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Abstract The paper compares performance of Nonmem

estimation methods—first order conditional estimation

with interaction (FOCEI), iterative two stage (ITS), Monte

Carlo importance sampling (IMP), importance sampling

assisted by mode a posteriori (IMPMAP), stochastic

approximation expectation–maximization (SAEM), and

Markov chain Monte Carlo Bayesian (BAYES), on the

simulated examples of a monoclonal antibody with target-

mediated drug disposition (TMDD), demonstrates how

optimization of the estimation options improves perfor-

mance, and compares standard errors of Nonmem param-

eter estimates with those predicted by PFIM 3.2 optimal

design software. In the examples of the one- and two-target

quasi-steady-state TMDD models with rich sampling, the

parameter estimates and standard errors of the new Non-

mem 7.2.0 ITS, IMP, IMPMAP, SAEM and BAYES esti-

mation methods were similar to the FOCEI method,

although larger deviation from the true parameter values

(those used to simulate the data) was observed using the

BAYES method for poorly identifiable parameters. Stan-

dard errors of the parameter estimates were in general

agreement with the PFIM 3.2 predictions. The ITS, IMP,

and IMPMAP methods with the convergence tester were

the fastest methods, reducing the computation time by

about ten times relative to the FOCEI method. Use of lower

computational precision requirements for the FOCEI

method reduced the estimation time by 3–5 times without

compromising the quality of the parameter estimates, and

equaled or exceeded the speed of the SAEM and BAYES

methods. Use of parallel computations with 4–12 proces-

sors running on the same computer improved the speed

proportionally to the number of processors with the effi-

ciency (for 12 processor run) in the range of 85–95% for all

methods except BAYES, which had parallelization effi-

ciency of about 70%.
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Introduction

The first software tool to facilitate nonlinear mixed effects

analysis in the context of pharmacokinetic (PK) and

pharmacodynamic (PD) modeling was the NONlinear

Mixed Effect Modeling package NONMEM (Nonmem)

developed by Stuart Beal, Lewis Sheiner, and Alison Bo-

eckmann [1]. The Nonmem methodology was based on

maximum likelihood methods that use various approxi-

mations to compute and minimize the objective function

(-2 log likelihood of the model parameters given the data)

in order to estimate population PK and PK-PD model

parameters. While several other software packages [2–6]

for nonlinear mixed effect modeling were later developed,

Nonmem remains the standard in the pharmaceutical
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industry. In the last 10–15 years, a number of new methods

for population analysis were proposed, investigated, and

implemented in the publicly available software [7–12]. The

review of the population analysis methods and further

references can be found in [13]. These new methods were

introduced in Nonmem 7.1 and were further improved in

the current Nonmem 7.2 release [14].

This work compares the performance (closeness of

parameter estimates to simulation values, standard errors of

estimates, and the run time) of all estimation methods

implemented in Nonmem 7.2.0 (first order conditional

(FOCEI), iterative two-stage (ITS), Monte-Carlo impor-

tance sampling (IMP), IMP assisted by mode a posteriori

estimation (IMPMAP), stochastic approximation expecta-

tion maximization (SAEM), and full Markov chain Monte-

Carlo (MCMC) Bayesian analysis (BAYES)) on the datasets

simulated from two complex models with continuous

dependent variables described by the system of nonlinear

differential equations. To aid the readers, a very brief

description of the nonlinear mixed-effect problem and the

Nonmem estimation methods is provided below.

A nonlinear mixed-effect model aims to describe the

data observed in a population of subjects. The observed

data and the individual subject model parameters are

assumed to include random components. The model con-

sists of the population or fixed-effect parameters, a vari-

ance–covariance matrix that best describes the distribution

of individual model parameters among the subjects, and the

residual variance parameters that describe the within-sub-

ject data variability. To fit the model, a joint probability

density of the data, called the posterior density, is evalu-

ated. The posterior density depends on the fixed-effect

parameters, on the distribution of individual model

parameters, and the distribution of the observed data. To

obtain the set of the population parameters that best fit the

entire set of the data while taking into account all possible

individual subject parameter values, the integral of the

posterior density over all possible individual parameters is

evaluated for each subject, and multiplied over all subjects.

The result is a marginal density that depends only on the

fixed-effect parameters. The set of the fixed-effect param-

eters that yields the maximal marginal density (maximum

likelihood) is obtained, and is considered to be the final

estimate. Even the simplest mixed-effect problems are

analytically intractable. Various methods were proposed to

solve this general problem numerically.

FOCEI evaluates the integration step by assuming that

the posterior density can be approximated by a multivariate

normal density with respect to the individual parameters.

Such an assumption is suitable when the observed data are

normally distributed, the model is not highly nonlinear with

respect to the model parameters, and/or there is a reason-

able number of data samples obtained for each individual.

FOCEI has the advantage of providing highly reproducible

values, and is rapid for simple PK models. Monte Carlo

expectation–maximization (EM) methods (IMP, IMPMAP,

and SAEM) integrate the posterior density by performing a

Monte Carlo sampling over all possible individual param-

eters during the expectation step, and then use a single

iteration maximization step that is easy to compute in order

to advance the fixed-effect parameters towards the maxi-

mum likelihood. The Monte Carlo methods have the

advantage of not using a linearized approximation to the

integral, providing less bias. The efficient maximization

step of the EM algorithms allow them to be faster than

FOCEI for complex PK/PD problems, but the Monte Carlo

expectation step causes the EM algorithms to be slower

than FOCE for simple PK models. The stochastic nature of

the methods provides less precise and not exactly repro-

ducible results, but it is less likely than deterministic

methods to be locked into a local minimum. Iterative two-

stage (ITS) is a hybrid method that uses the deterministic,

linearized approximation to the posterior density during the

expectation step, similar to FOCEI, but utilizes the fast

maximization step of EM methods to advance fixed-effect

parameters towards the maximum likelihood. The advan-

tage of the ITS method is very rapid advancement of the

fixed-effect parameters, but it can occasionally have more

bias than the FOCEI method. The Markov chain Monte

Carlo Bayesian analysis method does not seek the param-

eter estimates that most likely fit the data, but uses a Monte

Carlo search of the individual parameters as well as the

fixed-effect parameters, to provide a series of fixed-effect

parameter values that are distributed according to their

ability to fit the data. The advantage is therefore in

obtaining a set of descriptive statistics, such as mean

estimates, empirical standard errors of the estimates, and

confidence ranges for the estimates, that cannot be easily

obtained, or are impossible to be obtained, by maximiza-

tion methods. The disadvantage to MCMC Bayesian is that

it can sometimes take considerably longer for this analysis

than to obtain a maximum.

Two simulated data sets were created. The first dataset

was simulated using the quasi-steady-state (QSS) approxi-

mation [15] of the target-mediated drug disposition

(TMDD) model [16]. With the rich data for the free drug

and total target concentrations from 224 subjects, the model

is well-posed, with easily identifiable model parameters.

The second data set was simulated from the QSS approxi-

mation of the two-target TMDD model [17] that describes

the pharmacokinetics of the drug that can bind to soluble

(S) and membrane-expressed (M) targets. The parameters

of the membrane-expressed target were selected to create a

poorly identifiable problem, with the membrane-target

contribution to elimination that is difficult to distinguish

from the non-specific linear elimination [17].
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The TMDD equations were selected for two reasons.

First, they provide an example of the model described by

the nonlinear system of differential equations, with multiple

fixed and random effect parameters. Some of those

parameters could be poorly identifiable. Thus, long run time

and computational complexities of the problem present a

rigorous test of the estimation methods performance. Sec-

ond, the TMDD equations are important by themselves

because they describe the pharmacokinetic and pharmaco-

dynamic properties of many new biologic drugs. Modeling

of these drugs is a challenging and important problem. This

work is intended to investigate and report how to apply the

Nonmem estimation methods to the TMDD equations.

The full TMDD system [16] is rarely identifiable given

the available data because it describes the processes with

very different time scales, resulting in stiff differential

equations with insufficient sampling to describe the drug–

target binding processes. Therefore, the quasi-steady state

approximation [15, 17] of the TMDD model was used. This

approximation simplifies the TMDD equations by assum-

ing that the binding process is nearly instantaneous and the

drug, target and the drug–target complex are in quasi-

steady state. This approximation was shown to preserve all

characteristic features of the full TMDD model, and pro-

vide a robust platform to describe the observed data for

drugs with target-mediated disposition. Further details and

references can be found in the recent review [18].

All estimation methods were applied in two versions. The

first set of control streams (also called ‘naive’) employed the

default estimation options (where available), no formal

convergence criteria (except for the FOCEI method), and

very large number of iterations to guarantee convergence or

stationarity of the estimates. The control streams of the

second set employed ‘expert’ options and convergence cri-

teria designed to attain the best possible results and the

shortest run time. The parameter estimates (PEs) and rela-

tive standard errors of the parameter estimates (RSEs) were

compared between the methods, and also for PEs with the

known true values and for RSEs with predictions of the

optimal design software PFIM 3.2 [19]. The motivation

behind the ‘‘expert choice’’ of the estimation method options

and interpretation of the results are discussed.

PFIM is a collection of R functions for population

designs evaluation and optimization. It is based on the

expression of the Fisher information matrix in nonlinear

mixed-effect models. The version 3.2 includes evaluation

of the multiple response models that allows application of

the software to the TMDD models with two dependent

variables. In this work, only design evaluation feature was

used since the goal was to compute the expected standard

errors of the parameter estimates for comparison with those

obtained by various Nonmem estimation methods. No

optimization of the study designs was attempted.

Many complex PK/PD models (such as the TMDD

model used in this paper) are expressed with differential

equations that must be numerically integrated, and may

require many hours of computation. The most recent

Nonmem version introduced the parallel computing option

that can reduce the actual time of analysis by many folds.

Parallel computing is the process of splitting the compu-

tational load of a particular problem across two or more

CPU’s. The parallel processing feature of Nonmem allows

use of several CPU’s attached to the same computer, such

as with the multi-core workstations, or several computers

connected via the network. One of the goals of this work

was to test the efficiency of Nonmem 7.2.0 parallel com-

puting for all tested estimation methods.

Run time of the models that require solution of differential

equations greatly depends on the performance of the inte-

gration methods. Nonmem includes several subroutines

(ADVAN6, ADVAN8, ADVAN9, and ADVAN13) for

solving the system of differential equations. These subrou-

tines differ by the implemented integration methods. Selecting

the appropriate numerical integrator algorithm may reduce the

time of the analysis. Also, some differential equation solvers

are more efficient than others for certain kinds of problems.

Performance of various ADVAN integrators for the TMDD

model was tested for all estimation methods.

Thus, this work has two goals: to compare speed and

accuracy of different estimation methods for the chosen

problems, and to illustrate how to best use the estimation

methods and parallel computing available in the latest

release of the Nonmem software.

Methods

Models

The following system of equations describes the QSS

approximation of the two-target TMDD system [17]:

dAd

dt
¼ �kaAd; Adð0Þ ¼ D1 ð1Þ

dAtot

dt
¼ FSCkaAd þ

Q

V2

Ap �
CL

V1

þ Q

V1

� �
C � V1

� RtotkintC � Vc

KS
SS þ C

� VmaxC � V1

KM
SS þ C

; ð2Þ

dAp

dt
¼ Q

V1

C � V1 �
Q

V2

Ap; ð3Þ

dRtot

dt
¼ ksyn � kdegRtot � kint � kdeg

� � RtotC

KS
SS þ C

; ð4Þ

Atotð0Þ ¼ D2; Rtotð0Þ ¼ R0 ¼ ksyn=kdeg; Ctot ¼ Atot=V1;

ð5Þ
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C ¼ 1

2

h
Ctot � Rtot � KS

SS

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ctot � Rtot � KS

SS

� �2þ4KS
SSCtot

q i
;

ð6Þ

Here Ad and Ap are the free drug amounts in the depot and

peripheral compartments, respectively; Atot is the total (free

and bound to the S-target) drug amount in the central

compartment; C and Ctot are the free and total concentra-

tions of the drug in the central compartment; R, Rtot, and

RC are the concentrations of the free (unbound) S-target,

total (unbound and bound to the drug) S-target, and the

drug-S-target complex in the central compartment; all other

parameters are described in Table 1. The initial conditions

correspond to the case where the free drug that is not

present endogenously is administered as a subcutaneous

dose D1 and bolus dose D2. Further details and discussion

of the model can be found in [17].

In the case when the membrane target influence is

negligible (Vmax = 0), the model degenerates to the QSS

approximation of the TMDD model proposed in [15]. The

resulting system is well-posed with easily identifiable

parameters. Further in the paper this model is referred to as

Model 1. When the membrane target influence is not zero

(Vmax = 0) but is relatively small, the model is poorly

identifiable (Model 2) since it cannot distinguish between

linear elimination and M-target-mediated elimination. For

the selected set of the parameters, this was confirmed by

performing a sensitivity analysis in which, when Vmax was

set to 0 and CL was adjusted to take up the difference, the

shape of the predicted curve changed little. This was also

confirmed by the convergence rate of the estimation

methods that easily found the true solution for Model 1

while spent much more time iterating toward the solution

of Model 2.

Table 1 True model parameters and relative standard errors predicted by PFIM 3.2

Parameter Units Description True value (PFIM 3.2 expected RSE)

Model 1 Model 2

CL l day-1 Clearance 0.3 (2) 0.3 (5)

V1 l Central volume 3.0 (3) 3.0 (2)

Q l day-1 Inter-compartment clearance 0.2 (2) 0.2 (6)

V2 l Peripheral volume 3.0 (3) 3.0 (6)

FSC Subcutaneous bioavailability 0.7 (3) 0.7 (2)

ka day-1 Absorption rate constant 0.5 (5) 0.5 (3)

Vmax nM-1 day-1 M-target maximum elimination rate 0 1.5 (15)

KM
SS

nM M-target QSS constant – 3.0 (13)

R0 nM S-target baseline value 0.1 (3) 0.1 (2)

KS
SS

nM S-target QSS constant 0.015 (3) 0.015 (2)

kdeg day-1 S-target degradation rate 10.0 (3) 10.0 (3)

kint day-1 S-target elimination rate 0.05 (2) 0.05 (3)

ksyn = R0 kdeg nM day-1 S-target production rate (derived parameter) 1.0 1.0

xCL
2 Variance of clearance 0.09 (11) 0.04 (12)

xV1
2 Variance of central volume 0.09 (12) 0.04 (13)

xQ
2 Variance of inter-compartment clearance 0.04 (22) 0.04 (16)

xV2
2 Variance of peripheral volume 0.04 (20) 0.04 (16)

xFSC
2 Variance of subcutaneous bioavailability 0.04 (24) 0 (–)

xka
2 Variance of absorption rate constant 0.16 (19) 0.04 (27)

xVMmax
2 Variance of M-target maximum elimination rate – 0.04 (30)

xKMss
2 Variance of M-target QSS constant – 0 (-)

xR0
2 Variance of S-target baseline value 0.09 (12) 0.04 (11)

xKSss
2 Variance of S-target QSS constant 0.09 (13) 0 (-)

xkdeg
2 Variance of S-target degradation rate 0.04 (21) 0.04 (14)

xkint
2 Variance of S-target elimination rate 0.04 (18) 0.04 (21)

rdrug
2 Variance of residual drug concentration error 0.0225 (1) 0.0225 (1)

rtarget
2 Variance of residual S-target concentration error 0.04 (1) 0.04 (1)

Log normal (that is, normal in the log-transformed parameter space) inter-subject variability was assumed. Log normal residual variability was

implemented as additive residual errors in the log-transformed dependent variables space
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Datasets

The data from two studies were simulated as described in

Table 2. The free drug and total S-target concentration–time

data from these trials (‘‘true data’’) were simulated using the

QSS model (Eq. 1–6) for both, one-target (Model 1) and

two-target (Model 2) settings. The drug and target parame-

ters (Table 1) were chosen to reflect the values typical for

fully human therapeutic monoclonal antibodies. The targets

were selected to correspond to the typical parameters of the

soluble and membrane-bound targets. Details and references

can be found in [17] where this model was used for different

simulations. The rich sampling scheme typical for phase 1–2

trials of monoclonal antibodies was selected. Moderate log-

normal inter-individual variability with diagonal OMEGA-

matrix and moderate log-normal residual variability (as

specified in Table 1) were assumed. A total of 3312 pairs of

unbound drug and total S-target observations from 224

subjects were simulated for each of the two models. The

simulated data below the hypothetical assay quantification

limit of 0.1 nM were removed from the datasets. The

exponential error model was used for the simulations. To

avoid linearization of the error model at the estimation step,

the error model was implemented as an additive error for the

log-transformed dependent variables. Example of the Non-

mem simulation model and the subset of the simulated data

set are available in the Supplemental Material.

Hardware and software

The computer simulations and the analysis were conducted

using Nonmem� 7.2.0 [1] under Windows 7 Professional

64 bit operating system and Intel Fortran Professional 11.0

compiler. Nonmem runs were performed on Dell Precision

T5500 workstation with two Intel Xeon X5690 (3.47 MHz)

six-core processors.

Defining random effects for the estimation methods

BAYES, IMP, IMPMAP, ITS, and SAEM estimation

methods benefit from the so-called MU-referencing where

each model parameter is presented (whenever possible) as

a function of the sum of the MU-parameter and the random

effect. In this work, MU-referencing with the random

effects on all model parameters was used for all estimation

runs as illustrated below for the clearance parameter CL

MU 1 ¼ THETA 1ð Þ ð7Þ
CL ¼ EXP MU 1þ ETA 1ð Þð Þ ð8Þ

In addition, the NONMEM 7.2.0 manual [14] recommends

employing linear MU referencing, where MU parameters

are linear combinations of THETA parameters as it greatly

increases speed and incidence of successful convergence of

the EM methods. The EM algorithms advance the popu-

lation parameters very efficiently and more reliably

towards the maximum likelihood. For BAYES analysis,

linear MU referencing allows the more efficient Gibbs

sampling process to be used, rather than the less efficient

but more general Metropolis–Hastings process. When MU

referencing is not performed, the EM algorithms are forced

to create computationally expensive gradient equations in

order to advance the fixed effects towards the maximum

likelihood position. The EM analysis will take many more

times longer, especially with the complex PK/PD problem

used here. The price for the speed up is that with linear MU

referencing THETA parameters are in log domain (e.g.

THETA(1) in (7) represents log of population value of CL),

and final results need to be exponentiated to represent

mechanistically understandable values.

Although FOCEI does not utilize the MU equations and

therefore its speed of analysis is not improved, parameter-

ization of the THETAs into their log-transformed versions

may stabilize FOCE analyses as well, and result in fewer

function calls or increase probability of successful com-

pletion. Therefore, estimation using FOCEI method was

performed both ways, with and without MU-referencing.

In the examples of this paper, covariate effects were not

explored. If there were covariates (e.g. continuous and

categorical covariates for body weight (WT) and gender

(SEX = 0 for males and = 1 for females), respectively),

linear MU-referencing would be preserved by expressing

Table 2 Dosing and sampling scheme in the simulated studies

Study No. Dosing Sampling times Number of samples in the dataset

Model 1 Model 2

1 6 IV, 100 nmol 1, 6, 12, 24 h; then 3, 7, 14, 21,

28, 35, 42, 49, and 56 days

3224 quantifiable free drug

concentrations and 3270

quantifiable total target

concentrations

2480 quantifiable free drug

concentrations and 3272

quantifiable total target

concentrations

6 IV, 300 nmol

6 IV, 600 nmol

6 SC, 1,000 nmol

2 100 IV, 600 nmol 1, 24 h; then 1, 7, 14, 21, 28, 56, 63, 70,

77, 84, 91, 98, and 105 days100 SC, 1,000 nmol
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THETAs associated with the covariates linearly in MU,

e.g.

MU 1 ¼ THETA 1ð Þ þ THETA 2ð Þ � LOG WT=WTREFð Þ
þ THETA 3ð Þ � SEX

CL ¼ EXP MU 1þ ETA 1ð Þð Þ

With this representation, MU linearly depends on THETAs

while the covariate data, in this case WT, may enter the

expression non-linearly, in any appropriate functional

form. Examples of the Nonmem estimation models with

and without MU-referencing are provided in the Supple-

mental Material.

Estimation methods options

Two runs, with ‘naive’ and ‘expert’ estimation options for

each method were performed for each of the two problems.

The summaries of the options for all model runs are pre-

sented in Tables 3 and 4. Options that were not mentioned

explicitly were assigned the default values. Generally,

‘expert’ options turned on testing of the convergence cri-

teria (CTYPE = 2), allowed larger number of iterations (to

greatly exceed the likely number of iterations needed for

conversion), decreased (where appropriate) the number of

significant digits considered at different stages of estima-

tion process (SIGL, NSIG, TOL), and added (where

appropriate) additional steps to improve accuracy of the

final estimates. Glossary of Nonmem estimation options

can be found in Table 5.

For estimation, all parameters were assumed to have

associated random effects, even for Model 2 where the

simulation (true) model had zero inter-subject variability for

FSC, KM
SS, and KS

SS parameters. In addition, for the FOCEI

method Model 2 was fitted with the inter-subject variability

for FSC, KM
SS, and KS

SS fixed to the true value of zero.

Typical Nonmem control steams of the simulation and

estimation models are reproduced in the Supplemental

Material. The control streams also indicate initial condi-

tions that were kept identical for all methods, unless noted

otherwise. The code for Model 1 can be obtained from the

corresponding code for Model 2 by removing the terms

related to the membrane target (VM and KM parameters in

the control stream).

Expert choice of the estimation options for Model 1

As all estimation methods for the data and the model with

well identifiable parameters (Model 1) were expected to

produce similar results, the main purpose of the ‘expert’

options was to reduce the duration of the analysis.

By default, the convergence tester for Monte Carlo and

EM methods is off (CTYPE = 0), and very large number

of iterations were requested in ‘naive’ options to guarantee

convergence or stationarity of the estimates. ‘Expert’

options turned on the convergence tester (CTYPE = 2,

which tests the objective function, THETAs, SIGMAs, and

OMEGA diagonals), allowing the software to decide when

the objective function and the parameters are no longer

changing, and thus reducing the analysis time. For the

classical NONMEM methods (FO, FOCE, Laplace) and

ITS, where the convergence is tested by default, the cri-

terion of convergence, NSIG, that specifies the number of

significant digits used for evaluation of whether parameters

have not changed from the previous iteration was reduced

from the default value of 3.

Further reduction of the analysis time was sought by

decreasing SIGL that specifies the number of significant

digits that NONMEM uses during evaluation of the mode

of the posterior density (of the ETA parameters) for each

subject. It also specifies the accuracy of the total objective

function. Reducing SIGL decreases the duration of this

step. The TOL setting (TOL specifies the accuracy of

evaluation of the numerical integral of the predictive

function) could have also been reduced for all methods to

further reduce the run time, but was only reduced for

FOCEI.

Finally, the parameter MAPITER was set to 0 in the

refining step of the IMP and IMPMAP methods (and in the

IMP objective function evaluation that follows SAEM). By

default (MAPITER = 1), on the first iteration of the IMP

method mode a posteriori (MAP) estimation [14] is per-

formed to assist in obtaining the conditional means and

variances. In the refining step, setting MAPITER = 0 tells

Nonmem to use conditional means and variances from the

last iteration of the previous estimation to assist in

obtaining new conditional means and variances, thus

maintaining continuity of the estimation from the previous

IMP (or SAEM) step.

An additional refining step (10 iterations of 3,000 Monte

Carlo samples per subject) was also performed following

IMP, IMPMAP and SAEM convergence to obtain more

precise final estimates.

Expert choice of the estimation options for Model 2

Compared to Model 1, Model 2 had an additional saturable

clearance mechanism through a membrane-bound target

described by two additional parameters (Vmax and KSS
M ).

Contribution of this extra clearance was difficult to dis-

tinguish from linear clearance CL. As a consequence, all of

the methods had difficulty efficiently moving these three

parameters, thus requiring many more iterations than in

Model 1. Therefore, in addition to turning on the conver-

gence tester and decreasing SIGL, the number of burn-in

(NBURN) and accumulation (NITER) iterations in SAEM
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Table 3 Estimation options for Model 1

Method Options

Default ‘‘Naive’’ ‘‘Expert’’

ITS NITER = 50 NITER = 200 NITER = 3000

NSIG = 3 NSIG = 2

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 2

IMP NITER = 300 NITER = 200 NITER = 3000

ISAMPLE = 300

NSIG = 3

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 2

Refining step of IMP NITER = 300 NITER = 10

ISAMPLE = 300 ISAMPLE = 3000

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 0

MAPITER = 1 MAPITER = 0

IMPMAP NITER = 300 NITER = 3000

ISAMPLE = 300

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 2

Refining step of IMPMAP NITER = 300 NITER = 10

ISAMPLE = 300 ISAMPLE = 3000

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 0

SAEM NBURN = 1000 NBURN = 15000 NBURN = 15000

NITER = 1000

ISAMPLE = 2 ISAMPLE = 3 ISAMPLE = 3

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 2

CINTERVAL = 1 CINTERVAL = 50

IMP step following SAEM EONLY = 0 EONLY = 1 EONLY = 1

NITER = 300 NITER = 25 NITER = 10

ISAMPLE = 300 ISAMPLE = 3000 ISAMPLE = 3000

SIGL = 10 SIGL = 9 SIGL = 7

MAPITER = 1 MAPITER = 0

BAYES NBURN = 4000

NITER = 10000

CINTERVAL = 1 CINTERVAL = 50

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 2

No priors Initial values and OMEGA-priors were set

to the final values of the IMPMAP run; OMEGA-

priors degrees of freedom were fixed to 12.

FOCEI Not MU-referenced Not MU-referenced

NSIG = 3 NSIG = 2

SIGL = 10 SIGL = 9 SIGL = 6

TOL = 6
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and BAYES methods were set higher than in runs of Model

1 to ensure convergence to the true values. The SAEM

method also required to increase ISAMPLE, the number of

Monte Carlo samples used to evaluate the expectation step

of a Monte Carlo EM algorithm. This was necessary

because the change of poorly identifiable parameters from

iteration to iteration was very slow, and the iteration pat-

tern tended to be highly correlated. Thus, the convergence

tester was often fooled into thinking the analysis was

complete, resulting in estimates for these parameters that

were far from the true values. Increase of ISAMPLE was to

make the change of parameter values quicker per iteration,

and more monotonic.

For the IMP and IMPMAP methods, the SIGL param-

eter was not reduced, but it could have been reduced as in

Model 1. As in Model 1, an additional refining step (10

iterations of 3,000 Monte Carlo samples per subject) was

performed following IMP, IMPMAP and SAEM conver-

gence to obtain more precise final estimates.

Parallel computing

Parallel computation was tested for all methods using

Model 1 with the ‘naive’ options and using PARSE_

TYPE = 4 option that distributes computations to the

specified number of CPUs aiming to minimize the overall

run time. The same model was tested on 1, 4, 8, and 12

processors. The computational efficiency was characterized

by the ratio

Efficiency ¼ 100% time of single CPU runð Þ=
� time of multi-CPU runð Þ= number of CPUsð Þ

Choice of ADVAN subroutines

Nonmem 7.2.0 has four PREDPP subroutines (ADVAN6,

ADVAN8, ADVAN9, and ADVAN13) that solve differ-

ential equations. ADVAN6 is a Runge–Kutta-Verner fifth

and sixth order method of numerical integration, for non-

stiff problems. ADVAN8 is the Gear method of numerical

integration, for stiff problems. ADVAN9 is the Livermore

solver for ordinary differential equations, implicit form

(LSODI), using the backward differentiation formulas

(BDF) for stiff problems. ADVAN13 is the Livermore

solver for ordinary differential equations (LSODA), with

automatic method switching for stiff (BDF) and non-stiff

(Adams method) problems [1, 20, 21]. The performance of

these routines (number of iterations required for conver-

gence and the run time) was compared for all methods

using Model 1 with the ‘naive’ options.

Expected standard errors of parameter estimates

PFIM [19] is the optimal design software that can be used

to evaluate a study design (that is, it provides the expected

standard errors of the parameter estimates given the true

model and sampling schedule) and to optimize various

features of the study design. In this work, only design

evaluation option was used while the study design and

sampling schedule were not optimized. The expected

standard errors of the parameter estimates (Table 1) were

obtained using PFIM version 3.2 applied to the system with

two response variables with the block-diagonal information

matrix (PFIM 3.2 option 1) that was shown to provide more

reliable estimates of the expected standard errors [22, 23].

The models without MU-referencing (with the fixed-effect

model parameters expressed in the original rather than log-

transformed parameter space) and with zero inter-subject

variability for FSC, KM
SS, and KS

SS parameters (for Model 2)

were used to compute the expected standard errors. The

models with MU-referencing, and the models with a very

small variance (x2 = 0.0001) of FSC, KM
SS, and KS

SS

parameters were also tested. They provided nearly identical

results (not shown). Models with the residual errors

expressed in the original and log-transformed dependent

variables were also tested and compared.

Results

One-target QSS model (Model 1)

The results are presented in Figs. 1 and 2 that illustrate the

parameter estimates and 95% confidence intervals of the

parameter estimates for all estimated parameters and all

Table 3 continued

Method Options

Default ‘‘Naive’’ ‘‘Expert’’

FOCEI NSIG = 3 NA MU-referenced

SIGL = 10

Unless mentioned otherwise, all runs used ADVAN 13 TOL = 9 subroutine and the following estimation options: INTERACTION NOABORT

NOTHETABOUNDTEST NOOMEGABOUNDTEST NOSIGMABOUNDTEST. The covariance step options were: SIGL = 15 UNCONDI-

TIONAL MATRIX = S
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Table 4 Estimation options for Model 2

Method Options

Default ‘‘Naive’’ ‘‘Expert’’

ITS NITER = 50 NITER = 1000 NITER = 3000

NSIG = 3 NSIG = 2

SIGL = 10 SIGL = 9 SIGL = 7

CTYPE = 0 CTYPE = 2

IMP NITER = 300 NITER = 3000 NITER = 3000

ISAMPLE = 300

CTYPE = 0 CTYPE = 2

SIGL = 10 SIGL = 9 SIGL = 9

Refining step of IMP NITER = 300 NITER = 10

ISAMPLE = 300 ISAMPLE = 3000

CTYPE = 0 CTYPE = 0

MAPITER = 1 MAPITER = 0

IMPMAP NITER = 300 NITER = 3000 NITER = 3000

ISAMPLE = 300

SIGL = 10 SIGL = 9 SIGL = 9

CTYPE = 0 CTYPE = 2

Refining step of IMPMAP NITER = 300 NITER = 10

ISAMPLE = 300 ISAMPLE = 3000

CTYPE = 0 CTYPE = 0

SAEM NBURN = 1000 NBURN = 15000 NBURN = 15000

NITER = 1000

ISAMPLE = 2 ISAMPLE = 3 ISAMPLE = 10

SIGL = 10 SIGL = 9 SIGL = 9

CTYPE = 0 CTYPE = 2

CINTERVAL = 1 CINTERVAL = 50

IMP step following SAEM EONLY = 0 EONLY = 1 EONLY = 1

NITER = 300 NITER = 25 NITER = 10

ISAMPLE = 300 ISAMPLE = 3000 ISAMPLE = 3000

SIGL = 10 SIGL = 9 SIGL = 9

MAPITER = 1 MAPITER = 0

BAYES NBURN = 4000 NBURN = 10000 NBURN = 4000

NITER = 10000 NITER = 5000 NITER = 30000

CINTERVAL = 1 CINTERVAL = 50

CTYPE = 0 CTYPE = 2

SIGL = 10 SIGL = 9 SIGL = 9

No priors Initial conditions and OMEGA-priors were

set to the final values from the IMPMAP

run; OMEGA-priors degrees of freedom

were fixed to 12.

BAYES NBURN = 4000 NBURN = 20000

NITER = 10000 NITER = 5000

SIGL = 10 SIGL = 9

No priors

FOCEI Not MU-referenced, zero random

effects on FSC, KM
SS and KS

SS

Not MU-referenced, zero random

effects on FSC, KM
SS and KS

SS.

NSIG = 3 NSIG = 2

SIGL = 10 SIGL = 9 SIGL = 6

TOL = 6
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estimation methods. The 95% confidence intervals were

computed using the estimated standard errors of the

parameter estimates. In these figures, values of the

parameters are normalized by their known true values.

The solid horizontal lines correspond to the true values.

The dashed lines show the 95% confidence intervals

computed using standard errors predicted by the PFIM. The

circles correspond to the obtained parameter estimates

while the stars indicate the Nonmem-computed 95% con-

fidence intervals of the normalized parameter estimates.

The estimation methods are indicated at the horizontal

axes x. For each method, the points to the left and to the

Table 4 continued

Method Options

Default ‘‘Naive’’ ‘‘Expert’’

FOCEI NSIG = 3 NA MU-referenced, all random effects

SIGL = 10 SIGL = 9

Unless mentioned otherwise all runs used ADVAN 13 TOL = 9 subroutine and the following estimation options: INTERACTION NOABORT

NOTHETABOUNDTEST NOOMEGABOUNDTEST NOSIGMABOUNDTEST. The covariance step options were: SIGL = 15 UNCONDI-

TIONAL MATRIX = S

Table 5 Nonmem glossary of terms

Term Description

ADVAN6 Nonmem numerical integration subroutine that implements Runge–Kutta-Verner fifth and sixth order method of numerical

integration for non-stiff problems

ADVAN8 Nonmem numerical integration subroutine that implements Gear method of numerical integration for stiff problems

ADVAN9 Nonmem numerical integration subroutine that implements Livermore solver for ordinary differential equations, implicit form

(LSODI) for stiff problems, using backward differentiation formulas (BDF) method

ADVAN13 Nonmem numerical integration subroutine that implements Livermore solver for ordinary differential equations (LSODA), with

automatic method switching for stiff (BDF method) and non-stiff (Adams method) problems

BAYES Markov Chain Monte Carlo Bayesian analysis

CINTERVAL Interval of iterations to use in convergence test

CTYPE Convergence test type: 0 = none, 1 = assess changes in objective function, thetas, and sigmas only, 2 = assess changes in

objective function, thetas, sigmas and diagonals of OMEGAS, 3 = assess changes in objective function, thetas, sigmas and all

OMGAS

EONLY If EONLY = 1, then assess only expectation step, to evaluate conditional means, variances, for each subject, objective function,

and standard errors, but do not advance parameters to be estimated

FOCEI First order conditional estimation with interaction

IMP Monte Carlo importance sampling method

IMPMAP Monte Carlo importance sampling after using MAP estimation to provide parameters for proposal density

ISAMPLE Number of Monte Carlo samples to use to evaluate the expectation step of a Monte Carlo EM algorithm

ITS Iterative two stage

MAP Mode a posteriori, obtain mode of posterior density

MAPITER IMP method normally obtains the proposal density parameters of its first iteration from a MAP estimation. If MAPITER = 0,

then it uses the conditional mean and variances that are in memory, usually retained from the previous estimation method

NBURN Number of iterations for the burn in period of SAEM or BAYES

NITER Number of iterations to be performed after the burn-in phase, for reduced stochastic/accumulation (SAEM), or collection of

stationary distribution parameters (BAYES)

NSIG Used in FOCE and ITS, number of significant digits at which parameters may not change to conclude that estimation is complete

SAEM Stochastic approximation expectation–maximization method.

SIGL Number of significant digits that individual parameter mode values during MAP estimation are to be evaluated (FOCE and ITS),

and number of digits that NONMEM is to expect that the objective function is evaluated, so it can set up appropriate delta

distances for finite difference gradient assessments

TOL TOL option is used with ADVAN6, ADVAN8, ADVAN9, and ADVAN13 to specify the number of digits that are required to be

accurate in the computation of the drug amount in each compartment; the precise meaning depends on the particular ADVAN

routine that uses it
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right of the method number correspond to the ‘naive’ and

‘expert’ options (Table 3), respectively. The FOCEI run in

the center (x = 1) corresponds to the MU-referenced run

(Table 3). For the models with MU-referencing, the

confidence intervals were computed by exponentiation of

the confidence intervals obtained for MU-parameters.

Variances (rather than standard deviations) of the random

effects and the residual errors are presented. The run times
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Fig. 1 Parameter estimates and confidence intervals: One-Target

QSS Model. For each parameter, the estimated value (PE) and the

95% confidence interval (CI), both normalized by the true value are

presented. The solid lines show the true normalized values (equal to

1). The dashed lines illustrate the expected CI predicted by PFIM

software. The circles and the stars illustrate PE and CI for each of the

estimation methods. CIs were computed using Nonmem or PFIM

standard errors. For models with MU-modeling, CIs were computed

by exponentiation of CIs obtained for MU-parameters. The method is

indicated by the number on the x-axis. The details of the runs for each

method are described in the text
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Fig. 2 Parameter estimates and

confidence intervals: One-target

QSS model (Continuation). See

legend of Fig. 1. The last plot

illustrates the run time of each

model
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are illustrated in the last plot of Fig. 2. Number of itera-

tions to convergence and estimation time for each run is

shown in Table 6.

As can be seen, for this well-identifiable rich sampling

problem all methods obtained very similar results. The

unexpected result was an excellent performance of the

FOCEI method with the reduced requirement for numerical

precision (NSIG, SIGL and TOL values) implemented in

the ‘expert’ run. The estimation time was about 3 times

shorter than with ‘naive’ options without any adverse

effects on the obtained estimates. Also unexpected was a

good performance of the Bayesian method used without

specifying OMEGA-priors. Estimates of the ‘naive’ run

that started far from the true values (as for all other

methods) and without OMEGA-priors were as good as for

the ‘expert’ run that had the initial values of the parameters

and OMEGA priors taken from the solution of IMP

method. The IMP step that followed SAEM method pro-

vided RSEs similar to SAEM RSEs. Thus, the only addi-

tional result of this step was evaluation of the objective

function value. ITS, IMP and IMPMAP methods had the

shortest run times, while FOCEI with ‘naive’ precision had

the longest run time. Application of the convergence cri-

teria for all methods provided the objective criteria for

stopping the iterations and reduced the run time without

compromising quality of the fit.

All fixed-effect parameter estimates were close to their

true values (well within 15% of the true values) while

variance parameter estimates were less precise. In partic-

ular, variances of R0 and kdeg were, respectively, under-

and over-estimated. Note that the variance of the target

production rate (ksyn = R0 kdeg; xKsyn
2 = xR0

2 ? xKdeg
2 )

was estimated close to the true value. Confidence intervals

on the parameter estimates were similar or slightly wider

than predicted by PFIM.

Two-target QSS model (Model 2)

The results are presented in Figs. 3 and 4 and follow the

same notations as in Fig. 1. The left and center points for

the Bayesian method correspond to the ‘naive’ options of

Table 4 with 10,000 and 20,000 burn-in iterations,

respectively. The last plot in Fig. 4 shows the run time for

each run. Number of iterations to convergence and esti-

mation time for each run is also shown in Table 7.

For this poorly-identifiable rich sampling problem dif-

ferences between the estimation methods were larger.

Similar to Model 1, the reduced numerical precision

requirements for the FOCEI method (‘expert’ options)

resulted in significantly shorter run time (about seven times

shorter) without affecting the estimates of the parameters.

The IMPMAP and SAEM(Only) methods with the default

settings provided wider confidence intervals for many

parameters. The ITS method had visibly larger deviation

from the true parameter values for V2 and KM
SS. The BAYES

method with the ‘naive’ options (i.e. with the initial values

not at the solution and without OMEGA priors) had large

deviation for CL, Q, V2, Vmax, x2
Q, and x2

Vmax
parameters.

The ‘expert’ options (i.e. where the initial values and

OMEGA priors were taken from the final values of the

IMPMAP run) improved the estimates of these parameters,

but the estimates had still more deviation from the true

values than in the other methods. Figure 5 illustrates the

Table 6 Convergence and estimation time for Model 1

Method ‘‘Naive’’ options ‘‘Expert’’ options

Number of iterations Estimation time (min) Converged (iterations) Estimation time (min)

ITS 200a 150 67 41

IMP 200a 86 70 31

Refining stepb – – 10a 43

IMPMAP 300a 136 48 25

Refining stepb – – 10a 50

SAEM 15,000a 443 850 206

IMP stepb 25a 106 10a 42

BAYES 4,000 593 500 400

FOCEI 129c 770 97d 291

FOCEIe 140 889 – –

a No convergence criteria set, number of iterations correspond to maximum allowed
b Second step with NITER = 10, ISAMPLE = 3000, and CTYPE = 0 or EONLY = 1
c Terminated with 2.7 significant digits
d Terminated with 1.9 significant digits
e Linear MU-referenced
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ability of the methods to estimate variances of F1, KM
SS, and

KSS that were set to zero at the simulation stage. Values in

this figure are not normalized, and the plot of x2
Vmax

is

added (same as in Fig. 4 but non-normalized). All methods

were able to correctly estimate variances of F1 and KSS

(except for the BAYES method that was a little worse than

the other methods). However, the variability of the

M-target parameters was attributed to KM
SS rather than Vmax

by all methods except one IMP and one SAEM run (for two

FOCEI runs, variances xF1
2 , xKSSS

2 , and xKMSS
2 were fixed

to zero). And the BAYES method with the ‘naive’ options

again had a larger deviation from true values. The low-

precision FOCEI method and the ITS, IMP and IMPMAP

methods with the convergence criteria had the shortest run

times while FOCEI with high precision had the longest run

time. Application of the convergence criteria for all

methods provided the objective criteria for stopping the

iterations and reduced the run time without compromising
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Fig. 3 Parameter estimates and

confidence intervals: Two-target

QSS model, Fixed-Effect

Parameters. See legend of Fig. 1
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Fig. 4 Parameter estimates and

confidence intervals: Two-target

QSS model, Variance

Parameters. See legend of Fig. 1
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the quality of the fit. Confidence intervals on the parameter

estimates were very similar to those predicted by PFIM.

Parallel computing

The results are presented in Fig. 6 where the fold-decrease of

the run time and computational efficiency are presented.

Efficiency was very high and it slowly declined with the

number of processors. At 12 processors, it varied between 85

and 95% for all methods except BAYES that had the lowest

(about 70% at 12 processors) efficiency of parallel processing.

For the FOCEI and ITS methods, the results were

exactly reproducible and independent of the number of

processors. However, for the stochastic methods (IMP,

IMPMAP, SAEM and BAYES), distribution of subjects to

different nodes for computations is dependent on number

of processors. This leads to differences in sequences of

random numbers generated during computations that made

the results dependent on the number of processors. More-

over, with the parallel processing option PARSE_

TYPE = 4, the results of the stochastic methods may not

be exactly reproducible even when repeated on the same

number of processors, because the distribution of the sub-

jects to each processor may depend on the computer load.

The option PARSE_TYPE = 1 (equal number of subjects

at each node) guarantees the results to be independent of

the computer load. Still, the results will depend on the

number of used processors.

Table 7 Convergence and

Estimation Time for Model 2

a No convergence criteria set,

number of iterations correspond

to maximum allowed
b Second step with

NITER = 10,

ISAMPLE = 3000, and

CTYPE = 0 or EONLY = 1
c Linear MU-referenced

Method ‘‘Naive’’ options ‘‘Expert’’ options

Number of

iterations

Estimation

time (h)

Converged

(iterations)

Estimation

time (h)

ITS 1,000a 17.9 520 7.3

IMP 3,000a 27 880 8.0

Refining stepb – – 10a 0.9

IMPMAP 3,000a 45 546 7.9

Refining stepb – – 10a 1.4

SAEM 15,000a 43 4650 49

IMP stepb 25a 2 10a 0.9

BAYES 10,000 13 500 27

BAYES 20,000 22 – –

FOCEI 575 71 180 14

FOCEIc 474 99 – –
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Fig. 5 Parameter estimates and

confidence intervals: Two-target

QSS model, Absolute values of

Variance Parameters, For each

parameter, the estimated value

(PE) and the 95% confidence

interval (CI) are presented. The

solid and dashed lines show the

true values and expected CI.

The circles and the stars
illustrate PE and CI for each of

the estimation methods. CIs

were computed using Nonmem

or PFIM standard errors. For

models with MU-modeling, CIs

were computed by

exponentiation of CIs obtained

for MU-parameters. The method

is indicated by the number on

the x-axis. The details of the

runs for each method are

described in the text
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Choice of ADVAN subroutines

All runs provided similar if not identical parameter esti-

mates. For all problems except FOCEI, ADVAN13 pro-

vided the fastest solution (Table 8), ADVAN6 required the

same or slightly longer run time, while ADVAN8 and

ADVAN9 were significantly less efficient. For the FOCEI

method, comparison is not as straightforward since use of

different ADVAN routines resulted in different number of

iterations and function calls required for convergence.

ADVAN6 was less efficient at each function evaluation but

required fewer function calls and iterations for conver-

gence, thus providing overall a shorter run time than

ADVAN13. Note that the performance of these subroutines

may depend on the stiffness of the underlying differential

equations. The results obtained in this work may not be

generalizable to problems with stiffer differential

equations.

Expected standard errors of parameter estimates

The expected standard errors for models without MU-ref-

erencing, zero inter-subject variability for FSC, KM
SS, and

KSS
S parameters (for Model 2), and exponential error model

were used for comparison with the Nonmem results. The

results for the models with the residual error expressed in

the original and log-transformed dependent variables were

identical. The models with the MU-referencing provided

nearly identical results (not shown). The Model 2 with 1%

variance (x2 = 0.0001) for the FSC, KM
SS, and KS

SS param-

eters was also tested. It provided nearly identical results for

all the parameters (not shown) except for variances of FSC,
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Fig. 6 Run time speed-up and

efficiency of nonmem parallel

computing. Top: Fold difference

between the multi-processor and

single-processor run time versus

number of processors. Bottom:

Computation efficiency of the

multi-processor run versus

number of processors.

Efficiency is defined as the fold

difference (illustrated in the top

plot) divided by the number of

processors, and multiplied by

100%. The estimation method is

specified in the legend
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KS
SS (with small standard errors of about 0.003), KM

SS (with

large standard error of 0.04), and Vmax that was estimated

to have a slightly higher relative standard error (41 vs.

30%) compared to the model where variances of FSC, KM
SS,

and KS
SS were fixed to zero.

Discussion

Model 1

For the data and the model with well identifiable parame-

ters (Model 1), all of the methods gave similar results.

Therefore, the main purpose of the ‘expert’ options was to

reduce the duration of the analysis.

The ‘naive’ options did not take advantage of the con-

vergence test for the Monte Carlo and EM methods, and

due to the large numbers of the requested iterations these

methods took a long time to complete. For almost all

methods, turning on the convergence tester considerably

reduced the analysis time. Further reduction came from

decreasing the precision requirements of intermediate

evaluations.

For the ITS method, the run with the ‘expert’ options

converged after 67 iterations reducing total run time 3.7-

fold while reducing duration of each iteration from 45 to

37 s. Thus, the main reduction in time was due to running

no more iterations than necessary, and there was a small

additional reduction in time per iteration due to decreasing

the SIGL parameter.

The importance sampling methods, IMP and IMPMAP

with the ‘expert’ options converged in 70 and 48 iterations

respectively, shortening the estimation time 2.8- and 5.4-

fold, compared with the runs with the ‘naive’ options. In

addition to the main estimation, the refining step with 10

iterations of 3,000 Monte Carlo samples per subject was

performed following convergence to obtain more precise

final estimates. This step took longer (43 and 50 min for

IMP and IMPMAP, respectively) than the main estimation

(31 and 25 min), and the parameter estimates with and

without this step were nearly identical for both methods.

Therefore, for the well-behaved Model 1 addition of this

step was unnecessary.

The SAEM method with the ‘expert’ options completed

the burn-in phase in 850 iterations reducing the estimation

time 2.2-fold.

The ‘naive’ options for the BAYES method specified

4,000 burn-in iterations and 10,000 stationary distribution

iterations, which took 593 min. With the ‘expert’ options

including convergence testing, burn-in completed in 500

iterations, and the total analysis time was reduced to

400 min. The comparison of convergence and time is not

meaningful in this example as beside turning on the con-

vergence tester and reducing precision of intermediate

evaluations, the ‘expert’ run also used the final results from

IMPMAP as the initial values and OMEGA-priors. Moti-

vation for this was a notion that for more accurate

assessments of the OMEGAS the BAYES method gener-

ally requires that the uninformative priors should be pro-

vided for OMEGAs, with the number of degrees of

freedom equivalent to the dimension size of the OMEGA

block. Thus, this method was thought to be used as an add-

on following use of other methods rather than as a stand-

alone analysis. However, in the Model 1 example, accurate

OMEGA values were obtained with no prior settings, and

all the other results were accurate for both the ‘naive’ and

‘expert’ options.

The FOCEI method with the default options terminated

with rounding error message (of less than 3 significant

digits precision) at 129 iterations. Re-parameterization of

the fixed-effect parameters into the log-domain form

(consistent with linear MU referencing) lead to successful

completion at 140 iterations (but slightly longer run time).

Lowering, instead, the convergence criteria (NSIG = 2)

and reducing SIGL and TOL to save time resulted in ter-

mination of the run with the rounding error message (of

less than 2 significant digits) at 97 iterations. However, the

estimation time was reduced 2.6-fold, and the terminated

analyses had the same final objective function value as the

successfully completed one.

Model 2

Similar to Model 1, implementation of the convergence

tester and decrease of precision requirement of intermedi-

ate evaluations significantly reduced the run time of the

ITS (2.5-fold), IMP (3.4-fold), and IMPMAP (5.7-fold)

methods.

The additional refining step performed following IMP

and IMPMAP convergence to obtain more precise final

Table 8 Relative run times for various ADVAN subroutines

Estimation

Method

ADVAN13

(%)

ADVAN6

(%)

ADVAN9

(%)

ADVAN8

(%)

BAYES 100 100 165 245

SAEM 100 100 168 246

IMP 100 115 185 253

IMPMAP 100 120 317 422

ITS 100 128 542 713

FOCEIa 100 69 364 673

a FOCEI runs with ADVAN13, ADVAN6, ADVAN9 and ADVAN8

subroutines converged after 140, 72, 91, and 112 iterations, respec-

tively. These iterations required 5186, 2727, 3409, and 4468 function

evaluations, respectively. Time per function evaluation was 10.3 13.6,

57.1, and 80.4 s, respectively
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estimates added 0.9 and 1.4 h to the total run time. Unlike

Model 1 where these steps took longer than the main

estimation, they only increased the total run time by 10 and

15%, respectively. As in Model 1, this additional step did

not change anything for the IMP method. For IMPMAP, it

did not change the parameter estimates, but reduced the

standard errors for several parameters.

For the SAEM method, ‘expert’ options besides turning

on the convergence tester also increased ISAMPLE from 3

to 10. With these settings, convergence was achieved in

49 h at 4,650 iterations which was longer than 43 h that the

‘naive’ run took. It shows that occasionally, when the

parameter versus iteration pattern is highly irregular, it may

be better not to have convergence testing on, and, instead,

analyze the progress in the raw output file (root.ext) to

decide when the burn-in is completed. Then, the burn-in

process can be terminated by entering ctrl-K, or, if key-

board interruption is suspended (which happens, for

example, during parallelization with MPI) by entering the

command ‘‘sig next’’ from another command window that

is pointing to the run directory.

Two BAYES runs with the ‘naive’ options were per-

formed first, with 10,000 and 20,000 burn-in iterations

respectively, and 5,000 stationary distribution iterations in

both runs. The runs took 13 and 22 h. Surprisingly, the

omega values in the longer burn-in analysis had more

deviation from true values than in the shorter analysis. This

suggested that this problem needed OMEGA-priors for

stabilization that were added in the ‘expert’ run. As in the

Model 1, these priors as well as initial values of parameters

were taken from the final estimates of the IMPMAP run.

For the ‘expert’ run, the convergence tester was turned on.

In addition, 30,000 statistical samples after burn-in were

requested, because of the high MCMC correlation observed

in the parameter iteration history plot. This may typically

be caused by poor identifiability of some parameters. When

this occurs, the number of statistical samples needs to be

increased, to obtain a more accurate mean and standard

error of the parameters. As a result of the ‘expert’ measures

stationarity was reached after 500 burn-in iterations, and

the analysis completed in 27 h. Thus, the ‘expert’ options

for this method did not decrease the run time, but decreased

deviation from the true parameter estimates.

All three FOCEI runs converged successfully for Model 2

and provided similar objective functions and the parameter

estimates. As with Model 1, the run with re-parameterized

parameters took longer (99 vs. 71 h) despite fewer itera-

tions that were needed for convergence (474 vs. 575). And

as in Model 1, the run with decreased NSIG, SIGL and

TOL drastically decreased the run time, more than 5-fold,

to 14 h.

Summarizing the above examples of a complex PK/PD

problem requiring numerical integration of ordinary

differential equations, we can see that in rich sampling

setting the EM methods facilitated by linear MU refer-

encing can be much more efficient than FOCEI, especially

IMP and IMPMAP. It should be noted though that the EM

algorithms are much less efficient in the problems where

there are many fixed-effect THETA parameters that are not

associated with any etas, the situation that has not been

explored in the considered examples.

The Monte Carlo EM methods use exact likelihood

algorithms, and therefore, may produce more accurate

results in the problems with sparse data and/or considerable

non-normality of the posterior density. Also, the Monte

Carlo variability of these methods (especially the SAEM

algorithm) allows a stochastic method of search, and

therefore allows these methods to be less susceptible to

locking into a local minimum. According to the above

examples, where the quality of the results was similar

between FOCEI and the Monte Carlo EM methods, these

theoretical advantages did not extend to the rich data

situations.

There are a number of options to improve accuracy of

the EM algorithms for complex problems, very sparse or

non-normally distributed data. In our example of the ill-

posed problem, ISAMPLE was increased for the SAEM

method, and OMEGA-priors were used to stabilize the

BAYES method. If it were needed, in addition to increas-

ing ISAMPLE, the IMP and IMPMAP methods could have

reduced IACCEPT to improve accuracy.

As we saw in the examples, the FOCE algorithm may

spend considerable time trying to pin-point a parameter

value to 3 significant digits for a parameter that has little

impact on the final objective function. This is why FOCE

can spend many more iterations moving the objective

function by only 0.01 unit, when the convergence tester is

set to NSIG = 3, requiring parameters to not change by

0.001 unit before it completes. One way to keep FOCE

from doing this is to set NSIG to 2, and also set SIGL

lower, so the analysis is quicker, and NONMEM reduces

its convergence requirement without compromising the

accuracy of the gradient calculations. Doing so greatly

reduced the run time in our examples. Still, even with these

lower requirements, the ITS, IMP, and IMPMAP algo-

rithms were more efficient.

On the other hand, the drawback of the Monte Carlo

methods is that there is no perfect convergence algorithm,

and the one in NONMEM is prone to either being fooled

into ending the analysis too early, because a particular

parameter moved very slowly relative to its Monte Carlo

noise, or be never satisfied because the convergence

algorithm is too sensitive to some parameters, with the

analysis going to the limit of the maximum iteration

number. Also, there is still some aesthetic discomfort

in obtaining variable Monte Carlo results instead of
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deterministic results that are reproducible to 2 or 3 sig-

nificant digits. However, Monte Carlo variations in the

values of the parameters are typically only 10–20% of the

size of the standard errors associated with those parame-

ters, so that Monte Carlo derived results are sufficiently

reproducible from a statistical perspective, although not

necessarily from a strict numerical standpoint.

The MCMC Bayesian method was the slowest of all the

methods. For the ill-posed problem, it also required at least

uninformative priors on OMEGA parameters, the values

that needed to be obtained from a previous maximum

likelihood analysis. It also required the increased number

of stationary samples (NITER = 30,000) compared with

the usual 1,000–10,000 samples for well-behaved prob-

lems, to offset high iteration-to-iteration correlation that

poorly identifiable parameters are particularly prone to. But

the BAYES method can serve as a replacement for the

much more time-consuming bootstrap process, as during

stationary iterations after burn-in iterations are completed it

obtains a large set of likely population parameters that fit

the data, so that one can obtain empirical confidence ranges

and variances of all parameters. Therefore, even though the

BAYES method as a stand-alone tool takes longer than the

other methods, used in conjunction with another method, it

may save a lot of time by providing empirical confidence

intervals for the parameters at the same time as the

parameters themselves.

Conclusions

In the examples of the one-target and two-target QSS

TMDD models with rich sampling, the new Nonmem 7.2.0

ITS, IMP, IMPMAP, SAEM and BAYES estimation

methods generally provided parameters estimates and

standard errors similar to the FOCEI method, although a

larger deviation from the true parameter values was

observed using the BAYES method for poorly identifiable

parameters. Standard errors of the parameter estimates

were in general agreement with the PFIM 3.2 predictions.

The ITS, IMP, and IMPMAP methods with the conver-

gence tester were the fastest methods, reducing the com-

putation time by about ten times relative to the FOCEI

method. Use of lesser precision for the FOCEI method

reduced the estimation time by 3–5 times without com-

promising the quality of the parameter estimates, and

equaling or exceeding the speed of the SAEM and BAYES

methods. Use of parallel computations with 4–12 proces-

sors running on the same computer, improved the speed

proportionally to the number of processors with the effi-

ciency (for 12 processor run) in the range of 85–95% for all

methods except BAYES that had parallelization efficiency

of about 70%.

References

1. Beal SL, Sheiner LB, Boeckmann AJ, and Bauer RJ (eds)

NONMEM 7.2.0 users guides. (1989–2011). Icon Development

Solutions, Ellicott City. ftp://nonmem.iconplc.com/Public/nonmem

720/guides

2. SAS User’s Guide, SAS Institute Inc. http://support.sas.com/

documentation/cdl/en/statug/63033/HTML/default/viewer.htm#title

page.htm

3. Jose Pinheiro, Douglas Bates (2000) Mixed-Effects Models in S

and S-PLUS (Statistics and Computing) Springer; 1st ed. 2nd

printing edition (April 15, 2009). http://www.springer.com/

statistics/statistical?theory?and?methods/book/978-1-4419-

0317-4

4. Jose Pinheiro, Douglas Bates, Saikat DebRoy, Deepayan Sarkar

and the R Development Core Team (2011). nlme: Linear and

nonlinear mixed effects models. http://cran.r-project.org/web/

packages/nlme/index.html

5. WinNonMix�, Pharsight, Cary, North Carolina

6. Phoenix� NLME
TM

, Pharsight, Cary, North Carolina. http://www.

pharsight.com/products/prod_phoenix_nlme_home.php

7. PKBUGS project, developed by Dave Lunn, Department of

Epidemiology and Public Health of Imperial College at St Mary’s

Hospital London. http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/

contents.shtml

8. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) Win-

BUGS—a Bayesian modelling framework: concepts, structure,

and extensibility. Stat Comput 10:325–337

9. Monolix 3.1 user guide, software.monolix.org/download31/

Monolix31_UsersGuide.pdf

10. Kuhn E, Lavielle M (2005) Maximum likelihood estimation in non-

linear mixed effects model. Comput Stat Data Anal 49:1020–1038

11. Bauer RJ. S-ADAPT/MCPEM User’s Guide, Version 1.57, 2011.

http://bmsr.usc.edu/Software/ADAPT/SADAPTsoftware.html

12. Bauer RJ, Guzy S (2004) Monte Carlo parametric expectation

maximization (MCPEM) method for analyzing population phar-

macokinetic/pharmacodynamic (PK/PD) data. In: D’Argenio DZ

(ed) Advanced methods of pharmacokinetic and pharmacody-

namics systems analysis, vol. 3. Kluwer Academic Publishers,

Boston, pp 135–163

13. Bauer RJ, Guzy S, Ng C (2007) A survey of population analysis

methods and software for complex pharmacokinetic and phar-

macodynamic models with examples. AAPS J 9(1):E60–E83.

doi:10.1208/aapsj0901007

14. Bauer RJ (2011) NONMEM users guide: introduction to NON-

MEM 7. Icon Development Solutions, Ellicott City

15. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations

of the target-mediated drug disposition model and identifiability

of model parameters. J Pharmacokinet Pharmacodyn 35(5):

573–591

16. Mager DE, Jusko WJ (2001) General pharmacokinetic model for

drugs exhibiting target-mediated drug disposition. J Pharmacoki-

net Pharmacodyn 28:507–532

17. Gibiansky L, Gibiansky E (2010) Target-mediated drug disposi-

tion model for drugs that bind to more than one targets. J Phar-

macokinet Pharmacodyn 37:323–346. doi:10.1007/s10928-010-

9163-3

18. Gibiansky L, Gibiansky E (2009) Target-mediated drug disposi-

tion model: approximations, identifiability of model parameters,

and applications to the population pharmacokinetic-pharmaco-

dynamic modeling of biologics. Expert Opin Drug Metab Toxicol

5(7):803–812

19. Bazzoli C, Retout S, Mentré F (2009) Design evaluation and
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23. Mentré F, Nyberg J, Ogungbenro K, Leonov S, Aliev A, Duffull

S, Bazzoli C, Andrew C. Hooker AC (2011) Comparison of

results of the different software for design evaluation in popu-

lation pharmacokinetics and pharmacodynamics. PAGE 20

Abstract 2066 [www.page-meeting.org/?abstract=2066]

J Pharmacokinet Pharmacodyn (2012) 39:17–35 35

123

http://dx.doi.org/10.1002/sim.4390
http://dx.doi.org/10.1002/sim.4390
http://www.page-meeting.org/?abstract=2066

	Comparison of Nonmem 7.2 estimation methods and parallel processing efficiency on a target-mediated drug disposition model
	Abstract
	Introduction
	Methods
	Models
	Datasets
	Hardware and software
	Defining random effects for the estimation methods
	Estimation methods options
	Expert choice of the estimation options for Model 1
	Expert choice of the estimation options for Model 2
	Parallel computing
	Choice of ADVAN subroutines
	Expected standard errors of parameter estimates

	Results
	One-target QSS model (Model 1)
	Two-target QSS model (Model 2)
	Parallel computing
	Choice of ADVAN subroutines
	Expected standard errors of parameter estimates

	Discussion
	Model 1
	Model 2

	Conclusions
	References


