þ koffARCA � ðkelA þ kptAÞCA

þ ktpAATA=Vc

ð1Þ
dATA

dt
¼ kptAVcCA � ktpAATA ð2Þ

dRCA

dt
¼ konAR � CA � koffARCA � kintARCA ð3Þ

dCB

dt
¼ InBðtÞ � konBR � CB þ koffBRCB

� ðkelB þ kptBÞCB þ ktpBATB=Vc ð4Þ
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dATB

dt
¼ kptBVcCB � ktpBATB ð5Þ

dRCB

dt
¼ konBR � CB � koffBRCB � kintBRCB ð6Þ

dR

dt
¼ ksyn � kdegR� konAR � CA þ koffARCA � konBR � CB

þ koffBRCB ð7Þ

The initial conditions for the above system are defined by

the steady-state (baseline) values and additional IV bolus

doses of free drugs DoseA and DoseB:

CAð0Þ ¼
DoseA

Vc
þ CA0 ð8Þ

ATAð0Þ ¼ kptAVcCA0=ktpA ð9Þ

RCAð0Þ ¼ konAR0CA0=ðkintA þ koffAÞ ð10Þ

CBð0Þ ¼
DoseB

Vc
þ CB0 ð11Þ

ATBð0Þ ¼ kptBVcCB0=ktpB ð12Þ

RCBð0Þ ¼ konBR0CB0=ðkintB þ koffBÞ ð13Þ

Rð0Þ ¼ R0 ð14Þ

where the receptor synthesis rate can be calculated from

Eq. 7:

ksyn ¼ kdegR0 þ konAR0CA0 �
koffAR0CA0

kintA þ koffA

þ konBR0CB0 �
koffBR0CB0

kintB þ koffB
ð15Þ

Similarly, the baseline values for InA(t) and InB(t) are

defined by the steady states for Eqs. 1 and 4:

InA0 ¼
kintAkonAR0CA0

koffA þ kintA
þ kelACA0 ð16Þ

InB0 ¼
kintBkonBR0CB0

koffB þ kintB
þ kelBCB0 ð17Þ

The rapid binding assumption implies:

R � CA

RCA
¼ KDA and

R � CB

RCB
¼ KDB ð18Þ

where KDA and KDB are dissociation equilibrium constants

for drugs A and B, respectively. Upon introducing the total

drug plasma concentrations:

CAtot ¼ CA þ RCA and CBtot ¼ CB þ RCB ð19Þ

and total receptor plasma concentration:

Rtot ¼ Rþ RCA þ RCB ð20Þ

the drug-receptor complex concentrations RCA and RCB

can be calculated from Eq. 19 by means of total and

free drug concentrations, or equivalently, from Eq. 18 as

functions of free drug concentrations and Rtot:

RCA ¼
RtotCA=KDA

1þ CA=KDA þ CB=KDB
and

RCB ¼
RtotCB=KDB

1þ CA=KDA þ CB=KDB

ð21Þ

Eq. 21 are known in pharmacology as the Gaddum

equations [13]. The rapid binding TMDD model for

competitive interaction between two drugs is described

by the following differential equations:

dCAtot

dt
¼ InAðtÞ � ðkelA þ kptAÞCA þ ktpAATA=

Vc � kintAðCAtot � CAÞ
ð22Þ

dATA

dt
¼ kptAVcCA � ktpAATA ð23Þ

dCBtot

dt
¼ InBðtÞ � ðkelB þ kptBÞCB þ ktpBATB=

Vc � kintBðCBtot � CBÞ
ð24Þ

Fig. 1 Target-mediated drug

disposition for two drugs

competing for the same

receptor. Symbols are defined in

the theoretical
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dATB

dt
¼ kptBVcCB � ktpBATB ð25Þ

dRtot

dt
¼ ksyn � kdegRtot � ðkintA � kdegÞðCAtot � CAÞ

� ðkintB � kdegÞðCBtot � CBÞ ð26Þ

where CA and CB are the only solutions of the equilibrium

equations Eq. 18 rewritten as follows:

ðRtot � CAtot � CBtot þ CA þ CBÞCA ¼ KDAðCAtot � CAÞ
ð27Þ

ðRtot � CAtot � CBtot þ CA þ CBÞCB ¼ KDBðCBtot � CBÞ
ð28Þ

such that:

0\CA\CAtot and 0\CB\CBtot ð29Þ

The initial conditions for Eqs. 22–26 are defined by their

steady states and IV bolus doses:

CAtotð0Þ ¼
DoseA

Vc
þ CAtot0 ð30Þ

ATAð0Þ ¼ kptAVcCA0=ktpA ð31Þ

CBtotð0Þ ¼
DoseB

Vc
þ CBtot0 ð32Þ

ATBð0Þ ¼ kptBVcCB0=ktpB ð33Þ

Rtotð0Þ ¼ Rtot0 ð34Þ

where CAtot0, CBtot0, and Rtot0 are the baseline plasma

concentrations for total drug A, total drug B, and total

receptors, respectively. As for the full model, the receptor

synthesis rate can be calculated from Eq. 26:

ksyn ¼ kdegðRtot0 � RCA0 � RCB0Þ þ kintARCA0 þ kintBRCB0

ð35Þ

Similarly, the baseline values for InA(t) and InB(t) are

defined by the steady states for Eqs. 22 and 24:

InA0 ¼ kelACA0 þ kintARCA0 ð36Þ
InB0 ¼ kelBCB0 þ kintBRCB0 ð37Þ

Here RCA0 and RCB0 denote the baseline values of

the drug-receptor complex concentrations that can be

calculated from the Gaddum equations:

RCA0 ¼
Rtot0CA0=KDA

1þ CA0=KDA þ CB0=KDB
and

RCB0 ¼
Rtot0CB0=KDB

1þ CA0=KDA þ CB0=KDB

ð38Þ

The baseline values for total drug concentrations

are determined by the baseline values of free drug

concentrations:

CAtot0 ¼ CA0 þ RCA0 and CBtot0 ¼ CB0 þ RCB0 ð39Þ

In the case where preferred primary parameters are

CAtot0 and CBtot0 one needs to solve the equilibrium

conditions Eqs. 27 and 28 at baseline values for CA0 and

CB0.

Methods and results

Algebraic solution of equilibrium equations

In ‘‘Appendix 1’’ section we show that the free drug con-

centrations can be expressed by the following:

CA ¼
CAtotKDA

KDA þ Rtotð1� zÞ and CB ¼
CBtotKDB

KDB þ Rtotð1� zÞ
ð40Þ

where z is the only solution of a polynomial equation

satisfying:

0\z\aA þ aB and z\1 ð41Þ

Here

aA ¼
CAtot

Rtot
; aB ¼

CBtot

Rtot
; kA ¼

KDA

Rtot
; kB ¼

KDB

Rtot
ð42Þ

If KDA = KDB, then the polynomial is cubic:

z3 þ bz2 þ czþ d ¼ 0 ð43Þ

where

b ¼ �ð2þ kA þ kB þ aA þ aBÞ ð44Þ
c ¼ 1þ 2aA þ 2aB þ kA þ kB þ kBaA þ kAaB þ kAkB

ð45Þ
d ¼ �ðkBaA þ kAaB þ aA þ aBÞ ð46Þ

The Existence Theorem in ‘‘Appendix 1’’ section implies

that for kA = kB, there are three distinct roots of Eq. 43.

Consequently, the determinant D of Eq. 43:

D ¼ Q3 þ R2 ð47Þ

where

Q ¼ 3c� b2

9
and R ¼ 9bc� 27d � 2b3

54
ð48Þ

must be negative [14]. All roots of the cubic equation

Eq. 43 can be represented by means of complex numbers

[14]:

z ¼ � b

3
þ Sþ T ð49Þ

z ¼ � b

3
� 1

2
Sþ Tð Þ þ i

ffiffiffi

3
p

2
ðS� TÞ ð50Þ
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z ¼ � b

3
� 1

2
Sþ Tð Þ � i

ffiffiffi

3
p

2
ðS� TÞ ð51Þ

where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rþ
ffiffiffiffi

D
p3

q

and T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R�
ffiffiffiffi

D
p3

q

ð52Þ

Note since D\ 0, the square root
ffiffiffiffi

D
p

is an imaginary

number. Although each of solutions in Eqs. 49–51 contains

complex numbers, their left hand sides are real numbers.

Unfortunately, in this form it is difficult to determine which

solution satisfies Eq. 41. Since D\ 0, one can also utilize a

trigonometric representation of the solution of Eq. 41 [15]:

z ¼ � b

3
þ 2

ffiffiffiffiffiffiffiffi

�Q
p

cos
h
3

� �

ð53Þ

z ¼ � b

3
þ 2

ffiffiffiffiffiffiffiffi

�Q
p

cos
hþ 2p

3

� �

ð54Þ

z ¼ � b

3
þ 2

ffiffiffiffiffiffiffiffi

�Q
p

cos
hþ 4p

3

� �

ð55Þ

where

h ¼ cos�1 R
ffiffiffiffiffiffiffiffiffiffi

�Q3
p

 !

ð56Þ

Note that Eq. 47 implies that Q \ 0, and all solutions in

Eqs. 53–56 do not contain complex numbers. Similarly to

the representation in Eqs. 49–51, it is difficult to determine

which of solutions in Eqs. 53–56 satisfies Eq. 41.

In case KDA = KDB solving the equilibrium equations

Eqs. 27 and 28 can be reduced to finding a root of a qua-

dratic equation:

z2 þ bzþ c ¼ 0 ð57Þ

where

Fig. 2 Simulated concentration–time profiles for escalating IV bolus

doses (100, 500, 1000 units for both A and B) using TMDD model

with two ligands competitively binding to the same target. Vc = 10,

kelA = kelB = 0.01, kptA = kptB = ktpA = ktpB = 0, CA0 = CB0 = 0,

kintA = kintB = 0.1, Rtot0 = 50, kdeg = 0.02. For upper two panels,

KDA = KDB = 1. For lower two panels, KDA = 1, KDB = 0.1.

Simulations were performed in MATLAB using the algebraic solution

of equilibrium equations
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b ¼ �ð1þ aA þ aB þ kAÞ ð58Þ
c ¼ aA þ aB ð59Þ

The Existence Theorem implies that for kA = kB, there are

two distinct positive roots of Eq. 57. Consequently, the

determinant D of Eq. 57:

D ¼ b2 � 4c ð60Þ

must be positive. Then the only root of the quadratic

equation Eq. 57 satisfying Eq. 41 is:

z ¼ 1

2
�b�

ffiffiffiffi

D
p� �

ð61Þ

A MATLAB m-function equilibrium solving the rapid

binding TMDD model using the explicit solution is pro-

vided in the supplementary material. Computer simulations

of TMDD model with two drugs competing for same

receptor were performed using the MATLAB m-function

equilibrium. To make a comparison of TMDD models

between one drug and two drugs situation, free drug con-

centrations were simulated with KDA = KDB and

KDA = 10KDB. From Fig. 2, it can be seen that for

KDA = KDB = 1, the pharmacokinetic profiles for CA and

CB are identical, resembling the TMDD model with one

drug. When KDA = 1 and KDB = 0.1, compared with the

simulation using KDA = KDB = 1, the CB(0) (free drug

concentration for drug B at t = 0) decreased instanta-

neously, whereas the CA(0) (free drug concentration for

drug A at t = 0) increased instantaneously. This is due to

the stronger receptor binding affinity of CB, which results

in a decrease of free drug concentration CB(0) after the

equilibrium. Since less receptor are available for drug A,

CA(0) increases. The difference between CA(0) and CB(0) is

more marked with lower IV bolus dose, when bigger por-

tion of drug binds to receptors. Due to the stronger receptor

binding affinity, drug B is eliminated faster than drug A

(Fig. 2).

fmid=0

zlow:=zmid

flow:=fmid

zhigh:=zmid

fhigh:=fmid

START

z:=zmid

STOP

Yes

Yes

No

No

No

No

Yes

Yes

zhigh-zlow<acc

n > Nmax

flowfmid >0

n:=0
zlow:=0
zhigh:=min{1,aA+aB}
flow:=f(zlow)
fhigh:=f(zhigh)

n:=n+1
zmid:=(zlow+zhigh)/2
fmid:=f(zmid)

Fig. 3 A flow chart illustrating the bisection algorithm for solving

equation f(z) = 0. The START and STOP steps denote the beginning

and end of the algorithm, respectively. The rectangular boxes

represent the assignment steps whereas the diagonal boxes refer to

conditional statement with two possible outcomes Yes (if condition is

true), and No (if condition is false). The arrows indicate the next

steps. The meanings of the symbols aA, aB, acc, and Nmax are

explained in the methods and results

Table 1 Parameter values used for simulating the time courses of

model variables from Example 1

Parameter Description Value References

kret = kup

(day-1)

Endosome uptake and

recycle

1.03 [18]

kdeg (day-1) First-order elimination 0.43 [18]

Rtot (nM) Total FcRn receptor 1.22 [18]

VE = Vc

(mL kg-1)

Volume of distribution 66.9 [18]

CA0 (nM) Baseline for free

endogenous IgG

14700 [18]

KDA (nM) Equilibrium dissociation

constant for

endogenous IgG

4.8 [18]

InA0

(nM h-1)

Zero-order production

for endogenous IgG

108 Calculated

KDB (nM) Equilibrium dissociation

constant for exogenous

IgG

4.8, 0.48,

0.048
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Numerical solution of equilibrium equations

If KDA = KDB, then the solutions of the cubic equation

Eq. 43 are expressed by means of complex numbers or

trigonometric functions. None of these representations is

conclusive of which of three roots satisfies Eq. 41. A

numerical approach of solving Eq. 43 based on the bisection

method [16] can be applied where the solution is guaranteed

to satisfy Eq. 41. A flow diagram for the bisection method is

shown in Fig. 3. One needs to evaluate the cubic polynomial:

f ðzÞ ¼ z3 þ bz2 þ czþ d ð62Þ

at lower zlow and upper zhigh bounds of the root

zlow \ z \ zhigh in an iterative manner until the required

accuracy (acc) is reached. Each iteration decreases the

interval [zlow, zhigh] by half starting from an interval [0, min{1,

aA ? aB}] which is contained in the interval [0, 1].

Consequently, the accuracy of the solution after n iterations is

less than 2-n. For p digit accuracy (acc = 10-p), the maximal

number of iterations Nmax C p log(10)/log(2), which yields

for p = 8 Nmax = 27, and for p = 16 Nmax = 54.

If KDA = KDB, then the root of Eq. 57 satisfying Eq. 41

is identified by Eq. 61, and there is no need for a numerical

method for solving the quadratic equation in Eq. 57.

Nevertheless, the bisection method will work as well with

f(z) defined by the left hand side of Eq. 57. An imple-

mentation of the numerical algorithm in a program solving

the equilibrium equations Eqs. 27 and 28, requires con-

sidering two cases: KDA = KDB, and KDA = KDB. In the

former case the root z is given by Eq. 61, and the free drug

concentrations CA and CB by Eq. 40. In the latter case the

root z is produced by the bisection method, and CA and CB

are expressed by Eq. 40. A MATLAB m-function equi-

librium_numer solving the rapid equilibrium TMDD model

using the numerical approach is provided in the supple-

mentary material.

Differential solution of equilibrium equations

The equilibrium equations Eqs. 27 and 28 are algebraic

equations in unknowns CA and CB that are determined by

the model variables CAtot, CBtot, and Rtot. As demonstrated

in previous sections, solving equilibrium equations is

mathematically challenging and requires an extra effort.

Alternatively, one can differentiate both sides of Eqs. 27

and 28 and obtain a system of differential equations in

unknowns dCA/dt and dCB/dt. This approach might bypass

the need of solving the equilibrium equations using the

bisection method (as demonstrated in Example 1). The

system of differential solutions is linear with respect to

these derivatives and can be solved using the Cramer’s rule

[17] (see ‘‘Appendix 2’’ section):

where

E ¼ Rtot � CAtot � CBtot þ CA þ CB þ KDA ð65Þ
F ¼ Rtot � CAtot � CBtot þ CA þ CB þ KDB ð66Þ

CPAtot ¼ InAðtÞ � ðkelA þ kptAÞCA þ ktpAATA=

Vc � kintAðCAtot � CAÞ ð67Þ

CPBtot ¼ InBðtÞ � ðkelB þ kptBÞCB þ ktpBATB=Vc

� kintBðCBtot � CBÞ ð68Þ

RPtot ¼ ksyn � kdegRtot � ðkintA � kdegÞðCAtot � CAÞ
� ðkintB � kdegÞðCBtot � CBÞ ð69Þ

The initial conditions for Eqs. 63 and 64 require solving

the equilibrium equations Eqs. 27 and 28 evaluated at

t = 0 for CA(0) and CB(0)

ðRtotð0Þ � CAtotð0Þ � CBtotð0Þ þ CAð0Þ þ CBð0ÞÞCAð0Þ
¼ KDAðCAtotð0Þ � CAð0ÞÞ

ð70Þ

ðRtotð0Þ � CAtotð0Þ � CBtotð0Þ þ CAð0Þ þ CBð0ÞÞCBð0Þ
¼ KDBðCBtotð0Þ � CBð0ÞÞ

ð71Þ

where CAtot(0), CBtot(0), and Rtot(0) are defined by Eqs. 30,

32, and 34, respectively. It should be noted that the dif-

ferential equations Eqs. 63–64 are only valid for the time

interval where the time derivatives of CA and CB exist. If an

additional bolus dose was administered at time t0, then in

addition to adjusting the values of CAtot and CBtot for this

input, the equilibrium equations Eqs. 63–64 should be

solved at t = t0 for CA(t0) and CB(t0), and these values

dCA

dt
¼ KDACPAtotF � CAFðRPtot � CPAtot � CPBtotÞ þ KDACBCPAtot � KDBCACPBtot

EF þ FCA þ ECB
ð63Þ

dCB

dt
¼ KDBCPBtotE � CBEðRPtot � CPAtot � CPBtotÞ þ KDBCACPBtot � KDACBCPAtot

EF þ FCA þ ECB
ð64Þ
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should be used as initial conditions for the ODE system

Eqs. 63–69 for times t [ t0.

The rapid binding model is now fully defined by

Eqs. 22–26, 30–39, and 63–71. However, since the dif-

ferential equations for CA and CB are part of the model

description, one can use the Gaddum equations Eqs. 38 to

eliminate the differential equations for CAtot and CBtot:

CAtot ¼ CA þ
RtotCA=KDA

1þ CA=KDA þ CB=KDB
ð72Þ

CBtot ¼ CB þ
RtotCB=KDB

1þ CA=KDA þ CB=KDB
ð73Þ

A MATLAB m-function equilibrium_diff solving the rapid

equilibrium TMDD model using the differential solutions

is provided in the supplementary material.

Example 1: exogenous and endogenous IgG competing

for FcRn receptor

Therapeutic monoclonal antibodies (mAbs) have been

under rapid development. The vast majority of the

approved mAb therapeutics are of immunoglobulin G

(IgG) format. It is known that the neonatal Fc receptor

(FcRn) functions as a ‘‘salvage receptor’’ which contributes

to the extended pharmacokinetics of IgG. One complexity

when studying the IgG/FcRn interaction in vivo is that the

high level of endogenous IgGs which compete for FcRn

binding with exogenous IgG.

We adopted a previously published model by Hansen

et al. [18] to account for the competitive interaction

between endogenous IgG (A) and exogenous IgG (B) and

FcRn receptor. This model is based on the protection of

IgG catabolism by the FcRn receptor. The model structure

is shown in Fig. 4. IgGs in the blood central compartment

(CA, CB) are taken up into endosomal compartment by fluid

phase endocytosis, represented by a first-order process

(kup). Once inside the endosome, free IgGs (CEA, CEB) can

bind to FcRn receptor to form IgG/receptor complexes

(RCEA, RCEB). Bound IgGs are recycled and returned to the

central compartment by a first-order process kret, while

unbound IgGs (CEA, CEB) proceed to the lysosomes and

undergo degradation by a first-order process kdeg. The

differential equations that describe the model are as

follows:

dCA

dt
¼ InA0 � kupCA þ kret

VE

Vc
ðCEAtot � CEAÞ ð74Þ

dCB

dt
¼ �kupCB þ kret

VE

Vc
ðCEBtot � CEBÞ ð75Þ

dCEAtot

dt
¼ kup

VC

VE
CA � kdegCEA � kretðCEAtot � CEAÞ ð76Þ

dCEBtot

dt
¼ kup

VC

VE
CB � kdegCEB � kretðCEBtot � CEBÞ ð77Þ

where CEAtot and CEBtot denote the total IgG concentrations

in the endosomal compartment. We assume that the total

FcRn concentration Rtot is constant. The free endosomal

Fig. 4 Model diagram for IgG

pharmacokinetics with

exogenous and endogenous IgG

competing for FcRn receptor.

Symbols are defined in Example

1
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IgG concentrations CEA and CEB satisfy the equilibrium

equations:

CEAðRtot � CEAtot � CEBtot þ CEA þ CEBÞ
CEAtot � CEA

¼ KDA ð78Þ

CEBðRtot � CEAtot � CEBtot þ CEA þ CEBÞ
CEBtot � CEB

¼ KDB ð79Þ

Endogenous production rate InA0 can be represented by:

InA0 ¼ kupCA0 � kret
VE

Vc
ðCEAtot0 � CEA0Þ ð80Þ

CEAtot0 ¼
kup

kret

Vc

VE
CA0 �

kdeg � kret

kret
CEA0 ð81Þ

The initial conditions for Eqs. 74–77:

CAð0Þ ¼ CA0 ð82Þ

CBð0Þ ¼
Dose

Vc
ð83Þ

CEAtotð0Þ ¼ CEAtot0 ð84Þ

CEBtotð0Þ ¼ 0 ð85Þ

where CEA0 and CEAtot0 satisfy the equilibrium equation

Eq. 78:

CEA0ðRtot � CEAtot0 þ CEA0Þ
CEAtot0 � CEA0

¼ KDA ð86Þ

The simulations were performed using the differential

method of solving the equilibrium equations implemented

in ADAPT 5 program [19]. In this case, using the differ-

ential method bypasses the need of solving the equilibrium

equations using the bisection method. The initial conditions

of the differential equations can be solved explicitly. The

ADAPT 5 code is provided in the supplementary material.

For simulations, most model parameters, including

endogenous IgG level, were taken from the literature [18]

(Table 1). The endogenous IgG production rate InA0,

which is represented by a zero-order process, was calcu-

lated based on mass balance at steady-state. To study the

effect of FcRn binding affinity of exogenous IgG on con-

centration level of endogenous IgG and exogenous IgG

itself, equilibrium dissociation constant of exogenous IgG

KDB = KDA, 0.1 KDA, and 0.01 KDA, were used for simu-

lations. Simulated plasma pharmacokinetic profiles of

endogenous IgG and exogenous IgG following adminis-

tration of a single IV bolus dose of 10 mg/kg (66.7 nmol/

kg) are shown in Fig. 5. As shown in the upper panel, the

exogenous IgG exhibits typical biphasic profile, composed

of a rapid distribution phase and a slow elimination phase.

Slower decline of the terminal phase of the concentration–

time profile of IgG with higher binding affinity is observed.

Such an observation is consistent with the FcRn protection

theory: IgG with higher FcRn binding affinity has the

competitive advantage and is expected to outcompete the

high concentration of endogenous IgG for FcRn binding.

Therefore, more exogenous IgG is protected by FcRn from

lysosomal degradation, which results in longer systemic

circulation. Shown in the lower panel are the simulated

profiles for endogenous IgG. With the competition from the

administered exogenous IgG for FcRn binding, less

endogenous IgG is protected by FcRn, the elimination of

endogenous IgG is accelerated, and the ‘‘steady-state’’ of

endogenous IgG is broken, which leads to the descending

in the endogenous IgG concentration–time profile. With the

exogenous IgG eliminated from the circulation with time,

the competition for FcRn protection from the exogenous

IgG is also diminishing and the endogenous IgG is going

back to the ‘‘steady-state’’, showing in the endogenous IgG

profile as it is returning back to the baseline. With

administration of IgG with higher FcRn binding affinity,

which means stronger competition for FcRn protection, the

endogenous IgG profile reflects a deeper decline from the

baseline and a delayed returning to the baseline. Such
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Fig. 5 Endogenous IgG plasma concentration profiles (upper panel)
and exogeneous plasma concentration profiles (lower panel) after

administration of 10 mg/kg (66.7 nmol/kg) exogenous IgG with

equilibrium dissociation constant KDB = KDA, 0.1 KDA, and

0.01 KDA. Simulations were performed in ADAPT 5 using the

differential solution of equilibrium equations
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simulation results are consistent with the literature obser-

vations [20]. Vaccaro et al. found that antibodies with the

enhanced FcRn binding affinity at both acidic and neutral

pH conditions were more potent in lowering endogenous

IgG concentration compared to IVIG treatment (which has

similar FcRn binding affinity to endogenous IgG) [20].

Example 2: recombinant human EPO analogue

and endogenous EPO competing for EPOR

In addition to the recombinant human erythropoietin, var-

ious erythropoiesis-stimulating agents (ESAs) have been

developed such as darbepoetin [21], continuous erythro-

poietin receptor activator [22], peptidic erythropoiesis

receptor agonist [23], etc. These ESAs compete with

endogenous erythropoietin for erythropoietin receptor

(EPOR) binding and stimulate the proliferation and dif-

ferentiation of erythroid progenitor cells. Compared with

endogenous erythropoietin, they have lower receptor

binding affinity and longer half-life. A TMDD model with

competitive interaction between endogenous erythropoie-

tin and exogenous ESA provides a more mechanistic

description for the pharmacokinetics and may offer further

insights in the pharmacodynamics of the latter [10].

We adopted a previously published TMDD model for

EPO by Woo et al. [24] and further introduced competitive

interaction between endogenous EPO and exogenous ESA.

The model structure is presented in Fig. 6. This model is

similar to the model proposed in Fig. 1. kEPO represents the

zero-order production rate for the endogenous EPO. Dar-

bepoetin (DA) was employed as exogenous ESA in the

model. The endogenous EPO (CA) and exogenous DA (CB)

competitively bind to the EPOR (R), forming drug-receptor

complexes (RCA and RCB). The drug-receptor complexes

are internalized through the same first-order process [25].

The differential equations that describe the model are as

follows:

dCAtot

dt
¼ kEPO � ðkelA þ kptAÞCA þ ktpAATA=

Vc � kintðCAtot � CAÞ ð87Þ

dATA

dt
¼ kptAVcCA � ktpAATA ð88Þ

dCBtot

dt
¼ �ðkelB þ kptBÞCB þ ktpBATB=Vc � kintðCBtot � CBÞ

ð89Þ
dATB

dt
¼ kptBVcCB � ktpBATB ð90Þ

dRtot

dt
¼ ksyn�kdegRtot�ðkint�kdegÞðCAtotþCBtot�CA�CBÞ

ð91Þ

where CA and CB are the only solutions of the equilibrium

equations Eq. 18 rewritten as follows:

ðRtot � CAtot � CBtot þ CA þ CBÞCA ¼ KDAðCAtot � CAÞ
ð92Þ

ðRtot � CAtot � CBtot þ CA þ CBÞCB ¼ KDBðCBtot � CBÞ
ð93Þ

such that:

0\CA\CAtot and 0\CB\CBtot ð94Þ

The initial conditions for Eqs. 87–91 are defined by their

steady-states and IV bolus doses:

CAtotð0Þ ¼
Rtot0CA0=KDA

1þ CA0=KDA
þ CA0 ð95Þ

ATAð0Þ ¼ kptAVcCA0=ktpA ð96Þ

CBtotð0Þ ¼
DoseB

Vc
ð97Þ

Fig. 6 Model diagram for

target-mediated drug disposition

for darbepoetin competing for

EPO receptor with endogenous

erythropoietin. Symbols are

defined in Example 2
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ATBð0Þ ¼ 0 ð98Þ
Rtotð0Þ ¼ Rtot0 ð99Þ

Here, RCA0 represents the EPO-receptor complex

concentration that can be calculated from:

RCA0 ¼
RtotCA0=KDA

1þ CA0=KDA
ð100Þ

The receptor synthesis rate can be calculated from Eq. 91:

ksyn ¼ kdegðRtot0 � RCA0Þ þ kintARCA0 ð101Þ

The zero-order production rate for endogenous EPO can be

defined by the steady state for Eq. 87:

kEPO ¼ kelAC0 þ kintRCA0 ð102Þ

The simulated time courses of CA, CB and CA ? CB are

shown in Fig. 7. The parameter values are listed in

Table 2. The simulations were performed using the

bisection method of solving the equilibrium equations

implemented in Phoenix WinNonlin 6.0 (Pharsight Cor-

poration, Cary, NC). The differential solution of the

equilibrium equations was not used since the initial con-

dition of the differential equations for free drug after IV

bolus dose has to be solved using the bisection method.

Therefore, converting the equilibrium equations to a

system of differential equations is somewhat redundant in

this case. The WinNonlin code is provided in the sup-

plementary material.

The systems with and without endogenous EPO were

simulated and presented in Fig. 7. It can be seen that the

concentration of endogenous EPO goes up immediately

after the IV bolus dosing of exogenous darbepoetin, and

then returns to baseline. When dose equals 0.1 nmol/kg,

the saturation of receptor-mediated clearance of endog-

enous EPO by exogenous DA leads to a temporary

increase in the endogenous EPO concentration, followed

by a decreasing phase. The darbepoetin PK profile in the

middle panel shows that without presence of endogenous

EPO, the DA concentration decreases faster. The lower

panel in Fig. 7 shows that after IV bolus dose, the sum

of DA and EPO declines more slowly with the presence

of endogenous EPO, especially for lower IV bolus dose.

Discussion

The rapid equilibrium TMDD model for two drugs com-

peting for the same receptor requires solving the equilibrium

equations for the free drug concentrations. Contrary to the

single drug situation, these constitute a system of two sec-

ond-order polynomials that cannot be reduced to a system of

two quadratic equations for each drug concentration sepa-

rately. The system can be reduced to a single cubic equation

that has an explicit solution. Consequently, the free drug

concentrations are expressed as explicit functions of the

model parameters, total receptor, and total drug concentra-

tions. However, the explicit relationships contain one out of

three solutions to a cubic equation that employs complex

numbers. An additional hurdle is caused by the lack of

Fig. 7 Simulated concentration–time profiles for escalating IV bolus

doses (0.1, 0.02, 0.002 nmol/kg) of darbepoetin (DA). Upper panel:
concentration–time profiles of endogenous EPO. Dash-dot line

represents the baseline EPO level. Middle panel: concentration–time

profiles of darbepoetin. Lower panel: concentration–time profile of

the sum of DA and EPO. Solid lines represent these profiles when

kEPO = 0.00043 nM h-1. Dash lines represent these profiles when

kEPO = 0. Other parameters for simulation are listed in Table 2.

Simulations were performed in Phoenix WinNonlin using the

bisection method of solving equilibrium equations
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information which of three roots is the only admissible. From

a programming point of view, if one wants to code the rapid

binding TMDD model, PK software needs to support com-

plex numbers and a set of conditional statements needs to be

implemented to select a unique solution out of three roots of

the cubic equation. Worth mentioning is also a relatively

high complexity of the explicit formulas.

Mathematically, the rapid binding TMDD model is a

system of differential–algebraic equations [26], where the

equilibrium equations stand for the algebraic part of the

problem. For numerical solutions, the differential equation

solver needs to be augmented by a solution of the algebraic

equations that can be obtained by a number of robust algo-

rithms such as the Newton method [16]. In our approach the

numerical solution is obtained only for the cubic equation

which simplifies the algebraic part of the problem and

increases the numerical stability of the method. The selected

bisection method is not the fastest, but because of the known

lower and upper bounds for the solution, offers a straight-

forward control of the accuracy of the solution. Additionally,

it is relatively easy to implement in a code of PK software.

Instead of solving the equilibrium equations for free drug

concentrations, one can consider solving a system of dif-

ferential equations obtained by differentiation of the equi-

librium equation with respect to time and solving it for the

time derivatives of free drug concentrations. Such an

approach has been proposed to obtain the Michaelis–Menten

approximation of the rapid binding TMDD model [27].

However, the equilibrium equations still need to be solved to

obtain the initial conditions for the system of differential

equations. If the bolus doses were administered at other

times, then at each dosing time the equilibrium equations

need to be solved, and the differential equations describing

the free drug concentrations need to be initiated at these

values. This implies that, at least from the computational

point of view, converting the equilibrium equations to a

system of differential equations is redundant. However, as

demonstrated in our Example 1, for some applications of the

rapid binding TMDD model the initial conditions can be

simplified and solving the equilibrium equations is not

necessary.

The rapid binding assumption results in the equilibrium

equations. An assumption regarding slow change of the

drug-receptor complex results in the quasi-steady-state

approximation of the TMDD model [12]. The quasi-steady-

state assumption applied to two drugs competing for the

same target will lead to a system of equilibrium equations

equivalent in structure to ones discussed in this report.

Consequently, the presented methods of solving the rapid

binding TMDD model apply as well for the quasi-steady-

state TMDD model where the equilibrium constant KD is

replaced by the constant KSS. However, the pharmacolog-

ical interpretation of the equilibrium equations through the

Gaddum equations remains valid only for the former.

A complete demonstration of developed algorithm

requires model fitting. However, to fit such a model, the

first step is to solve the model equations using PK software.

The investigation in this paper demonstrated that obtaining

the accurate solution of such model in PK software was not

a trivial task. Further studies involving model fitting and

parameter estimation are necessary to study the overall

performance of this model and they are currently under

investigation.

Therapeutic antibodies and hematopoietic growth factors

were used as examples to emphasize the importance of the

rapid binding TMDD model in describing pharmacokinetics

Table 2 Parameter values used for simulating the time courses of model variables from Example 2

Parameter Description Value Reference

Vc (mL kg-1) Volume of distribution 46.97 [24]

kelA (h-1) First-order elimination for EPO 0.0949 [24]

kptA (h-1) Tissue distribution for EPO 0.0359 [24]

ktpA (h-1) Tissue distribution for EPO 0.1151 [24]

kint (h-1) Receptor internalization 0.2216 [24]

kdeg (h-1) Receptor degradation 0.8974 [24]

KDA (nM) Equilibrium dissociation constant for EPO 0.0123 [24]

R0 (nM) Baseline free receptor 0.0162 [24]

kEPO (nM h-1) Zero-order production for EPO 0.00043 [24]

ksyn (nM h-1) Zero-order receptor synthesis 0.0122 [24]

CA0 (nM) Baseline for free EPO 0.00343 [24]

kelB (h-1) First-order elimination for DA 0.0413 [31]

kptB (h-1) Tissue distribution for DA 0.0047 [31]

ktpB (h-1) Tissue distribution for DA 0.00669 [31]

KDB (nM) Equilibrium dissociation constant for DA 0.0529 [21]
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of drugs competing for the same receptor with endogenous

substances. However, the presented model is structured to

account for any two drugs binding to the same target. The

competition for the same receptor between exogenous and

endogenous compounds has been reported for a number of

protein drugs. An antibody MEDI-575 selectively binds to

platelet-derived growth factor receptor (PDGFRa) and

blocks Platelet-Derived Growth Factor-AA, a ligand for

PDGFRa [9]. A peptibody romiplostim competes with

endogenous thrombopoietin for the c-Mpl receptor expres-

sed on platelets and platelets precursors [28]. Similarly, a

small molecule eltrombopag is an agonist of the c-Mpl

receptor [29]. Another therapeutic application is when two

exogenous drugs targeting the same receptor are adminis-

tered simultaneously or consecutively. In the latter case, the

overlap between the washout of one drug and onset of

another requires a competitive interaction. Such situation

takes place for a two-stage treatment approach for targeting

the serum amyloid P component (SAP) by a small molecule

Carboxy Pyrrolidine Hexanoyl Pyrrolidine Carboxylate

(CPHPC) and anti-SAP monoclonal antibody [30]. First,

CPHPC is administered to deplete SAP from plasma, and

then anti-SAP antibody is given to remove SAP from amy-

loid tissues. All of the above examples can potentially

require an equilibrium assumption to describe the available

PK data, and the techniques presented here can be utilized.

As the biotechnology of therapeutic proteins advances, one

may expect an increasing number of competitive agonists or

antagonists to be developed.

In summary, we proposed a rapid binding TMDD model

to describe pharmacokinetics of two drugs competing for

the same receptor. Three methods of solving the presented

models were introduced involving explicit equations,

numerical bisection algorithm, and differential representa-

tion. The first method was applied to simulate the signature

profiles of the model solutions. The two remaining methods

were implemented in PK models of a therapeutic antibody

and an erythropoiesis stimulating agent competing with the

endogenous substances for the same receptor.
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Appendix 1

Existence of the unique solution of Eqs. 27 and 28

Let x and y denote the RCA and RCB divided by Rtot:

x ¼ RCA

Rtot
and y ¼ RCB

Rtot
ð103Þ

Then Eqs. 27 and 28 can be expressed in the following

form:

ð1� x� yÞðaA � xÞ ¼ kAx ð104Þ
ð1� x� yÞðaB � yÞ ¼ kBy ð105Þ

Note that because of definitions in Eqs. 103 and 42, x and y

satisfy the following relationships:

0\x\aA; 0\y\aB; and xþ y\1 ð106Þ

Existence Theorem

Let kA, kB, aA, aB [ 0. If kA = kB, then there exist exactly

three solutions to Eqs. 104 and 105: (x1, y1), (x2, y2), (x3,

y3) such that

(a) If kB [ kA, then:

0\x1\aA\x2\x3; y3\0\y1\aB\y2; and x1 þ y1\1

ð107Þ

(b) If kB \ kA, then:

x3\0\x1\aA\x2 and 0\y1\aB\y2\y3; and

x1 þ y1\1 ð108Þ

If kA = kB, then there exist exactly two solutions to

Eqs. 104 and 105: (x1, y1), (x2, y2) such that:

0\x1\aA\x2 and 0\y1\aB\y2; and x1 þ y1\1

ð109Þ

Proof of Existence Theorem is based on the observa-

tion that the solutions of Eqs. 104 and 105 can be geomet-

rically interpreted as intersections of the following

curves:

y ¼ 1� xþ kAx

x� aA
ð110Þ

x ¼ 1� yþ kBy

y� aB
ð111Þ

The curves of Eqs. 110 and 111 are transformed Eqs. 104

and 105, respectively. The asymptotes of Eq. 110 are:

x ¼ aA and y ¼ 1þ kA � x ð112Þ

whereas the asymptotes for Eq. 111 are:

y ¼ aB and x ¼ 1þ kB � y ð113Þ

If kB [ kA, the examination of the monotonicity of Eqs. 110

and 111 and the horizontal and vertical asymptotes imply

that there are two intersection points (x1, y1) and (x2, y2) such

that:
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0\x1\aA\x2 and 0\y1\aB\y2 ð114Þ

as shown in Fig. 8. kB [ kA implies that the diagonal

asymptote for Eq. 110 is below the diagonal asymptote for

Eq. 111. Consequently, there is a third intersection point

(x3, y3) such that:

x2\x3 and y3\0 ð115Þ

If kB \ kA, the positions of the diagonal asymptotes

reverses and the third intersection (x3, y3) satisfies the

following:

x3\0 and y2\y3 ð116Þ

If kB = kA, then the existence of (x1, y1) and (x2, y2) satis-

fying Eq. 109 is a consequence of the same argument. Since

the diagonal asymptotes collapse into one (see Fig. 8), there

is no third intersection point. A formal proof of Existence

Theorem not referring to a geometric interpretation of

Eqs. 104 and 105 presented in Fig. 8 follows below.

Define the functions:

f ðxÞ ¼ 1� x� kAx

aA � x
; x 6¼ aA and

gðyÞ ¼ 1� y� kBy

aB � y
; y 6¼ aB ð117

Since the derivatives are negative:

df

dx
ðxÞ ¼ �1� kAaA

ðaA � xÞ2
\0 and

dg

dy
ðyÞ ¼ �1� kBaB

ðaB � BÞ2
\0 ð118Þ

both functions are strictly decreasing. Because a

discontinuity at x = aA, there are two solutions to the

equation:

f xð Þ ¼ 0 ð119Þ

xa ¼
1

2
1þ aA þ kA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ aA þ kAÞ2 � 4aA

q

� �

ð120Þ

and

xb ¼
1

2
1þ aA þ kA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ aA þ kAÞ2 � 4aA

q

� �

ð121Þ

One can verify by direct calculation that:

0\xa\ minf1; aAg� maxf1; aAg\xb ð122Þ

Similarly, there are two solutions to the equation:

g yð Þ ¼ 0 ð123Þ

ya ¼
1

2
1þ aB þ kB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ aB þ kBÞ2 � 4aB

q

� �

ð124Þ

and

yb ¼
1

2
1þ aB þ kB þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ aB þ kBÞ2 � 4aB

q

� �

ð125Þ

Additionally

0\ya\ minf1; aBg� maxf1; aBg\yb ð126Þ

Because function g(y) is strictly decreasing and

continuous in the intervals (-?, aB) and (aB, ?), there

exist inverse functions h1(x) and h2(x), respectively, such

that:

g h1 xð Þð Þ ¼ x and g h2 xð Þð Þ ¼ x;�1\ x \1; ð127Þ
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Fig. 8 Graphical representation of solutions of the equilibrium

equations when KDA = KDB (upper panel) and KDA = KDB (lower
panel). The equilibrium equations Eqs. 27 and 28 are equivalent to a

system of two hyperbolic equations represented by the solid lines.

Their intersection coordinates (x1, y1), (x2, y2), (x3, y3) (upper panel),
and (x1, y2), (x2, y2) (lower panel) are all possible solutions of the

system. The dashed lines represent the asymptotes for the hyperbolas.

In case KDA = KDB (equivalent to kA = kB) the diagonal asymptotes

collapse to a single one reducing the number of solutions to two. The

vertical and horizontal asymptotes intersect the axes at aA and aB,

respectively. Only the solution (x1, y1) is inside the rectangle of

vertices defined by 0, aA, and aB
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To show existence of (x1, y1) consider a new function

F1(x) = f(x) - h1(x) defined on the interval 0 B x B xa.

Then Eq. 126 implies that:

F1 0ð Þ ¼ 1� ya [ 0 ð128Þ

As an inverse to a decreasing function h1(x) is also

decreasing and Eq. 122 implies h1(xa) [ h1(1) = 0, and

consequently

F1 xað Þ ¼ 0� h1 xað Þ\0 ð129Þ

Because the function F1(x) is continuous, and it changes the

sign at the ends of the interval [0, xa], the intermediate value

theorem guarantees there exists a 0 \ x1 \ xa such that:

F1 x1ð Þ ¼ 0 ð130Þ

Let y1 = h1(x1). Then Eqs. 130, 127, and 117 imply that (x1,

y1) is a solution to Eqs. 104 and 105. Since xa \ aA, then

x1 \ aA. This and Eq. 104 also yields that x1 ? y1 \ 1.

To show existence of (x2, y2) consider a new function

F2(x) = f(x) - h2(x) defined on the interval aA \ x B xb.

By definition h2(xb) [ aB [ 0, and consequently

F2 xbð Þ ¼ 0� h2 xbð Þ\0 ð131Þ

From Eq. 117 it follows that:

lim
x!aAþ

F2ðxÞ ¼ þ1 ð132Þ

The intermediate value theorem implies there exists a

aA \ x2 \ xb such that:

F2 x2ð Þ ¼ 0 ð133Þ

Let y2 = h2(x2). By definition of h2(x), y2 [ aB. Also,

Eqs. 133, 127, and 117 imply that (x2, y2) is a solution to

Eq. 104.

To show existence of (x3, y3) for the case kA \ kB

consider a new function F3(x) = F(x) - h1(x) defined on

the interval xb B x \?. The function h1(x) is decreasing

and Eq. 112 implies h1(xb) \ h1(1) = 0. Hence

F3 xbð Þ ¼ 0� h1 xbð Þ[ 0 ð134Þ

Eq. 117 implies that:

f ðxÞ � 1þ x� kA ! 0 as x!1; and

gðyÞ � 1þ y� kB ! 0 as y! �1 ð135Þ

As a decreasing function h1(x) ? -? as x ? ?.

Consequently, Eq. 135 implies that:

gðh1ðxÞÞ � 1þ h1ðxÞ � kB ! 0 as x!1 ð136Þ

Hence and from Eq. 127

h1ðxÞ � 1þ x� kB ! 0 as x!1 ð137Þ

Thus

F3ðxÞ ! kA � kB\0 as x!1 ð138Þ

The function F3(x) changes its sign at the ends of the

interval xb B x \?. The intermediate value theorem

implies that there exists xb \ x3 \? such that:

F3 x3ð Þ ¼ 0 ð139Þ

Since x2 \ xb, then x2 \ x3. Let y3 = h1(x3), then

y3 \ h1(1) = 0. Also Eqs. 137, 127, and 117 imply that

(x3, y3) is a solution to Eq. 104.

A similar argument holds to show existence of (x3, y3)

for the case kA [ kB. Consider a function F4(x) = f(x) -

h2(x) defined on the interval -?\ x B 0. Eqs. 117, 123,

and 126 imply that:

F4 0ð Þ ¼ 1� yb\0 ð140Þ

The same derivations as above lead to:

F4ðxÞ ! kA � kB [ 0 as x!1 ð141Þ

The intermediate value theorem implies that there exists

x3 \ 0 such that:

F4 x3ð Þ ¼ 0 ð142Þ

Let y3 = h2(x3). Since h2(x) is decreasing y3 [
h2(0) = yb [ y2, and Eq. 117 implies that y3 [ y2. Also

Eqs. 137, 127, and 117 imply that (x3, y3) is a solution to

Eq. 104.

To show uniqueness of (x1, y1), (x2, y2), (x3, y3) for

kA = kB one can notice that x1, x2, and x3 pairwise distinct.

There are also roots of a polynomial obtained from Eqs. 104

and 105 as follows. One can calculate from Eq. 104 the term:

yðaA � xÞ ¼ ð1� xÞðaA � xÞ � kAx ð143Þ

To enforce this term in Eq. 105 multiply both sides by

(aA-x)2:

ðð1� xÞðaA � xÞ � yðaA � xÞÞðaBðaA � xÞ � yðaA � xÞÞ
¼ kByðaA � xÞ2 ð144Þ

Eq. 143 implies that:

kAx ¼ ð1� xÞðaA � xÞ � yðaA � xÞ ð145Þ

Substituting Eqs. 143 and 145 into A38 yields:

kAxðaBðaA � xÞ � ð1� xÞðaA � xÞ þ kAxÞ
¼ kBðaA � xÞðð1� xÞðaA � xÞ � kAxÞ ð146Þ

which can further transformed to

kAaBxðaA � xÞ
� kAxþ kBðaA � xÞð Þ ð1� xÞðaA � xÞ þ kAxð Þ
¼ 0 ð147Þ

A leading term of the polynomial in Eq. 147 is (kB -

kA)x3. Therefore Eq. 147 is a cubic equation with three

distinct roots x1, x2, and x3. If (x*, y*) is a solution to

Eqs. 104 and 105, then x* must be a solution to Eq. 147
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and hence x* = xi for some i = 1, 2, 3. Eq. 104 implies

that x* = aA and Eq. 143 yields:

y� ¼ ð1� x�ÞðaA � x�Þ � kAx�

aA � x�
ð148Þ

Since (xi, yi) is a solution to Eq. 104 as well yi can be

expressed by the right hand side of Eq. 148 with xi

substituted for x* and hence y* = yi.

To show uniqueness of (x1, y1) and (x2, y2) for kA = kB

one can notice that then the polynomial equation Eq. 147

reduces to a quadratic equation since the highest order term

(kB - kA)x3 vanishes. This quadratic equation has two

distinct roots x1 and x2. If (x*, y*) is a solution to Eqs. 104

and 105 then x* must be also a solution to the quadratic

equation Eq. 147, and consequently x* = xi for some

i = 1, 2. Then y* = yi by the same argument as above.

This completes proof of Existence Theorem.

Derivation of Eqs. 40, 43, and 57

For the case kA = kB, to solve Eqs. 104 and 105 one can

add them side by side:

ð1� x� yÞðaA þ aB � x� yÞ ¼ kAxþ kBy ð149Þ

Multiplying Eq. 104 by kB and Eq. 105 by kA followed and

adding equation side by side yields:

ð1� x� yÞðkBaA þ kAaB � kBx� kAyÞ ¼ kAkBðxþ yÞ
ð150Þ

Since

kBxþ kAy ¼ ðkA þ kBÞðxþ yÞ � ðkAxþ kByÞ ð151Þ

Eq. 151 can be substituted in Eq. 150:

ð1� x� yÞðkBaA þ kAaB þ kAxþ kBy� ðkA þ kBÞðxþ yÞÞ
¼ kAkBðxþ yÞ

ð152Þ

With introducing a new variable:

z ¼ xþ y ð153Þ

Eq. 152 becomes:

ð1� zÞðkBaA þ kAaB þ kAxþ kBy� ðkA þ kBÞzÞ ¼ kAkBz

ð154Þ

The right hand side of Eq. 149 coincides with a term in

Eq. 154 that can be replaced by the left hand side of

Eq. 149, resulting in:

ð1� zÞðkBaA þ kAaB þ ð1� zÞðaA þ aB � zÞ
� ðkA þ kBÞzÞ ¼ kAkBz

ð155Þ

The only unknown in Eq. 50 is z and ordering the terms by

the power of z produces a cubic equation Eq. 43.

If kA = kB, then Eq. 149 assumes the following form:

ð1� zÞðaA þ aB � zÞ ¼ kAz ð156Þ

Rearranging terms in Eq. 156 and ordering them by the

power of z yields Eq. 57. In order to express CA and CB in

terms of z, one should notice that according to Eq. 153:

CAtot � CA þ CBtot � CB ¼ Rtotz ð157Þ

Upon substitution of Eq. 157 to the Eqs. 27 and 28 they

reduce to:

Rtotð1� zÞCA ¼ KDAðCAtot � CAÞ ð158Þ
Rtotð1� zÞCB ¼ KDBðCBtot � CBÞ ð159Þ

Solving Eq. 158 for CA and Eq. 159 for CB results in

Eq. 40.

Appendix 2

Derivation of Eqs. 63 and 64

Differentiating both sides of Eqs. 27 and 28 leads to:

ðRtot � CAtot � CBtot þ 2CA þ CB þ KDAÞ
dCA

dt
þ CA

dCB

dt

¼ KDA
dCAtot

dt
� CA

dRtot

dt
� dCAtot

dt
� dCBtot

dt

� �

ð160Þ

CB
dCA

dt
þ ðRtot � CAtot � CBtot þ CA þ 2CB þ KDBÞ

dCB

dt

¼ KDB
dCBtot

dt
� CB

dRtot

dt
� dCAtot

dt
� dCBtot

dt

� �

ð161Þ

Rearranging terms in Eqs. 160 and 161 so that dCA/dt and

dCB/dt are unknowns leads to:

a
dCA

dt
þ b

dCB

dt
¼ e ð162Þ

c
dCA

dt
þ d

dCB

dt
¼ f ð163Þ

where

a ¼ Rtot � CAtot � CBtot þ 2CA þ CB þ KDA ð164Þ
b ¼ CA ð165Þ
c ¼ CB ð166Þ
d ¼ Rtot � CAtot � CBtot þ CA þ 2CB þ KDB ð167Þ

e ¼ KDA
dCAtot

dt
� CA

dRtot

dt
� dCAtot

dt
� dCBtot

dt

� �

ð168Þ

f ¼ KDB
dCBtot

dt
� CB

dRtot

dt
� dCAtot

dt
� dCBtot

dt

� �

ð169Þ
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The system of two linear equations Eqs. 162 and 163 has a

unique solution defined by the Cramer’s rule [17] if

ad � bc 6¼ 0 ð170Þ

Then

dCA

dt
¼ ed � bf

ad � bc
ð171Þ

dCB

dt
¼ af � ec

ad � bc
ð172Þ

Replacing the derivatives in Eqs. 168 and 169 by the right

hand sides of differential equations Eqs. 22, 24, and 26 and

using the variables CPAtot, CPBtot, ans RPtot defined by

Eqs. 67–69 one can notice that:

a ¼ E þ CA ð173Þ
d ¼ F þ CB ð174Þ
e ¼ KDACPAtot � CAðRPtot � CPAtot � CPBtotÞ ð175Þ
f ¼ KDBCPBtot � CBðRPtot � CPAtot � CPBtotÞ ð176Þ

Upon performing the calculations ad-bf, af-ec, and ad-bc

become equal to the numerators and denominators of the

ratios in Eqs. 63 and 64. The conditions in Eq. 29 imply

that the left hand sides of the equilibrium equations

are positive, and consequently E [ 0 and F [ 0. This

guaranties that:

ad � bc ¼ EF þ FCA þ ECB [ 0 ð177Þ

and the condition Eq. 170 is satisfied.

References

1. Levy G (1994) Mechanism-based pharmacodynamic modeling.

Clin Pharmacol Ther 56:356–358

2. Mager DE (2006) Target-mediated drug disposition and dynam-

ics. Biochem Pharmacol 72:1–10

3. Kaushansky K (2006) Lineage-specific hematopoietic growth

factors. N Engl J Med 354:2034–2045

4. Wang B, Nichol JL, Sullivan JT (2004) Pharmacodynamics and

pharmacokinetics of AMG 531, a novel thrombopoietin receptor

ligand. Clin Pharmacol Ther 76:628–638

5. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor

comes of age. Nat Rev Immunol 7:715–725

6. Deng R, Loyet KM, Lien S, Iyer S, DeForge LE, Theil FP,

Lowman HB, Fielder PJ, Prabhu S (2010) Pharmacokinetics of

humanized monoclonal anti-tumor necrosis factor-{alpha} anti-

body and its neonatal Fc receptor variants in mice and cyno-

molgus monkeys. Drug Metab Dispos 38:600–605

7. Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW,

Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR (2010)

Enhanced antibody half-life improves in vivo activity. Nat Bio-

technol 28:157–159

8. Mager DE, Jusko WJ (2001) General pharmacokinetic model for

drugs exhibiting target-mediated drug disposition. J Pharmacoki-

net Pharmacodyn 28:507–532

9. Jin F, Liang M, Wang B, Vainshtein I, Schneider A, Chavez C,

Lam B, Faggioni R, Roskos L (2011) Mechanism-based phar-

macokinetic and pharmacodynamic modeling of MEDI-575, a

monoclonal antibody directed against PDGFRalpha. In: Cyno-

molgus monkeys. American conference on pharmacometrics, San

Diego, CA. http://www.go-acop.org/2011/posters

10. Yan X, Lowe P, Pigeolet E, Fink M, Berghout A, Balser S,

Krzyzanski W (2011) Population pharmacokinetic and pharma-

codynamic model of pharmacodynamics-mediated drug disposi-

tion (PDMDD) of erythropoiesis stimulating agent. In: American

conference on pharmacometrics, San Diego, CA. http://www.go-

acop.org/2011/posters

11. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmaco-

kinetic model for drugs exhibiting target-mediated drug disposi-

tion. Pharm Res 22:1589–1596

12. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approxima-

tions of the target-mediated drug disposition model and identifi-

ability of model parameters. J Pharmacokinet Pharmacodyn 35:

573–591

13. Kenakin TP (2009) A pharmacology primer: theory application

and methods. Elsevier, Burlington

14. Abramowitz M, Stegun IA (1964) Handbook of mathematical

functions with formulas, graphs, and mathematical tables. U.S.

Govt. Print. Off, USA

15. Selby SM (1975) Standard mathematical tables. Chemical Rub-

ber Company Press, Florida

16. Press WH (1992) Numerical recipes in FORTRAN: the art of

scientific computing. Cambridge University Press, Cambridge

17. Anton H, Grobe EM, Rorres C, Grobe CA (1994) Elementary

linear algebra: applications version: student solutions manual.

Wiley, New York

18. Hansen RJ, Balthasar JP (2003) Pharmacokinetic/pharmacody-

namic modeling of the effects of intravenous immunoglobulin on

the disposition of antiplatelet antibodies in a rat model of immune

thrombocytopenia. J Pharm Sci 92:1206–1215

19. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s

guide: pharmacokinetic/pharmacodynamic systems analysis

software. Biomedical Simulations Resource, Los Angeles

20. Vaccaro C, Zhou J, Ober RJ, Ward ES (2005) Engineering the Fc

region of immunoglobulin G to modulate in vivo antibody levels.

Nat Biotechnol 23:1283–1288

21. Egrie JC, Browne JK (2001) Development and characterization

of novel erythropoiesis stimulating protein (NESP). Br J Cancer

84(Suppl 1):3–10

22. Macdougall IC (2005) CERA (continuous erythropoietin receptor

activator): a new erythropoiesis-stimulating agent for the treat-

ment of anemia. Curr Hematol Rep 4:436–440

23. Stead RB, Lambert J, Wessels D, Iwashita JS, Leuther KK,

Woodburn KW, Schatz PJ, Okamoto DM, Naso R, Duliege AM

(2006) Evaluation of the safety and pharmacodynamics of He-

matide, a novel erythropoietic agent, in a phase 1, double-blind,

placebo-controlled, dose-escalation study in healthy volunteers.

Blood 108:1830–1834

24. Woo S, Krzyzanski W, Jusko WJ (2007) Target-mediated phar-

macokinetic and pharmacodynamic model of recombinant human

erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn 34:

849–868

25. Gross AW, Lodish HF (2006) Cellular trafficking and degrada-

tion of erythropoietin and novel erythropoiesis stimulating

protein (NESP). J Biol Chem 281:2024–2032

26. Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential

equations: stiff and differential-algebraic problems. Springer, New

York

27. Yan X, Mager DE, Krzyzanski W (2010) Selection between

Michaelis-Menten and target-mediated drug disposition pharma-

cokinetic models. J Pharmacokinet Pharmacodyn 37:25–47

J Pharmacokinet Pharmacodyn (2012) 39:543–560 559

123

http://www.go-acop.org/2011/posters
http://www.go-acop.org/2011/posters
http://www.go-acop.org/2011/posters


28. Wang YM, Krzyzanski W, Doshi S, Xiao JJ, Perez-Ruixo JJ,

Chow AT (2010) Pharmacodynamics-mediated drug disposition

(PDMDD) and precursor pool lifespan model for single dose of

romiplostim in healthy subjects. The AAPS J 12:729–740

29. Hayes S, Ouellet D, Zhang J, Wire M, Gibiansky E (2011)

Population PK/PD modeling of eltrombopag in healthy volun-

teers and patients with immune thrombocytopenic purpura and

optimization of response-guided dosing. J Clin Pharmacol

51(10):1403–1417

30. Berges A, Sahota T, Barton S, Richards D, Austin D, Zamuner S

(2012) Development of a mechanistic PK/PD model to guide

dose selection of a combined treatment for systemic amyloidosis.

Venice, Italy, p 21, Abstract 2546, www.page-meeting.org/

?abstract=2546

31. Doshi S, Chow A, Perez Ruixo JJ (2010) Exposure-response

modeling of darbepoetin alfa in anemic patients with chronic

kidney disease not receiving dialysis. J Clin Pharmacol 50:75S–

90S

560 J Pharmacokinet Pharmacodyn (2012) 39:543–560

123

http://www.page-meeting.org/?abstract=2546
http://www.page-meeting.org/?abstract=2546

	Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor
	Abstract
	Introduction
	Theoretical
	Methods and results
	Algebraic solution of equilibrium equations

	Numerical solution of equilibrium equations
	Differential solution of equilibrium equations
	Example 1: exogenous and endogenous IgG competing for FcRn receptor
	Example 2: recombinant human EPO analogue and endogenous EPO competing for EPOR
	Discussion
	Acknowledgments
	Appendix 1
	Existence of the unique solution of Eqs. 27 and 28
	Existence Theorem
	Derivation of Eqs. 40, 43, and 57

	Appendix 2
	Derivation of Eqs. 63 and 64

	References


