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Abstract We present a Bayesian automated method to reduce by lumping, a large

system described by differential equations which takes into account parameter vari-

ability. Model reduction is a potentially useful tool to simplify large systems but suffers

from lack of robustness over the model parameter values. With the present method we

address this problem by incorporating a prior parameter distribution in the determi-

nation of the optimal lumping scheme in a Bayesian manner. Applications of this

method may include PBPK models for the drug distribution and/or Systems Biology

models for the drug action. The method builds on our previously published algorithm

for lumping that works stepwise, reducing the system’s dimension by one at each step

and where each successive step is conditional to the previous ones. We applied the

methodology to a PBPK model for barbiturates taken from the literature. An arbitrary

variability of 20% CV was added to the nominal reported parameter values. The

Bayesian method performed better than the method which ignored the parameter var-

iability, producing a lumping scheme which, while not optimal for any parameter value,

was optimal on average. On the other hand the simple, non-Bayesian method produced

a lumping scheme which while optimal for the nominal parameter values, was very poor

for most other values within the prior distribution. Further, we discuss the generality of a

lumping strategy to reduce a model and we argue that this is more powerful than

elimination of states, with the latter being almost a special case of lumping.
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Introduction

Mechanistic pharmacokinetic models are typically expressed as systems of ordinary

differential equations (ODE) with several parameters that are determined either in

vitro or estimated by in vivo experiments. Especially in Whole Body Physiolog-

ically Based Pharmacokinetic models (WBPBPK), fairly large systems are

considered for the distribution of drug in the body [1]. Furthermore with the

expansion of Systems Biology models to describe the drug action on a detailed

mechanistic basis, even larger systems may need to be studied [2]. On the other

hand clinical pharmacology utilises mainly empirical mathematical modelling to

describe the typically sparse and noisy data obtained from clinical trials. The need to

bridge the gap between these two opposite directions can be assisted by

mathematical techniques including model order reduction.

Model order reduction methods are formal methods of reducing the dimension-

ality (i.e. number of states or dependent variables) and number of parameters of

dynamical systems, which are typically defined by ordinary differential equations.

With these methods, the reduced systems are supposed to be able to describe the

basic features of the original models leaving out some less important details.

Various methods have appeared in the literature for model order reduction including

lumping and elimination of states [3].

In elimination, states which are not important for the overall behaviour of the

system, mainly because their time scale is different from the time scale of interest,

are replaced by steady state values or expressions derived from a quasi-steady state

approximation.

On the other hand, in lumping methods, the states described by the model are

transformed to a set of states, fewer in number, typically a linear combination of the

original states, thus reducing the number of equations and parameters accordingly.

More interesting is the special case of proper lumping, where each one of the

original states, contributes to only one of the states of the reduced system. This

constraint means that the original states form groups which retain a clear physical

interpretation and so do the corresponding parameters.

Most of the work carried out on lumping of chemical networks has been based on

the early work of Wei and Kuo in the late ‘60s [4]. Building on that work, several

papers have appeared presenting different lumping strategies [5–8], but mostly not

on proper lumping. Formal methods for lumping of mathematical models have also

been applied in pharmacokinetics. Examples include the work of Nestorov et al. [9]

which derives lumping rules and Brochot et al. [10] which applies the method

presented in [7] to a PK model. Recently, Dokoumetzidis and Aarons [11] proposed

an intuitive algorithm for proper lumping, which is completely automatic and can be

applied on nonlinear systems.

Model order reduction in general, is valid only locally, for the specified set of

parameter values. For a different set of parameter values, the kinetics of the system

change and the lumping scheme chosen may not be appropriate. In compartmental
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pharmacokinetics a 3-compartment model may collapse to a 2-compartment, when

the corresponding parameters of the two peripheral compartments are the same.

This reduction may even be approximately valid if these values are not identical but

are still close. However this lumping scheme is completely wrong if the condition of

equal or similar parameter values for the peripheral compartments does not hold.

This simple example demonstrates the local nature of model reduction. For a

mathematical analysis of this example please refer to the appendix of [11].

There is therefore a necessity for robust model reduction methodology. Recent

work in this field includes Refs. [12] and [13] in systems biology and chemical

kinetics, considering specific types of reactions. Earlier, Gueorguieva et al. [14],

applied global sensitivity analysis for the selection between lumped model

candidates of a PBPK model, including parameter variability. In this report we

present our contribution in this area, a method inspired from robust or Bayesian

decision theory, which utilises the efficient optimisation algorithm developed in

[11]. The methodology was applied to a linear PBPK model developed for

barbiturates [1] however it is directly applicable to nonlinear models also. Further,

we include a discussion on the generality of lumping as a model reduction strategy

as opposed to the elimination of states.

Methods

The lumping methodology this work is based on has been described in detail in [11].

Briefly we go through the basics of this approach in the following section.

A system of ordinary differential equations with a vector state y of length n

dy

dt
¼ f ðyÞ ð1Þ

where f(y) is a nonlinear function, can be transformed to a new vector of states, , of

length n̂\n such that ŷ ¼ My, where M is a lumping matrix of dimension n̂� n
which determines the transformation from y to ŷ. When all columns of M are unit

vectors then the lumping scheme is referred to as proper [11]. The inverse

transformation involves �M, the generalised inverse of M, such that M �M ¼ In̂:
Although there are infinite generalised inverse matrices for a matrix M, it has been

shown that the Moore–Penrose inverse, denoted as M?, which is a unique matrix, is

a good choice for the purpose used here [7].

A new set of differential equations is then defined which describes the reduced

model

dŷ

dt
¼ f̂ ðŷÞ ð2Þ

Given the original system f(y) and the lumping matrix M, a reduced system may

be obtained by the following expression which in the general case is an

approximation [7].
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f̂ ðŷÞ ¼ Mf ð �MŷÞ ð3Þ
The lumping matrix M is of size n̂� n and contains 1s and 0s which describe the

lumping scheme. A list of pairs of lumps can be converted to an appropriate

lumping matrix. Only pairs of lumps have to be considered in the list because from

these, larger sizes of lumps can be included in the matrix, M, by appropriate

combinations of pairs with common elements [11]. This list of lumps may include

either all combinations of states or a subset of these if one wants to include

constraints in the model reduction.

In model order reduction the objective is to find an appropriate matrix M, such

that a property or a criterion is satisfied. Typically the criterion is the difference of

the original model from the reduced model. The problem then becomes an

optimisation problem where one searches for the optimal matrix M, such that an

objective function is minimised.

This optimisation problem can be a challenging one since the obvious choice of

trying out every single one of the possible lumping matrices fails because of

combinatorial explosion, where the number of combinations grows fast with the size

and the degree of reduction. For example, for a model of size n = 30 reduced to 10,

the number of combinations is in the order of 1034. So exhaustive search is not a

realistic option.

In order to combat combinatorial explosion, in [11], a greedy algorithm was

developed which works in steps and locates one pair of states to be lumped at each

step. Then each successive step is conditional on the result of the previous step. The

search within each step is an exhaustive one throughout all possible combinations of

pairs of lumps, but these are normally not many. This approach is much faster than

the exhaustive search and the number of objective function calls grows linearly with

the degree of reduction. For the previous example of a model of size 30 reduced to

size 10 the number of objective function calls is only about 8500 instead of 1034. The

reason why this greedy algorithm works is not intuitive and is justified by an apparent

property of this kind of systems, where lumps remain consistent over different levels

of order reduction when the reduced and the original systems are close enough.

Further, numerical examples comparing this algorithm with the exhaustive search,

have given the same results [11]. It is also implied that when the reduced and the

original systems are not close enough the algorithm may fail to produce the same

result as the exhaustive search. However the purpose of this effort is that the two

systems are kept as close as possible, therefore this assumption holds. Note that in

terms of implementation, the search within each step can be parallelised to run over

several processors if available. The details of this algorithm can be found in [11].

Initially a list of allowed pair of lumps is considered. This may include all the

possible combinations or may include a subset of them, putting in this way

constraints that may have some physiological meaning or forcing certain states of

special interest to remain unlumped. Although only pairs of lumps are considered in

this initial list, in fact all the combinations of all possible sizes of lumps are

considered since when a new pair is considered, for which one of the states

contributes to a previously established lump, a larger lump is formed.
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A reasonable objective function to consider is one that takes the sum of squares

of the differences of the responses of the reduced and original models for all the

different states.

d ¼
X̂n

i¼1

wi

ZT

0

yiðtÞ � ŷiðtÞ
YiðtÞ

� �2

dt

2
4

3
5 ð4Þ

where Yi is a normalisation factor, used to scale all states such that these are

comparable and it may be the maximum of yi(t). T is the time span of the profile and

should be that which produces a representative trajectory of the system. wi are

weights which can make some states to have a higher contribution to the value of

the objective function when the interest is not same for all the states.

A known problem of model reduction is that the whole analysis is valid only

locally, for a specific set of model parameters. For a different set of model parameters

the lumping scheme may be different. However model parameters always carry

uncertainty or variability and are not single values, but instead are random variables

following statistical distributions. A way of implementing a more robust lumping

scheme that explicitly incorporates parameter variability is to use Bayesian decision

theory. So given a prior distribution of the parameter values, one can take the average

over that prior distribution of the local objective function, Eq. 4:

dB ¼
Z

S

ðPðhÞdÞdh ð5Þ

where P(h) is the probability density function of the prior distribution of parameters

h, S is the parameter space and d is the local objective function of Eq. 4. This

objective function, Eq. 5, may not produce the optimal lumping scheme for the

nominal parameter values, and in fact the lumping scheme may not be optimal for

any set of parameter values but it will be optimal in the average sense. In other

words it will be a compromise over all possible parameter values.

In this report we applied the methodology described above to a PBPK model

developed for barbiturates in the rat [1]. It has 19 states, which are listed together

with the corresponding parameter values of partition coefficients Kpu, flows, Q, and

volumes, V, in Table 1. These parameter values correspond to the first compound in

the homologue series, 5-methyl barbituric acid. Clearance values are 0.011 and

0.52 ml/min for hepatic and renal, respectively. All other parameters can be found

in [1]. The dose was considered to be 7500 nanomoles injected over 5 s. We

introduced variability of 20% CV to the 52 reported parameter values: a lognormal

distribution with variance 0.04 and geometric mean equal to the nominal parameter

values was used. Since the integration over the multi-dimensional parameter space

may be very computationally intensive, an efficient sampling strategy is necessary.

In this report we used hyper-cube sampling [15] in order to carry out this

integration. All the calculations were performed in MATLAB version 7.8

(Mathworks, Natick, MA). Function ‘‘ode15s’’ was used for solving the ODEs,

function ‘‘lshnorm’’ was used to generate the Latin hypercube samples and also the

Parallel Toolbox was used to speed up the calculations since the algorithm is
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parallel. The MATLAB code is provided as online supplementary material.

Simulations where run on an 8 core, 2.66 MHz Xeon computer.

Results and discussion

The local nature with respect to parameter values, of the validity of a reduced model

is a serious problem in model reduction. Especially in PBPK modelling it is a

known issue with important implications. A lumping scheme of certain tissues in a

PBPK model may not be optimal across different animal species, as some of the

parameter values, namely flows and volumes are different between species. This

compromises the applicability of model reduction in PBPK.

The methodology proposed here is a Bayesian version of a methodology

presented previously in [11]. It has all the advantages of the original algorithm,

including that it handles nonlinear models and constraints, it is completely

automatic and can be used very easily as a black box. Using an appropriate filter that

converts a Systems Biology Mark-up Language (SBML) file to a MATLAB

subroutine, any model described in SBML can be easily plugged into this algorithm.

Although the PBPK model used as example in this paper is a linear model, this fact

makes no difference and a nonlinear model can be used instead in exactly the same

way without any additional considerations or modifications to the MATLAB code.

Furthermore, the code can be easily expanded to handle other types of models such

Table 1 The 18 states of the

PBPK model for barbiturates [1]

together with parameters values

a Values found in [9]

State Tissue Kpu Q (ml/min) V (ml)

1 Arterial 56.42 5.66

2 Venular 56.42 11.3

3 Lungs 0.61 56.42 2.87

4 Liver 2.75 2.00 11

5 Kidneys 1.25 9.20 2.29

6 Stomach 0.26 1.14 1.1

7 Pancreas 0.32 0.51 1.3

8 Spleen 0.58 0.63 1.3

9 Gut 0.60 7.52 11.37

10 Muscles 0.60 7.50 122

11 Adipose 0.35 0.40 10

12 Skin 1.12 5.80 40

13 Bones 0.98 1.45 15.8

14 Heart 0.55 3.92 1.2

15 Brain vascular 0.60 1.30 7.75

16 Brain extravas. 1.15

17 Testes vascular 0.69 0.45 4

18 Testes extravas. 2.5

19 Dummya 0.90 14.6 60
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as partial differential equations and even adapted to do more than lumping such as

elimination as we will see further down in the discussion. However, the feature we

are focussing our attention in this report is robust model reduction.

In the results produced here we simulated profiles from all the states of the PBPK

model adding also variability to the nominal reported parameter values. We

compared the agreement of the lumped model to the original model. Comparison

was performed in terms of the lumped states. In order for the original states to be

comparable to the lumped states, the original states were also grouped in the same

way as the lumped states but after the simulation. So effectively, in order to have

comparable states, what we compared was the lumped system, where the reduction

was performed using Eq. 3 before simulation and the original system, where the

same states were grouped after the simulation. Agreement between the two, means

that a good lumping scheme is being considered.

A first task was to run the lumping algorithm using the nominal parameter values

without variability. The number of initial states of the system is 19, and therefore

the list of pairs of lumps for the first step of the algorithm is n(n - 1)/2, i.e. 171 and

the run takes only a few seconds to complete since the steps are as many as the

degree of reduction and at each step no more than 171 calls of the objective function

are made. The lumping schemes determined for reduction of the 19 original states to

10 and 7 states, respectively, are shown in Table 2, columns 2 and 3, respectively.

In Figs. 1 and 2, the profiles of amount of drug in the different tissues simulated by

the reduced and the original models are co-plotted for different levels of reduction.

Figure 1a shows the simulations of a reduction from 19 original states to 10 final

states and on Fig. 1b, plots of the reduced versus the original model together with

the identity line appear. Figure 2 corresponds to a reduction down to 7 final states.

We can observe that generally there is agreement between the original and reduced

models and predictably the agreement is closer for larger reduced models, i.e.

smaller degree of reduction. The lumping schemes from this method group states

based on kinetics. Having applied no constraints, any state can be grouped with any

other and not just neighbouring ones. It has also been demonstrated formally in

Table 2 Local lumping schemes of size 10 and 7 final states. The first column refers to the state number

in the reduced system while the number in the other columns refer to the original state numbers

States in red. model 10 states 7 states

1 1 1

2 2 2

3 3 3

4 4 ? 10 ? 11 ? 12 ? 13 4 ? 10 ? 11 ? 12 ? 13

5 5 ? 7 ? 8 ? 9 5 ? 6 ? 7 ? 8 ? 9 ? 14 ? 16 ? 17 ? 18

6 6 ? 14 15

7 15 19

8 16 ? 18

9 17

10 19

J Pharmacokinet Pharmacodyn (2009) 36:613–628 619

123



Fig. 1 a The dashed lines correspond to simulation of the original model at the nominal parameter values
and the solid lines to simulation using the reduced model of 10 final states. The y-axis is on a log scale.
The curves are basically indistinguishable. b The trajectory of the reduced system of 10 final states is
plotted against the original, for the nominal parameter values. We visually verify that there is agreement
between the reduced and the original systems, since the points lie close to the identity line
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PBPK that two parallel compartments may be grouped if they exhibit similar

kinetics while two compartments in series may be grouped if their time scales are

very different, and therefore one is the limiting step [9]. However with the presented

algorithm more complex patterns are also possible but mostly in large systems.

Looking at Table 2 we can observe the choices made by the more aggressive

lumping scheme of size 7, which do not necessarily have a clear anatomical

interpretation. For example, an obvious non-anatomical lump is the combination of

compartments 16 and 18 which correspond to the extravascular portions of the brain

and the testes, respectively. The lumping scheme of Table 2 is different to the one

produced by the lumping rules and anatomical arguments in [9] for the same model

Fig. 2 a The dashed lines correspond to simulation of the original model at the nominal parameter values
and the solid lines to simulation using the reduced model of 7 final states. The y-axis is on a log scale.
Reasonable agreement is observed. b The trajectory of the reduced system of 7 final states is plotted
against the original, for the nominal parameter values. We visually verify that there is agreement between
the reduced and the original systems, since the points lie close to the identity line. Generally good
agreement is observed
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of barbiturates. This may partly be due to the fact that our methodology is

automatic, as opposed to the guided, manual methodology. The automatic method

could also be guided towards a specific direction by introducing constraints or
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weights in the objective function to give emphasis to specific tissues of interest,

something we have not tried here. By including constraints, which is a readily

available feature of the algorithm, we could have forced the algorithm to avoid

choices that have no anatomical meaning. However we have to stress here that this

type of lumping is based on the kinetics and not the anatomy or the physiology. Of

course one hopes that the kinetic information corresponds to the physiological

properties of the tissues and the physicochemical properties of the drug, but this is

an ideal scenario. So, biological relevance of the lumped model is conditional to the

original model being perfectly correct. Further, the study of barbiturates is not the

scope of our work and this PBPK model is used only as an example to test our

methodology. Note that all simulations performed with the model and the

calculations of the various lumping schemes are based on amounts since these

are the states of the system, rather than concentrations, which are the observable

quantities. It is straightforward to convert the lumped amounts to concentrations and

one would only have to add up the corresponding volumes in order to determine the

volume of each lump. However one has to be careful, because two compartments of

completely different concentration scales, may lump well based on their kinetics,

but the average concentration of the lump may not be representative of any of the

concentrations of individual compartments.

The next step is to assess the robustness of the produced lumping scheme with

respect to parameter variability. Profiles were simulated including a modest,

arbitrary variability of 20% CV for all parameters. For each parameter set, the same

lumping scheme was used, the optimal one for the nominal parameter set shown in

Table 2. Five-hundred parameter sets were drawn using Latin hypercube sampling.

Plots of the simulated profiles of the reduced model versus the original model, are

shown in Figs. 3a and 4a, for the final reduced models of order 10 and 7,

respectively, exhibiting considerable spread around the identity line, indicating that

although the lumping schemes of Table 2 were optimal for the nominal parameter

values they are not appropriate for most parameter sets within the variability range

around these nominal values. This failure demonstrates the lack of robustness of

model reduction which is not a weakness of the way the algorithm determines the

reduction scheme. It is simply due to the fact that the reduction scheme is based on

kinetics and when the parameters controlling the kinetics change the reduction

scheme may not be valid.

One way to determine a lumping scheme which is more robust to changes in

parameter values is to take into account their variability during the optimisation as

expressed by the Bayesian objective function of Eq. 5. One thousand samples were

drawn by Latin hypercube sampling from a lognormal distribution with geometric

Fig. 3 a The trajectories of a reduced system of size 10, produced by the local scheme of Table 2
(column 2), are plotted against the original, for parameter values sampled from the prior distribution (20%
variability, 1000 Latin hypercube samples). One can observe significant dispersion, indicating that although
this lumping scheme was optimal for the nominal parameter values (Fig. 1), for most of other parameter
values it is not adequate, as a result of its local character. b The same as in a, but now the lumping scheme
used is the Bayesian one shown in Table 3. We can see that the dispersion of a has reduced significantly,
indicating that although this lumping scheme may not be optimal for the nominal parameter values, or in fact
for any other individual set of parameter values, it is optimal on average for the given prior distribution

b
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mean equal to the nominal parameter values and standard deviation of 0.2. These

samples are stored and used for the original model and all the subsequent objective

function calls involving the reduced model candidates. The calculation of each

value for this Bayesian objective function is computationally intensive as it solves

the ODE system 1000 times, which slows considerably the process, i.e. by a factor

of a thousand. The ability to parallelise the optimisation on 8 processors helps to

reduce the run time, which totalled a few hours. The lumping scheme determined by

the Bayesian method is shown in Table 3, and one can observe that it is different

from the one produced by the local method shown in Table 2. In Figs. 3b and 4b,

plots of the reduced versus the original model are shown, for the final reduced

models of order 10 and 7, respectively, exhibiting some spread around the identity

line but significantly reduced compared to the local lumping scheme plotted in

Fig. 4 a The trajectories of a reduced system of size 7, produced by the local scheme of Table 2
(column 3), are plotted against the original, for parameter values sampled from the prior distribution (20%
variability, 1000 Latin hypercube samples). b The same as in a, but now the lumping scheme used is the
Bayesian one shown in Table 3
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Figs. 3a and 4a. We can therefore conclude that this lumping scheme determined by

the Bayesian method is more robust. It may not be optimal for any specific

parameter set, but it is optimal on average, as opposed to the local scheme which is

optimal for the nominal parameter set but poor for most other parameter sets and on

average.

As already mentioned lumping of states is only one of the ways of reducing a

model. Alternative methods include elimination of states. Elimination of states is

also based on the kinetics, basically the time scale of each state. The principle is that

if a state is much faster (or even much slower) than the states of interest in the time

span of interest, this state can be replaced by a steady state value and is therefore

eliminated. The optimisation algorithm that we have described here, with some

modifications, can be applied to solve this problem also, and in fact we have tested

this in systems biology models. The algorithm works stepwise, on the same

optimisation principle eliminating one state at each step while every next step is

conditional to the previous ones. For each step each one of the states is replaced by

its steady state value and the resulting model is compared to the original with an

objective function. In this way the state needed less is eliminated and the algorithm

moves to the next step. According to our experience, the algorithm performs as

expected producing smaller models with similar kinetics, but elimination of states is

not as flexible as lumping and so a poorer quality system compared to lumping, for

the same size, is expected.

Also, we have gone one step further, developing an automated algorithm based

on the same optimisation principle, that combines the two methods of lumping and

elimination of states into one. The basic motivation behind this, is that it implements

automatically what a modeller would do empirically when trying to reduce a model.

One would either group a state with another one, or would delete it. The algorithm,

as before, works on the same optimisation principle of reducing by one state at a

time, while every next step is conditional to the previous scheme, but at each step it

performs a dual search where either a state is lumped with another one, or a state is

Table 3 Bayesian lumping

schemes of size 10 and 7 final

states

States in

red.

model

10 states 7 states

1 1 ? 2 ? 3 ? 13 1 ? 2 ? 3 ? 13 ? 15

2 4 4

3 5 ? 7 ? 8 ? 9 ? 11 5 ? 6 ? 7 ? 8 ? 9 ? 11 ? 14

? 16

4 6 ? 14 ? 16 10 ? 12

5 10 17

6 12 18

7 15 19

8 17

9 18

10 19

J Pharmacokinet Pharmacodyn (2009) 36:613–628 625

123



eliminated, which ever produces a system closer to the original. In our experience,

this algorithm outperforms the reduction based on elimination alone, as expected,

due to the additional flexibility, but does not perform better compared to lumping on

its own. The conclusion is that lumping on its own is a very efficient and general

way or reducing a system because all the slow states which are candidates for

elimination can also be lumped into one single state. Therefore the only additional

task the combined algorithm does, is to delete that lumped steady state. Figure 5

pictures schematically the different scenarios of elimination and lumping. In

elimination, all states that can be replaced by steady state are eliminated from the

system, while the rest remain intact. In lumping the states with similar kinetics are

lumped, including all states which are good candidates for elimination, which are all

lumped into a single state with nearly steady state kinetics. The only additional thing

the combined algorithm accomplishes is to eliminate this single lumped steady state,

and therefore lumping is the most important task which in a way renders elimination

obsolete.

Conclusions

We demonstrated that a Bayesian optimality criterion can offer a robust lumping

scheme that addresses to some extent the inherent local character of model

reduction, for large systems expressed by differential equations. In pharmacokinet-

ics this approach may be applied in other scenarios also, such as model reduction

which is robust over different animal species. In this case the differences in model

parameter values over the different animal species do not follow lognormal

distributions as in the example presented here, but instead they follow multimodal

Fig. 5 Schematic representation of elimination versus lumping, model order reduction approaches.
Elimination replaces near steady states with fixed values thus reducing the system, but has no effect on
non-steady state species. Lumping groups kinetically similar species, and hence combines all near steady
states in one single near steady state, as well as grouping other kinetically similar states. Therefore,
lumping almost includes the action of elimination. A combined method which performs both lumping and
elimination, basically ends up performing lumping and only eliminates the final single steady state group
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distributions or even discrete parameter sets corresponding to the different animal

species with appropriate weights. In any case a Bayesian model reduction scheme

does not overcome completely the inherent local nature of model reduction, but

instead it determines a compromise reduction scheme, which may not be optimal for

any specific parameter set, but it is optimal in the average sense. Our proposed

methodology is based on our previous work of an efficient optimisation algorithm,

which works stepwise and is very fast. Without such a fast search strategy the use of

a computationally expensive Bayesian objective function would be prohibitive. This

algorithm is very easy to use, it can be used on nonlinear systems, supports

constraints and can be expanded to be used with other types of models such as

PDEs. Further, motivated by the results of a combined algorithm of elimination and

lumping, which we developed, we discussed the generality of a lumping strategy to

reduce a model. We argued that this is much more powerful than elimination of

states and in fact elimination is almost a special case of lumping since all the states

to be eliminated can be grouped into a single lump.
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