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Abstract Patients that are exposed to biotechnology-derived therapeutics often

develop antibodies to the therapeutic, the magnitude of which is assessed by

measuring antibody titers. A statistical approach for analyzing antibody titer data

conditional on seroconversion is presented. The proposed method is to first trans-

form the antibody titer data based on a geometric series using a common ratio of 2

and a scale factor of 50 and then analyze the exponent using a zero-inflated or

hurdle model assuming a Poisson or negative binomial distribution with random

effects to account for patient heterogeneity. Patient specific covariates can be used

to model the probability of developing an antibody response, i.e., seroconversion, as

well as the magnitude of the antibody titer itself. The method was illustrated using

antibody titer data from 87 male seroconverted Fabry patients receiving Fabra-

zyme�. Titers from five clinical trials were collected over 276 weeks of therapy

with anti-Fabrazyme IgG titers ranging from 100 to 409,600 after exclusion of

seronegative patients. The best model to explain seroconversion was a zero-inflated

Poisson (ZIP) model where cumulative dose (under a constant dose regimen of

dosing every 2 weeks) influenced the probability of seroconversion. There was an

80% chance of seroconversion when the cumulative dose reached 210 mg (90%

confidence interval: 194–226 mg). No difference in antibody titers was noted

between Japanese or Western patients. Once seroconverted, antibody titers did not

remain constant but decreased in an exponential manner from an initial magnitude

to a new lower steady-state value. The expected titer after the new steady-state titer
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had been achieved was 870 (90% CI: 630–1109). The half-life to the new steady-

state value after seroconversion was 44 weeks (90% CI: 17–70 weeks). Time to

seroconversion did not appear to be correlated with titer at the time of serocon-

version. The method can be adequately used to model antibody titer data.

Keywords Nonlinear mixed effects models � NLMIXED � Mixed effects �
Seroconversion � Zero-inflated negative binomial � Hurdle model

Introduction

Protein therapeutics, including monoclonal antibodies, enzymes, proteins, and

peptides, play an increasing role in the pharmaceutical marketplace. Despite the fact

that many proteins use sequence homologies identical to or near identical their

endogenous counterparts, the development and magnitude of immune response, i.e.,

anti-protein antibodies, continues to be of concern. Such antibodies can be of no

consequence, can neutralize the therapeutic effect of the exogenous protein, or can

enhance the effect of the exogenous protein. Sometimes the clinical effects of such

proteins are life-threatening and require acute intervention. van Regenmortel et al.

[1] present a review on the biological mechanisms of protein immunogenicity.

Not all patients form anti-protein antibodies to an exogenously administered

protein. Schellekens [2] reviewed the factors involved in immunogenicity, which

include sequence variation, degree of glycosylation, formulation, contaminants and

impurities, route of administration, dose, length of treatment, assay technologies,

patient characteristics, and unknown factors. Quantification of the degree of

immunogenicity is defined using a tiered approach [3]. In the first tier, whether or

not a patient has seroconverted, i.e., formed antibodies to the protein, is assessed

using an immunoassay format. Second tier assays further characterize the nature of

these antibodies in seroconverted patients. It is the analysis of data arising from the

first tier that is of interest in this manuscript.

Once it is determined that a patient has seroconverted, an immunoassay, such as

enzyme-linked immuno-sorbent assay (ELISA), is often used to assess the extent of

the immune response to the therapeutic protein. Antibody titers provide a measure

of the degree of antibodies present in an individual and are often expressed as the

largest serum dilution that still gives a positive result. For example, a titer of 800

indicates the test still shows positive when the sample is diluted 800-fold, i.e., 1 part

patient serum to 799 parts diluent while at greater dilutions the test is negative.

Antibody titers are a surrogate for the magnitude of the immune response and are

considered ‘‘quasi-quantitative’’ in nature as they reflect antibody protein concen-

tration as well as antibody affinity. Antibody titers are influenced by the assay

conditions and sensitivity. Of interest would be to determine what factors, e.g.,

weight, dose, etc., are predictive of the degree of antibody titer in a patient. To do so

in a quantitative manner requires statistical modeling, which has not been reported

in the literature to date. The purpose of this communication is to report a new

methodology for the analysis of antibody titers collected as part of a clinical

development program conditional on a patient seroconverting.
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Methodology

The development of specific antibodies to a foreign protein by an otherwise

immunologically naı̈ve individual is called seroconversion. The magnitude of

antibody response to foreign protein is assessed using antibody titers, which when

using a 2-fold dilution scheme starting with the minimum dilution 1/100 take the

form \100, 100, 200, 400, 800, 1600, etc. Modeling such data is not immediately

intuitive because they are not exactly continuous and are more informative than a

typical ordinal data type. Therefore, models based on continuous random variables

are not applicable and, although ordinal models may be applicable, loss of

information and potential loss of power would be expected to occur in the analysis.

The problem is further complicated when it is realized that some patients that are

exposed to foreign proteins never develop antibodies; hence, the population consists

of seroconverters and nonseroconverters. One question of interest is what are the

patient-specific factors that are important in quantifying the magnitude of antibody

response in those patients that develop antibodies and what patient-specific factors

distinguish seroconverters from nonseroconverters? The purpose of this report is to

address the first problem—the conditional seroconversion problem. Further research

is needed to solve the second problem, as will be shown.

The conditional seroconversion issue can be solved by realizing that antibody

titer data take the form of a geometric sequence. All geometric sequences can be

expressed as

Y = a� bn ð1Þ

where Y is the variable, a is the scale factor, b is the common ratio, and n is the

exponent. For arbitrary detection limit denoted as LOQ, the scale factor (a) equals

LOQ/2 and the common ratio (b) equals 2. For example, for an assay having a

detection limit of 100, antibody titers can be expressed using a scale factor of 50 and

a common ratio of 2, i.e.,100 can be expressed as 50 9 21, 200 as 50 9 22, 400 as

50 9 23, etc. Antibody titers less than the detection limit are problematic as they are

technically left-censored. However, if it can be assumed that n = 0 for antibody

titers less than the LOQ, then the problem becomes finding a suitable model for a

series of positive integers or count data.

Count data is usually fit by either the Poisson or negative binomial distribution.

The Poisson distribution has the form

p Y ¼ yð Þ ¼ exp �kð Þky

y!
ð2Þ

where p(Y = y) is the probability the realized value of Y equals y and k is the

population mean. With the Poisson distribution the variance of the distribution

equals the mean. To account for situations where the variance is larger or smaller

than the mean, the negative binomial distribution is used. The negative binomial

distribution takes the form

p Y ¼ yð Þ ¼ ky

y!

C yþ kð Þ
C kð Þ kþ kð Þy
� �

1þ k
k

� ��k

ð3Þ
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where C(.) is the gamma function. Estimates of k and k can be done using maximum

likelihood by maximizing the joint probability distribution.

Fitting count data typically runs into two problems, however, an over-excess of

zeros and a variance that does not equal the mean (overdispersion or

underdispersion) [4]. Analysis of the antibody titer data from clinical data clearly

show an excess of zeros and possible overdispersion at most of the time points

examined. To account for an excess of zeros, two types of models may be used, a

zero-inflated model or a hurdle model [4]. The zero-inflated Poisson (ZIP)

distribution is

p Y ¼ yð Þ ¼
pþ 1� pð Þ exp �kð Þ y ¼ 0

1� pð Þexp �kð Þky

y!
y [ 0

8<
: ð4Þ

where p is the probability of an excess zero and k is the mean of the non-zero

responses that can be modeled using a log-link function k = exp(hz). In Eq. 4, p,

the probability of seroconversion, can be modeled as a logistic function

p ¼ exp bxð Þ
1þ exp bxð Þ ð5Þ

where x is a set of predictor variables. It should be noted that the same or a different

set of predictors can be used to model p and k; they are not necessarily the same.

To account for overdispersion (where the variance exceeds the mean) or

underdispersion (where the variance is less than the mean) the negative binomial

distribution be used. The zero-inflated negative binomial (ZINB) distribution can be

written as

p Y ¼ yð Þ ¼
pþ 1� p

1þ k=kð Þk
y ¼ 0

1� pð Þ ky

y!

C yþ kð Þ
C kð Þ kþ kð Þy
� �

1þ k=kð Þ�k

� �
y [ 0

8>>><
>>>:

ð6Þ

where k is the overdispersion parameter. As k ? ?, the negative binomial part of

the distribution approaches the Poisson distribution in the limit, i.e.,

Lim
k!1

ky

y!

C yþ kð Þ
C kð Þ kþ kð Þy
� �

1þ k
k

� ��k

! kY

y!
exp �kð Þ: ð7Þ

The ZIP model accounts for excess zeros only, while the ZINB model allows for

both excess zeros and overdispersion.

A competing model to account for excess zeros is the hurdle model [6]. Hurdle

models are thought of as a two-part model. The first part is the typical Bernoulli

outcome, the patient experiences the event or doesn’t experience the event. The

second part is that once the patient experiences the event, a truncated-at-zero count

model is used to model the positive, nonzero outcomes. Hence, the hurdle model is a

model in which separate and distinct processes are used to account for the zero and

non-zero responses. The basic form of the hurdle model is
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p Y ¼ 0ð Þ ¼ f1 0ð Þ ¼ p

p Y ¼ ið Þ ¼ 1� pð Þ f2 ið Þ
1� f2 0ð Þ; i [ 0

ð8Þ

where f1(.) is the probability distribution function (pdf) of the Bernoulli part of the

model and governs the hurdle part of the model, f1(0) is the probability of a zero

response for the first pdf, and f2(.) is the pdf of the response once the hurdle has

been crossed. For the Poisson hurdle model, the model can be written as

p Y ¼ yð Þ ¼
p y ¼ 0

1� pð Þ exp �kð Þky

1� exp �kð Þð Þy!
y [ 0

8<
: : ð9Þ

Further complicating matters is that antibody titer data are longitudinal in nature

since in clinical trials antibody titers are measured serially over the course of the

trial. Therefore, it is also necessary to account for between-patient heterogeneity in

both the probability of the event and the mean non-zero response since not all

patients will seroconvert at the same time nor will they have the same magnitude of

titer after seroconversion. The inclusion of between-patient variability in the model

can be accounted for modeling p and k as a random effect in the model. Assuming

that p and k can be modeled as a simple linear model of the predictors x and z,

respectively, p and k can be expressed as

p Y ¼ 0ð Þi¼
exp bxþ g1ið Þ

1þ exp bxþ g1ið Þ
ki ¼ exp hxþ g2ið Þ

ð10Þ

where p(Y = 0)i now represents the patient-specific probability of a zero-response

or threshold for the ith patient from seronegative to seropositive, ki is the mean

patient-specific non-zero response, and the gs are the patient-specific deviations

from the population mean parameters that are independent, identically normally

distributed with mean 0 and variance x2. Predicted values can then be defined as

Ŷi ¼
ki if p̂ Y ¼ 0ð Þi [ 0:5
0 if p̂ Y ¼ 0ð Þi� 0:5

�
: ð11Þ

In this manner seroconversion is viewed as crossing some threshold. Below the

threshold, patients have no titers but above the threshold, titers to the foreign protein

develop and are dependent on k.

Application: analysis of anti-Fabrazyme titers

Trial designs

Fabrazyme� (recombinant human a-galactosidase A enzyme, r-haGAL) is an

enzyme replacement therapy approved for the treatment of patients with Fabry

disease, an X-linked lysosomal storage disorder with multisystemic effects. Patients
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on chronic administration of Fabrazyme can develop IgG antibodies to Fabrazyme.

Of interest would be to determine those patient characteristics that might influence

the development of antibodies to Fabrazyme.

For this analysis, antibody titer data were pooled from 5 clinical trials with

Fabrazyme:

• Study AGAL-1-002-98 was a Phase 3 multicenter, placebo-controlled, double-

blind, randomized study of the safety and efficacy of r-haGAL in male or female

patients with Fabry disease 16 years or older having no prior treatment with

Fabrazyme having low endogenous enzyme activity. Patients received approx-

imately 1 mg/kg (0.9–1.1 mg/kg) of Fabrazyme or placebo every 2 weeks for

20 weeks for a total of 11 infusions of study medication. Patients in Study

AGAL-1-002-98 were continued into an open-label extension study (Study

AGAL-005-99) wherein patients received approximately 1 mg/kg Fabrazyme

(0.9–1.1 mg/kg) every other week for 54 months.

• Study AGAL-016-01 was an open-label, multi-center, multi-national study

designed to examine the safety, efficacy and pharmacokinetics of Fabrazyme

therapy in pediatric patients 7–15 years old with Fabry disease. Fabrazyme was

administered 1.0 mg/kg every 2 weeks for 48 weeks.

• Study AGAL-017-01 was an open-label, multi-center study designed to examine

the safety, efficacy and pharmacokinetics of 1.0 mg/kg Fabrazyme followed by

low dose maintenance therapy (0.3 mg/kg) in male patients C16 years old with

Fabry disease. Patients received Fabrazyme 1.0 mg/kg every 2 weeks for

approximately 6 months followed by Fabrazyme 0.3 mg/kg every 2 weeks for

approximately 18 months.

• Study AGAL-007-99 was a multi-center, open label study of the safety and

efficacy of Fabrazyme in male Japanese patients with Fabry disease 16 years or

older with no prior treatment with Fabrazyme. Patients received approximately

1 mg/kg (0.9–1.1 mg/kg) Fabrazyme intravenously every 2 weeks for 20 weeks.

These studies comprise a range of ages (pediatric and adults) and races (Japanese

vs. Western) with somewhat similar dose intensities.

Antibody titer analysis

Antibody titers were measured using an r-haGAL specific ELISA and were

confirmed by a radioimmunoprecipitation (RIP) assay [7]. Two-fold serial dilutions

of patient sera at an initial dilution of 1/100 were analyzed to obtain an endpoint

titer. All assays utilized an enzyme conjugated monoclonal antibody to human IgG

as the detector reagent, except for Studies AGAL-1-002-98, AGAL-005-99 and

AGAL-007-99 which utilized an enzyme conjugated polyclonal antibody specific

for human IgG. Patients with reactivity in the screening ELISA and a positive RIP

confirmatory assay were classified as seroconverters, otherwise the patients did not

develop antibodies and were not seroconverters. Patients that developed an antibody

response were further analyzed in ELISA for endpoint titers.
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Statistical analysis

Because of the potential problem regarding the distribution of the random effects

when seroconverters (which are assumed normally distributed) were analyzed with

non-seroconverters (which are assumed to be degenerate centered on 0), only

seroconverters were analyzed. Further, females were excluded from the analysis

female Fabry patients are heterozygous and have significantly more residual

endogenous enzyme activity compared to male Fabry patients and therefore the

degree of antibody formation would be expected to be different between genders.

Also, only three females were in the dataset and with such a small sample size

testing for sex effects would not be entirely valid.

All data were analyzed using the NLMIXED procedure in SAS for Windows

(Version 8.02, SAS Institute, Cary NC). The marginal likelihood was estimated

using Gaussian quadrature with 15–20 quadrature points and a quadrature tolerance

of 0.002. Optimization was done using the Newton–Raphson algorithm.

To analyze the data, a base model was first established. The base models tested

were Poisson, negative binomial, ZIP, ZINB, Poisson hurdle, and negative binomial

hurdle model. The model with the best Akaike Information Criteria (AIC) was used

for further model development with additional covariates. To allow patients to

eventually seroconvert at some time t, the base models used cumulative Fabrazyme

dose as the only covariate in the model. All models minimized without errors. The

AIC for the models were 9145.6, 8741.9, 6324.1, 6324.6, 6815.9, and 6595.2,

respectively. The best model based on the AIC was the ZIP model. The ZINB model

was close to the ZIP model but the estimate of k, the dispersion parameter, was

14046. As k ? ?, the negative binomial distribution becomes more Poisson-like.

Hence, based on the AIC and value of the dispersion parameter, the model used for

further development was the ZIP model with random effects.

Next, covariates were added to the ZIP model in a forward stepwise manner. The

following covariates were tested on p: weight, race, age, assay effect, and study.

The effect of the assay was treated as a constant for those patients analyzed using

the monoclonal antibody once seroconversion occurred. The same covariates were

tested on k with the addition of average dose and time since seroconversion. Time

since seroconversion was modeled as a linear function, quadratic function, and

exponentially declining function. At each stage, each covariate was tested singly for

significance. The most significant covariate at each stage was treated as the base

model and the process was repeated with the remaining covariates. This process was

repeated until no further covariates could be added to the model. A significance

level of 0.01 based on the likelihood ratio test (LRT) was used. At the final stage,

correlation among the random effects was tested by including a covariance term

between g1 and g2. Goodness of fit was tested by residual analysis.

Results

A total of six seroconverters were removed prior to analysis because of inadequate

sample collection and inadequate characterization of antibody titers after
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seroconversion. Two patients had all zero titers except for a single occasion when both

patients had titers of 100. Two patients had only two observations in the entire study

period. Two patients had a prolonged period of time when no antibody titers were

measured and it was during this period of time that the patients seroconverted. Of the

patients in the database, there were only 3 females. Since females typically have a

different disease progression than males and are expected, because of their residual

endogenous enzyme protein and activity, to generate antibody responses (i.e. antibody

titers) differently than males, it was decided that including females in this study would

possibly bias the model and that testing for patient sex as a covariate would not be an

option in this analysis. Hence, after removal of females from the dataset, a total of

1,826 observations from 96 patients collected over a 276 week period remained.

Of the 96 patients, 87 seroconverted (91%) and 9 (9%) did not. Of the 87

seroconverted patients, the median number of observations per subject was 18 with

a range of 5–34. Table 1 presents a demographic summary by study and across

studies for seroconverters.

Figure 1 presents a scatter plot of the number of observations per week of

therapy. The number of observations peaked at baseline where all patients had a

baseline sample collected and declined to about 3–4 samples by 96 weeks therapy.

Figure 2 presents a scatter plot of median antibody titers in patients that

seroconverted by week of therapy for the first year of therapy. The median time

to seroconversion was 8 weeks with a range of 2–26 weeks which translated to a

median cumulative dose of 204 mg and corresponding range of 50–724.5 mg. In

patients that eventually seroconverted, antibody titers after seroconversion ranged

from 100 to 409,600. In general, titers appeared to peak to approximately Week 15

and then appeared to decline to a new steady-state value. Figure 3 presents a

histogram of antibody titers after transformation. The observed exponents ranged

from 0 to 12 with a distinct bimodal distribution centered at zero and six or seven.

The final model for the 87 seroconverters was a ZIP model of the form

p Y ¼ 0ð Þ ¼ exp b0 þ b1 � CDOSE=1000þ g1ð Þ
1þ exp b0 þ b1 � CDOSE=1000þ g1ð Þ

k ¼ exp h0 þ h1 � exp h1 � DTð Þ þ g2½ �
ð12Þ

where CDOSE was the cumulative dose administered in mg and DT was the time in

weeks since seroconversion. Table 2 presents the estimates for the model

parameters in Eq. 12. All parameters were precisely estimated with coefficients

of variation \30%.

Figures 4 and 5 present the goodness of fit and residual plots under the final

model. The model did an adequate job of predicting observed exponents with no

obvious bias in the goodness of fit. The residuals were not exactly normally

distributed (Anderson–Darling test: 14.6, P \ 0.005) but were centered at zero and

were symmetric around zero. No obvious outliers were discerned. Figures 6 and 7

present the individual goodness of fit plots in the analysis domain and in the original

domain for six randomly chosen patients. The ZIP model with random effects

adequately described the change from antibody free to seroconversion in those

patients that eventually seroconvert. In sum, no gross deviations from the model

450 J Pharmacokinet Pharmacodyn (2009) 36:443–459

123



T
a

b
le

1
D

em
o

g
ra

p
h

ic
su

m
m

ar
y

b
y

st
u
d

y
an

d
p

o
o

le
d

ac
ro

ss
st

u
d

ie
s

at
th

e
ti

m
e

o
f

fi
rs

t
an

ti
b

o
d

y
as

se
ss

m
en

t
in

se
ro

co
n

v
er

te
rs

A
G

A
L

-0
0

7
-9

9

(n
=

1
1

)

A
G

A
L

-0
1

6
-0

1

(n
=

1
0

)

A
G

A
L

-0
1

7
-0

1

(n
=

1
7

)

A
G

A
L

-1
-0

0
2

-9
8

A
G

A
L

-0
0

5
-9

9

(n
=

4
9

)

P
o

o
le

d
(n

=
8

7
)

A
g

e
(y

ea
rs

)
2

6
.0

(1
6

.0
–
3

4
.0

)
1

2
.8

(8
.5

–
1
6

.0
)

3
5

.9
(1

9
.2

–
5

1
.4

)
2

8
.6

(1
6

.0
–

6
1

.7
)

2
6

.1
(8

.5
–

6
1

.7
)

W
ei

g
h

t
(k

g
)

5
8

.0
(4

8
.2

–
7

3
.5

)
3

8
.4

(2
8

.0
–
6

4
.9

)
6

1
.0

(5
0

.0
–
8

2
.0

)
6

9
.3

(4
8

.4
–

9
9

.6
)

6
4

.2
(2

8
.0

–
9

9
.6

)

A
v

er
ag

e
d

o
se

(m
g

)
5

8
.0

(4
8

.2
–
7

3
.5

)
3

8
.4

(2
8

.0
–
6

4
.9

)
6

2
.0

(5
0

.0
–
1

0
5

.4
)

6
9

.5
(4

8
.4

–
1

0
4

.5
)

6
5

.0
(2

8
.0

–
1

0
5

.4
)

D
o

se
(m

g
/k

g
)

1
.0

(1
.0

–
1
.1

)
1

.0
(1

.0
–

1
.0

)
1

.0
(1

.0
–

1
.4

)
1

.0
(0

.9
–

1
.1

)
1

.0
(0

.9
–

1
.4

)

W
ee

k
s

o
f

ti
te

r
as

se
ss

m
en

ts
2

0
(2

0
–
2
0
)

4
6
.0

(2
8
–
5
0
)

9
6

(9
3
–
9
7
)

1
9
8
.1

(1
4
–
2
7
6
)

1
3
8

(1
4
–
2
7
6
)

C
u
m

u
la

ti
v
e

d
o

se
re

ce
iv

ed
(m

g
)

5
8

0
.0

(4
7

8
.6

–
7

3
5

.0
)

8
6

6
.2

(6
5

9
.1

–
1

5
4

1
.9

)
1

4
3

8
.6

(1
1

8
2
.7

–
2
0

7
9

.0
)

1
6

1
9

.4
(3

7
1

.7
–

3
6

6
3

.0
)

1
1

1
8
.0

(3
7

1
.4

–
3

6
6

3
.0

)

R
ac

e
1

0
0

%
Ja

p
an

es
e

1
0

0
%

W
es

te
rn

1
0

0
%

W
es

te
rn

1
0

0
%

W
es

te
rn

8
7

%
W

es
te

rn
/1

3
%

Ja
p

an
es

e

A
n

ti
b

o
d

y
ti

te
rs

0
–

5
1
2

0
0

0
–

6
4

0
0

0
–

2
5
6

0
0

0
–

4
0

9
6

0
0

0
–

4
0
9

6
0

0

C
o

n
ti

n
u

o
u

s
d

at
a

ar
e

re
p

o
rt

ed
as

m
ed

ia
n

(m
in

im
u

m
–
m

ax
im

u
m

),
ex

ce
p

t
fo

r
an

ti
b

o
d
y

ti
te

rs
w

h
er

e
o

n
ly

th
e

ra
n

g
e

is
re

p
o

rt
ed

J Pharmacokinet Pharmacodyn (2009) 36:443–459 451

123



assumptions were observed and the ZIP model appeared to do an adequate job at

capturing the characteristics of the data.

The model identified cumulative dose as the only important predictor of

seroconversion. Figure 8 presents the probability of seroconversion for each

individual patient that seroconverted as a function of cumulative dose. There was an

80% chance of seroconversion when the cumulative dose reached 209 mg (90%

confidence interval (CI): 194–226 mg). With a dose of 1 mg/kg to a 70 kg adult,

seroconversion is expected to occur about three doses or 6 weeks after initiation of

therapy.

Fig. 1 Number of observations across weeks of therapy. Heavy solid line is the LOESS smooth to the
data using a spanning proportion of 0.4

Fig. 2 Median antibody titer (open circles) in patients that seroconverted for the first year of therapy.
Solid line is the quadratic LOESS smooth to the data using a spanning proportion of 0.4
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After seroconversion, no factors were predictive of the degree of antibody titer,

including race (Japanese vs. Western) and assay. For a typical patient who

seroconverted the expected titer at the time of seroconversion was 2,795. Note that

the model does not generate titers of the form 1/2, 1/4, 1/8, etc., but rather generates

a more continuous response because the model for k is continuous in nature.

Antibody titers did not remain constant over time but decreased in an exponential

manner from an initial magnitude to a new lower steady-state value. Models that

tested time after seroconversion as a predictor in the model, using a linear or

quadratic model, were not as effective at describing titers after seroconversion as an

exponential model. After 1 year of therapy, titers were expected to be 1383

(90% CI: 1127–1640) in those patients that seroconverted. The expected titer after

the new steady-state titer has been achieved was 870 (90% CI: 630–1110). The

half-life to the new steady-state titer after seroconversion was 44 weeks (90% CI:

17–70 weeks). Lastly, time to seroconversion did not appear to be correlated with

magnitude of seroconversion.

Fig. 3 Histogram of antibody titers after transformation

Table 2 Parameter estimates

under the final model as given in

Eq. 12

Parameter Estimate Standard error

of estimate

t-test (P-value)

b0 14.70 3.68 4.00 (0.0001)

b1 -76.7 16.80 -4.57 (\0.0001)

h0 1.41 0.0580 24.41 (\0.0001)

h1 0.343 0.0479 7.16 (\0.0001)

h2 0.0158 0.000574 2.76 (0.0071)

r(p) 11.1 2.46 4.52 (\0.0001)

r(h1) 0.446 0.0217 20.54 (\0.0001)
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Discussion

This analysis presents for the first time a method to rigorously analyze antibody titer

data from a statistical point of view. The method is to first transform the titer data

based on a geometric series using a common ratio of two and a scale factor of 50

and then analyze the exponent using a zero-inflated or hurdle model assuming a

Poisson or negative binomial distribution. These models have the advantage in that

both the probability of seroconversion and expected titer can be modeled using a

function that includes patient-specific covariates. To account for between-patient
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Fig. 4 Goodness of fit plots under the final model. Top plot shows individual predicted values plotted
against observed values. Solid line is the line of unity. Bottom plot is a histogram of the residual. Solid
line is a kernel smooth to the data
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variability, random effects are included in the model and to account for the

overdispersion in the data, either a zero-inflated or hurdle model can be used.

The factors identified as influencing titers are plausible and have a certain degree of

face-validity to them. The fact that cumulative dose, under a fixed dosing regimen of

dosing every other week, was identified as influencing the probability of serocon-

version makes sense since in the genetic basis for disease there are patients that

produce an abnormal enzyme and the enzyme replacement therapy exposes patients to

the normal protein to which they are not naturally fully tolerized. Therefore repeated

exposure to a conformationally different protein than their endogenous protein would
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Fig. 5 Residual plots under the final model. Top plot is a plot of residuals over time. Solid line is a
LOESS smooth to the data using a spanning proportion of 0.4. Bottom plot is a Q–Q plot of the residuals
with Liliefor’s test for normality

J Pharmacokinet Pharmacodyn (2009) 36:443–459 455

123



suggest that formation of an antibody response seems likely. Further, dose and

frequency of administration are known to influence seroconversion.

It should be pointed out, however, that cumulative dose is confounded with other

factors that might be in fact be the real mechanism. These include time on therapy

or number of infusions. It is impossible from these study designs to determine

whether in fact these factors are more plausible. Also, that cumulative dose was the

only factor identified as affecting the probability of seroconversion does not mean

that it was the only factor. Other factors not assessed in this analysis, such as type of

mutation, might affect seroconversion.

The other factor affecting the magnitude of titer was the time from seroconver-

sion. Patients initially have their highest titers soon after seroconversion and then

Fig. 6 Goodness of fit plots for six patients randomly chosen from the analysis after transformation.
Solid line is the model predicted values

Fig. 7 Goodness of fit plots for six patients randomly chosen from the analysis in the original domain.
Solid line is the model predicted values
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over time have a reduced response and lower titer with repeated Fabrazyme

administration.

One limitation of the model is that it is conditional on a patient being identified as

a seroconverter. The model does not classify patients as seroconverters or non-

seroconverters; the analyst must identify those seroconverted patients a priori. In

theory, these conditional models can be expanded to develop joint models that

model both seroconverters and nonseroconverters. This problem is similar to cure

models of disease wherein some patients do not respond to treatment and some do

[8]. Let psi be the probability a patient seroconverts, U be a binary value to denote a

seroconverter (U = 1) and nonseroconverter (U = 0), z be the set of parameters

that differentiate seroconverters from nonseroconverters, and h be the model

parameters associated with x, then the full model for the ZIP model is

psi ¼

exp hzð Þ
1þ exp hzð Þ

� �
U ¼ 1

1� exp hzð Þ
1þ exp hzð Þ U ¼ 0

8>><
>>:

pi Yi ¼ 0ð Þ ¼
1

1þ exp � b0 þ gb0i

� �
þ b0 þ gb1i

� �� �
x

h i
0
@

1
A U ¼ 1

1 U ¼ 0

8>><
>>:

p Yi ¼ kð Þ ¼

pi þ 1� pið Þ exp �kið Þ k ¼ 0 and U ¼ 1

1� pi

exp �kið ÞkYi

i

Yi!

� �
k [ 0 and U ¼ 1

0 U ¼ 0

8>><
>>:

ki ¼ exp h0 þ gh0i

� 	
þ h1 þ gh1i
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Fig. 8 Probability of seroconversion as a function of cumulative dose for patients that will eventually
seroconvert. Each profile represents 1 subject in the analysis based on their empirical Bayes estimates for
seroconversion and dosing regimen
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Similar expressions can be written for their negative binomial and hurdle model

counterparts. The problem with modeling seroconverters with nonseroconverters

simultaneously in this manner is that these models are mixture models that violate

the assumption of the random effects being normally distributed. The mixture would

necessarily consist of a random distribution (seroconverters) and a degenerate

distribution with mass on zero (non-seroconverters). In other words, nonserocon-

verters by definition should have g = 0 for all random effects in the model but

seroconverters have g = 0. Current software based on maximum likelihood

estimation cannot accommodate this situation. Such a model would require complex

likelihoods involving mixture distributions that the NLMIXED procedure in SAS is

not capable of handling. One possibility, however, is to use a Bayesian non-

likelihood-based approach.

Besides being able to identify patient-specific factors that might influence antibody

titers, the model also has other uses. Sometimes in a clinical trial patients have missing

titer values (perhaps the patient did not show up for a blood draw) and that information

is needed for interpretation of efficacy or safety data. Rather than interpolating the

missing value, the model could be used to impute the antibody titers after drug

administration. Under this scheme, the assay used to measure the titers is defined

a priori. A random draw from a normal distribution is made with mean 0 and standard

deviation r(p). Using Eq. 12 and based on the cumulative dose the patient received at

the time of the missing value, as well as the random draw that is substituted for g1, the

probability of seroconversion is determined. If the value exceeds 0.5 the patient is

classified as a seroconverter. Otherwise the patient is not a seroconverter and the titer

is imputed to be 0. If the patient is a seroconverter, a random draw from a normal

distribution having mean 0 and standard deviation r(k) is made as is another random

draw from a normal distribution having mean 0 and standard deviation r(h1). Then

using Eq. 12 the expected value k is calculated and transformed to a titer value using

50 9 2k. In this manner, imputed titers can be used for further analysis.

The geometric series conversion of antibody titer data is also useful in other

analyses in which antibody titer might influence the dependent variable. Because of

the geometric progression of antibody titer data their use as covariates in linear

models is problematic because they are not continuous. Antibody titers can be

treated as categorical variables but this loses the ordinal nature of the data. A better

method is to use the exponent from the geometric series transformation in the linear

model as a continuous covariate and while, although the integers are not exactly

continuous, they are much more so than titers in the original domain.

In summary, a method was developed to analyze antibody titers that allow

identification of those patient characteristics that may influence the formation of

these antibodies conditional on the patient having seroconverted. The method is

based on a transformation that allows standardized mixed effect generalized linear

models to do the parameter estimation. One downside of the method is that

prediction of who seroconverts and who doesn’t seroconvert cannot be discerned;

the method is conditional on knowing who seroconverts and who doesn’t. One

limitation of the method is its degree of empiricism and future research will look

at using the transformation in combination with a mechanistic model for
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seroconversion. The advantage of the method is that no special algorithms are

needed and that the transformation can be used to generate a value that can be used

as a covariate in other types of analyses.
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