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Abstract Visual Predictive Checks (VPC) are graphical tools to help decide

whether a given model could have plausibly generated a given set of real data.

Typically, time-course data is binned into time intervals, then statistics are calcu-

lated on the real data and data simulated from the model, and represented graphi-

cally for each interval. Poor selection of bins can easily lead to incorrect model

diagnosis. We propose an automatic binning strategy that improves reliability of

model diagnosis using VPC. It is implemented in version 4 of the MONOLIX software.

Keywords Visual Predictive Check � Model diagnostic � Binning � Dynamic

programming � Model selection

Introduction

Model evaluation is a crucial part of model building. The modeler requires

appropriate numerical and graphical tools to decide whether a proposed model

adequately describes the underlying process. Due to the complexity of pharmaco-

metric models, which can involve mixed effects, non-linearities, categorical and/or

continuous covariates, residual errors, below the limit of quantification (BLQ) data,

etc., diagnostics must be performed extremely carefully to avoid misinterpretation.

A Visual Predictive Check (VPC) is a tool used to compare the distribution of

real observations with that of simulated data [1–4]. Summary statistics of the

observed and simulated data are compared visually. The simulated data itself is

generated from the mathematical model expected to characterize the underlying

biological process. Inter-individual variability (IIV), residual variability and

possibly inter-occasion variability (IOV) are also accounted for in the simulation.
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Typically, the summary statistics are related to the median and two extreme

percentiles, for example the 10 and 90th. The choice of percentiles depends on how

much data is available; less data leads to poorer estimation of extreme percentiles.

For time-course data one can thus plot the relevant median and percentiles of

both the real and simulated data with respect to time, and visually compare them. If

the model is good, we would expect the simulated median and percentiles to be

systematically ‘‘close’’ to the real data ones.

Further developments to VPCs have been suggested to improve model diagnosis.

One strategy is to create a confidence interval (CI) for the percentiles based on the

simulated data, and then visually check how well the percentiles calculated on the

real data ‘‘fit inside’’ the interval [5]. Another, ‘‘reverse’’ strategy, is to create a CI

on the percentiles of the real data by bootstrapping, then see how well the simulated

percentiles ‘‘fit inside’’ this interval [6]. However, the bootstrap has limitations

when the data is sparse; this may be the case in the tails of the distributions, leading

for example to uninformative CIs for the 10 and 90th percentiles. Other interesting

developments have been proposed more recently [7–9].

When trying to visually compare real and simulated data, the real data are usually

first binned into specific time intervals. Otherwise, the predicted CIs may exhibit

overly ‘‘bumpy’’ patterns, making visual interpretation difficult. However, binning

leads to two fundamental questions: How should we bin? and, What is the effect of

our choice of binning on the conclusions we draw from a VPC?

A partial reply is that there are two ‘‘simple’’ binning strategies for pharmaco-

metric time-course data. Either make the bins equal-width, or make them equal-size,

i.e., each containing the same number of (real) data points. Unfortunately, as we will

show further on, the design of typical experiments makes both these options

inherently poor ‘‘representations’’ of the real data. This may end up hiding the

evidence of a poor model choice, or incorrectly rejecting the correct model when

doing a VPC.

In this contribution, we present a binning strategy for pharmacometric time-

course data that automatically determines a ‘‘good’’ binning, i.e., a well-chosen

number of bins and their edges. A modified least-squares criteria and dynamic

programming determine the edges, and a model-selection approach selects the

number of bins. In practice, this leads to irregularly sized bins that better correspond

to the clusters we see in the data. Consequently, we improve the match between the

real data and the VPC ‘‘summary’’, leading to better model diagnosis in practice. In

particular, we show how this automatic binning leads to better VPC diagnosis of

correct and incorrect models compared to the other ‘‘simple’’ binning strategies. The

new algorithm is implemented in version 4.0 of MONOLIX.

Methods for VPC construction

What are VPCs?

Visual Predictive Checks are commonly-used model evaluation methods for

evaluating stochastic models. They provide a fundamental way to evaluate whether
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a model correctly describes given data and decide if the model is likely to accurately

predict responses in future subjects. For CI VPCs, several sets of data are simulated

with the proposed model. Then, the distribution of the simulated data is compared

with the empirical distribution of the true data. What follows is a detailed

description of how basic CI VPCs are constructed in MONOLIX, also illustrated in

Fig. 1.

(a) Observations (yi ; 1 B i B n) are measured at times (ti ; 1 B i B n). Here, n is

the total number of observations across the whole set of individuals, i.e., in a

population context, data is pooled. Figure 1a displays an example of

pharmacokinetic (PK) data (ti, yi).

(b) Data is grouped into adjacent time intervals (bins).

(c) To summarize the distribution, empirical percentiles are computed for the data

in each bin. Here, the 10, 50 and 90th percentiles are calculated.

(d) A large number of datasets are simulated under the model being evaluated,

using the design of the original dataset.

(e) The data from each simulated dataset is grouped into the same original bins.

(f) The same percentiles are computed in each bin for each of the simulated

datasets.

(g) CIs for each percentile are calculated using these simulated percentiles. Here,

90% CIs are computed.

(h) Observed percentiles are compared with these CI.
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Fig. 1 Visual Predictive Check construction: a the data, b data grouped into bins, c empirical 10, 50
and 90th percentiles computed for each bin, d several simulated data sets, e these simulated data sets
grouped into the same bins, f the 10, 50 and 90th percentiles of each simulated data set computed for each
bin, g 90% CI computed from the percentiles of the simulated data, h observed percentiles and 90% CI,
i zones outside of the CI are filled in with red (Color figure online)

J Pharmacokinet Pharmacodyn (2011) 38:861–871 863

123



(i) Regions where the observed percentiles are not found within the CIs are filled

in with red, in order to help detect misspecified models. A small number of

regions filled in with red does not necessarily mean a misspecified model;

indeed, it is expected, and the modeler must make a decision as to whether

there are too many such regions.

Remark Ideally, we would like to associate VPCs with a decision rule based on a

statistical test, to accept or reject a proposed model. However, the data is not

independent in successive bins, so multiple testing strategies such as [10] are not

directly applicable to quantifying the regions filled in with red. It was also shown by

[11] that there was no clear decision rule for CI VPCs. Creating a statistical test that

leads to a decision rule is an interesting line of research, but out of the scope of the

paper.

Binning

In general, the distribution of the observations (here, measures of concentration)

changes with time. Binning the data, i.e., grouping observations into time intervals,

leads to an approximation of this distribution by a piecewise-constant distribution

(constant in each time interval).

The choice of the set of bins is crucial, as binning will always lead to a certain

distortion between the true and estimated distributions. A binning strategy should

aim to be ‘‘good’’, in the following senses:

• for a given number of bins, the locations of the bin edges must be chosen so as to

minimize heterogeneity of the data in each bin.

• the number of bins must be carefully chosen, i.e., we require a good tradeoff

between a large number of bins and a large number of observations in each bin;

the true distribution can be accurately approximated by a piecewise-constant

distribution with a large number of bins, while a large number of observations in

each bin is required to accurately estimate this true distribution.

Remark We only consider ‘‘basic’’ CI VPCs as described above. Several authors

have proposed different corrections in order to take into account a large variability

in doses or covariates [6, 8, 9]. As suggested in [7] and implemented in MONOLIX 4,

the same methodology can also be used for a graphical representation of the

(weighted) residuals and the normalized prediction distribution error (npde). The

proposed binning strategies described below also applied to these extensions.

Standard binning strategies

There are various ways to implement binning. The two simplest are:

• equal-width binning: K bins of length (tmax - tmin)/K.

• equal-size binning: K bins, each with n/K data points. If n is not a multiple of

K, we can correct so that each bin has either [n/K] or [n/K] ? 1 data points.
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Figure 2 shows these two strategies applied to theophylline PK data. Equal-width

binning (Fig. 2b) is clearly not appropriate when time-points are inhomogenously

distributed; some bins contain many data points whereas others are completely

empty. Due to this inherent poor adaptability, we do not consider this method in the

following.

In other situations, several observations are obtained from different patients at the

same time points. This is the case for example in the warfarin PK data shown in

Fig. 3a. This poses obvious problems for equal-size binning. We may wonder if the

equal-size binning procedure can be modified to deal with this case of identical time

points, but different number of measurements at each time point? In Fig. 3b, we see

that it is possible to obtain bins with ‘‘similar’’ amounts of data in each. Such a

construction is of course possible ‘‘by hand’’. Our first objective is to propose a

procedure which automatically gives bins with sizes as similar as possible. Let

t1\t2\. . .\tM be the M different time points and m1;m2; . . .;mM the number of

measurements taken at each of these time points. As before, n =
P

mj is the total

number of data. For a given number K of bins, we look for the bins I ¼
ðI1; I2; . . .; IKÞ that minimize the following criteria:

Jsize ¼
XK

k¼1

X

j2Ik

mj �
n

K

�
�
�
�
�

�
�
�
�
�
: ð1Þ

This minimization can be performed using dynamic programming [12]. The

segmentation displayed in Fig. 3b was obtained by minimizing the criteria Jsize with

K = 8 bins.

A new binning procedure

Selection of bin boundaries

So far, we have shown that as soon as time points are inhomogeneously distributed,

equal-width binning breaks down, and that the equal-size method can be relaxed to
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Fig. 2 a Theophylline PK data, b equal-width binning, c equal-size binning
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perform relatively well using similar-sized bins. Often however, we have data where

all time points are different and the data is ‘‘clustered’’ around various time points

(Fig. 4a, simulated data). In this case, the similar-size solution obtained by

minimizing Jsize no longer provides a plausible binning (Fig. 4b) as it does not take

into account knowledge of the clusters.

One way to resolve this more general problem is to interpret binning as clustering
or 1D-segmentation, i.e., grouping the n time points t1� t2� . . .� tn into K clusters

or segments along the time axis. One possible way to do this is by 1D K-means

clustering [13]. Let us define

JoptðIÞ ¼
XK

k¼1

X

j2Ik

tj � tk

� �2
; ð2Þ

where tk is the empirical mean of the tj’s in bin Ik:
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Fig. 3 a The warfarin PK data, b ‘‘approximately’’ equal-size binning
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Fig. 4 a Simulated data, b equal-size binning, c optimal binning obtained by minimizing Jopt
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tk ¼
1

nk

X

j2Ik

tj;

with nk the number of points in bin k. Then, the K-means solution is found by

minimizing Jopt over all possible segmentations I ¼ ðI1; I2; . . .; IKÞ of the data into

K bins. In practice, we do this using dynamic programming [12]. Figure 4c shows

the optimal binning obtained by minimizing Jopt.

Jopt is a least-squares criteria that supposes that we are dealing with a

homoscedastic model, i.e., the data spread (with respect to time) inside each cluster

is similar. This is not always the case, as for example in Fig. 5a. Here the combined

variability of the first two clusters is similar to that of each of the third, fourth and

fifth, whereas the variability of the sixth cluster is significantly greater than all the

others. In this case, the Jopt criteria may not be optimal; Fig. 5b shows that it groups

the first two clusters together, and splits the sixth cluster in two. In order to avoid

this, we can generalize Jopt to better take into account heteroscedacity:

Jopt;bðIÞ ¼
XK

k¼1

nkðr2
kÞ

b; ð3Þ

where b 2 ð0; 1� and rk
2 is the empirical variance of the tj’s in bin Ik:

r2
k ¼

1

nk

X

j2Ik

tj � tk

� �2
:

We see that Jopt = Jopt,b when b = 1. Fig. 5b shows the binning obtained when

b = 1. Then, as b is set closer and closer to 0, more emphasis is made on selecting

bins with differing variability. We refer the reader to [14] for more details that

motivate this approach. Figure 5c shows an intuitively optimal binning, obtained by

minimizing Jopt,b when b = 0.2, which is the default value proposed by MONOLIX 4.

Exactly the same binning is obtained with any value of b in [0.05 , 0.35].
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Fig. 5 a Simulated data, b binning minimizing Jopt,b with b = 1, c binning minimizing Jopt,b with
b = 0.2
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Remark 1 Binning consists in summarizing the probability distribution of the

observations (yi) into K probability distributions, one for each of the K bins. In other

words, if ti belongs to the k-th bin Bk, we approximate the marginal distribution Pti of

the observation yi measured at time ti with the marginal distribution PBk
estimated

using the set of observations found in the k-th bin. After pooling the data, let us suppose

that each measurement yi can be written: yi ¼ f ðti;wiÞ þ �i; where we suppose a

continuous data model with f the regression function, wi a vector of (random)

parameters and �i some residual error. Then, we can approximately rewrite this as

yi ’ f ðtk;wiÞ þ �i þ ðti � tkÞf 0ðtk;wiÞwhen ti is in bin k, and tk is defined as before. In

order to minimize the distance between the true distribution Pti and the approximation

PBk
, the correction term ðti � tkÞf 0ðtk;wiÞ can then either be dealt with by taking more

into account the form of f (and thus f 0), or by trying to make ðti � tkÞ small on average.

The latter option is the one invoked in our method, whereas supposing prior knowledge

of f (the first option) may in the future lead to alternative approaches.

Remark 2 Percentiles of PBk
are estimated empirically. The variance of these

empirical percentiles decreases as the number of observations in bin Bk increases.

Minimizing simultaneously the bias and the variance of the estimated percentiles

requires bins with small width and large size: this is exactly what our clustering

approach does.

Selection of the number of bins

For any given number of bins K, the binning that minimizes the criteria can be

calculated. The question then arises as to which K to choose. We have seen in the

previous section that a small number of bins leads to a poor approximation (large

bias) but a good estimation (small variance) of the estimated percentiles. On the

other hand, a large number of bins will lead to a good approximation (small bias)

but a poor estimation (large variance). In order to obtain a good compromise

between these two criteria, we propose here to automatically select the number of

bins using a model selection approach with the following penalized criteria:

UðI; kÞ ¼ log Jopt;bðIÞÞ
� �

þ kbKðIÞ; ð4Þ

where K(I) is the number of bins in binning I. We choose the I (and thus the K) that

minimizes U(I, k) for k fixed. The larger k is, fewer bins are selected. Extensive

numerical trials suggest the use of k = 0.3. Modelers can see for themselves

whether this value of k gives plausible binnings for their own data, and if necessary,

modify the value of k to penalize to a higher or lesser degree. The b term is included

in the penalty as it can be shown that when the tj’s are uniformly distributed,

log Jopt;bðIÞÞ
� �

decreases as a linear function of b.

Results

Data was simulated under a PK model, then two VPCs were constructed, one using

the correct model that had generated the simulated data, the other using an
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incorrect model. The true model is a 1-compartment oral model with first-order

absorption and a proportional residual error model. The incorrect model assumes a

zero-order absorption and a constant residual error model. The data is presented in

Fig. 6a, along with the binning produced using the similar-size binning algorithm

with 10 bins. We see that the visually-obvious clusters are split unnaturally; parts

of several clusters end up in a bin to the left, shared with the previous cluster, and

a bin to the right, shared with the next cluster. Critically, this has an effect on the

VPCs, as shown in Fig. 6b–c. In b, the simulated CIs are generated from the true
model for the simulated data, yet several ‘‘red’’ areas exist where the data quantiles

slip outside the 90% CIs from data simulated from the true model. In particular,

the artificial splitting of the data cluster just after t = 10 h helps provide the

largest area of red. Similarly, c shows simulated CIs from the wrong model. Again,

several red areas exist, but not significantly more than in b. This shows that poorly

binned data does not lead to easily differentiating the right model from the wrong

one.

In Fig. 7a, the same simulated data is binned using the proposed binning strategy

with the default b = 0.2 setting in MONOLIX 4.0, and model-selection for K with

k = 0.3.

Each visually-obvious cluster is now contained within its own bin. In b, the

simulated CIs were again generated from the true model. However, unlike before,

the VPC indicates, correctly, that we should not reject the suggested model. In c, it

is now clearer that we should reject the proposed, incorrect, model, due to how often

the data quantiles slip outside the simulated 90% CIs.

It should be pointed out that in this example, the result is relatively insensitive to

the choice of the parameters b and k: the same binning with 10 bins is obtained with

any b in [0.01 , 1] and any k in [0.26 0.53]. The two first bins are grouped with k in

[0.53 , 0.77] while a value of k in [0.17 , 0.26] leads to split the sixth bin into two

bins.
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Fig. 6 a Simulated PK data with equal-size binning, b VPC obtained from the correct model, c VPC
obtained from the wrong model (Color figure online)
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Discussion

Visual diagnostic methods are increasingly used in pharmacometric modeling to

help determine the quality of a model thought to represent a given biological

process and its relationship to various covariates. Typically, we have measured

time-course data from a cohort of patients undergoing a treatment, and we want to

see if a given model could have plausibly generated the real data we obtain from

these patients. One way to do this is to calculate pertinent statistics of the real data

and of data simulated from the suggested model, and compare them visually in some

way.

Visual Predictive Checks, or VPCs, are a class of methods that do just that, and

various implementations and extensions are possible. In each of these methods, the

real data are typically binned into specific time intervals, because otherwise,

predicted CIs may exhibit overly ‘‘bumpy’’ patterns, making visual interpretation

difficult. Simple, automatic binning strategies such as putting the same number of

data points in each bin, or having bins of equal length, are not adaptive enough to

cleanly summarize typical pharmacometric time-course data. This is a fundamental

problem, and can lead to poor model diagnosis when performing VPCs. We have

shown that when using such binning strategies, it is easy to incorrectly discard the

true model, or accept the wrong model.

We have introduced a binning algorithm that improves the ‘‘binned’’ represen-

tation of data before performing VPC diagnoses of a suggested pharmacometric

model. It selects variable-width bins that better capture the cluster of data around

each time point; clusters visible to the naked eye intuitively end up in their own

bins. The algorithm, implemented in MONOLIX 4.0, automatically proposes a

solution – no user input is initially required, greatly simplifying the modeler’s task.

We have shown with a typical PK example how this better ‘‘binned’’ summary of

the data improves model diagnosis, whether it be improved likelihood of discarding

an incorrect model, or correctly accepting the true model.

0 10 20 30 40

0

1

2

3

4

5

6

Time (h)

C
on

ce
nt

ra
tio

n 
(µ

g 
/ L

)

C
on

ce
nt

ra
tio

n 
(µ

g 
/ L

)

C
on

ce
nt

ra
tio

n 
(µ

g 
/ L

)

(a)

0 10 20 30 40

0

1

2

3

4

5

6

Time (h)

(c)

0 10 20 30 40

0

1

2

3

4

5

6

Time (h)

(b)

Fig. 7 a Simulated PK data and optimal binning with b = 0.2, b VPC obtained from the correct model,
c VPC obtained from the wrong model
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