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Céline M. Laffont Æ Marylore Chenel Æ
France Mentré
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Abstract Pharmacogenetics is now widely investigated and health institutions

acknowledge its place in clinical pharmacokinetics. Our objective is to assess

through a simulation study, the impact of design on the statistical performances

of three different tests used for analysis of pharmacogenetic information with

nonlinear mixed effects models: (i) an ANOVA to test the relationship between the

empirical Bayes estimates of the model parameter of interest and the genetic

covariate, (ii) a global Wald test to assess whether estimates for the gene effect are

significant, and (iii) a likelihood ratio test (LRT) between the model with and

without the genetic covariate. We use the stochastic EM algorithm (SAEM)

implemented in MONOLIX 2.1 software. The simulation setting is inspired from a

real pharmacokinetic study. We investigate four designs with N the number of

subjects and n the number of samples per subject: (i) N = 40/n = 4, similar to the

original study, (ii) N = 80/n = 2 sorted in 4 groups, a design optimized using the

PFIM software, (iii) a combined design, N = 20/n = 4 plus N = 80 with only a

trough concentration and (iv) N = 200/n = 4, to approach asymptotic conditions.

We find that the ANOVA has a correct type I error estimate regardless of design,

however the sparser design was optimized. The type I error of the Wald test and

LRT are moderatly inflated in the designs far from the asymptotic (\10%). For each

design, the corrected power is analogous for the three tests. Among the three designs

with a total of 160 observations, the design N = 80/n = 2 optimized with PFIM

provides both the lowest standard error on the effect coefficients and the best power
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for the Wald test and the LRT while a high shrinkage decreases the power of the

ANOVA. In conclusion, a correction method should be used for model-based tests

in pharmacogenetic studies with reduced sample size and/or sparse sampling and,

for the same amount of samples, some designs have better power than others.

Keywords Pharmacogenetics � Pharmacokinetics � Nonlinear mixed

effects models � Test � Design � Single nucleotid polymorphism �
SAEM

Introduction

Pharmacogenetics (PG) studies the influence of variations in DNA sequence on drug

absorption, disposition and effects [1, 2]. This area is now widely investigated and

the European Medicines Agency (EMEA) has published in 2007 a reflection paper

acknowledging the place of PG in clinical pharmacokinetics (PK) [3].

Pharmacogenetic data are mainly studied using non-compartmental methods

followed by a one-way analysis of variance (ANOVA) on the individual parameters

of interest [4]. More sophisticated approaches have also been used such as

NonLinear Mixed Effects Models (NLMEM). These models allow to integrate the

knowledge accumulated on the drug PK, and they have the advantage of being

applicable with less samples per patient.

Various methods can be used to include pharmacogenetic information in

NLMEM. Preliminary screening is usually performed using ANOVA on the

individual parameters estimates [5] followed by a stepwise model building approach

with the likelihood ratio test (LRT) [6]. As an alternative approach, a global Wald

test can assess whether estimates for the genetic effect are significant [7].

In a previous work [8], we performed a simulation study to assess the statistical

properties of these different approaches. We used the estimation algorithms FO and

FOCE interaction (FOCE-I) implemented in the NONMEM software version V [9].

In the present work, to avoid the linearisation step we use the Stochastic EM

algorithm (SAEM), implemented in the MONOLIX software version 2.1 [10] for

the analysis of the simulated data sets with the same three tests. SAEM computes

exact maximum likelihood estimates of the model parameters using a stochastic

version of the EM algorithm including a MCMC procedure.

In [8], we have simulated a design of 40 subjects inspired from a real

pharmacokinetic substudy on indinavir performed during the COPHAR2-ANRS 111

trial in HIV patients [11, 12]. We have also simulated the same sampling schedule

but with a larger sample size of 200 subjects to be closer to the asymptotic

properties of the test. Whereas the estimated type I error of the ANOVA was found

to be close to 5% whatever the design, those of the Wald test and the LRT showed

for the FOCE-I algorithm a slight and significant increase, respectively, for the first

design with 40 subjects. In the present paper, we aim to further investigate the

impact of the design on the performances of these three tests in terms of type I error

and power. The EMEA has stated that pharmacogenetic studies should include a

satisfactory number of patients of each geno- or phenotype in order to obtain valid
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correlation data [3]. Therefore, with the SAEM algorithm, we also consider two

other designs with a larger number of subjects but different blood sampling

strategies, as extensive sampling on each patient would no longer be practical. One

of these designs was optimized using the PFIM interface software version 2.1

[13, 14] and another includes a group with only trough concentrations to explore a

design that is easily implemented in practice. These two designs involve the same

total number of observations as the original design with 40 subjects, to allow proper

comparisons between designs.

In the first section of the article, we introduce the model as well as the notations,

the three tests under study and the four designs. Then, we describe the simulation

study and how we perform the evaluation. Next the main results of the simulation

are exposed. Finally the study results and perspectives are discussed.

Methods

Model and notations

In this work, we consider the effect on a pharmacokinetic parameter of one biallelic

Single Nucleotid Polymorphism (SNP), i.e. the existence of 2 variants for a base at a

given locus on the gene. We denote, without loss of generality, C the wild allele and

T the mutant, leading to k = 3 possible genotypes (CC, CT and TT). Let yi,j

represents the concentration at time ti,j of a subject i = 1,…,N with genotype Gi at

measurement j = 1,…,n such as:

yi;j ¼ f ti;j;Gi; hi

� �
þ �i;j ð1Þ

with hi the subject specific parameters of the nonlinear model function f and ei,j the

residual error normally distributed with zero mean and an heteroscedastic variance

r2
i;j; with:

r2
i;j ¼ r2ðaþ bf ðti;j;Gi; hiÞÞc ð2Þ

This combined error model (additive and proportional) is commonly used in pop-

ulation pharmacokinetics with c fixed to 2. For identifiability purpose r2 is set to

one. We assume that the genetic polymorphism Gi for subject i affects hp, the pth

component of the vector h through the following relationship:

hp;i ¼ lpebGi egp;i ð3Þ

where lp is the population mean for parameter hp and gp,i follows a Gaussian

distribution with zero mean and variance xp
2 the pth diagonal element of matrix X.

bGi
is the effect coefficient corresponding to the genotype of subject i, we assume

bGi
¼ 0; b1 or b2 for Gi = CC, CT or TT, taking CC as the reference group.

In the following, we note Mbase the model without a gene effect, where

{b1 = b2 = 0} i.e. {CC = CT = TT}, and Mmult the model with a multiplicative

effect on the population mean of the parameter of interest, where {b1 = b2 = 0}

i.e. {CC = CT = TT}.
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As in NLMEM the integral in the likelihood has no analytical form, specific

algorithms are needed to estimate the model parameters and their standard error

(SE) [15]. Since the beginning of the 21st century, EM-like algorithms appear as a

potent alternative to the linearisation used in the earlier approaches. The SAEM

algorithm is a stochastic version of EM algorithm where the individual parameter

estimates are considered as the missing values [16]. The estimation step is

decomposed in the simulation of the individual parameters using a Monte Carlo

Markov Chain (MCMC) approach followed by the computation of stochastic

approximation for some sufficient statistics of the model. The subsequent

maximisation step of the sufficient statistics provides an update of the estimates.

The estimation variance matrix is deduced from the NLMEM after linearisation of

the function f around the conditional expectation of the individual parameters, the

gradient of f being numerically computed.

The loglikelihood is obtained through importance sampling once parameter

estimation is achieved, as follows. For each subject, s = 1,…,T samples of

individual parameters are generated from a Gaussian approximation of the subject’s

individual posterior distribution. These T samples are used to derive T realizations

of the loglikelihood, each weighted by the probability of the corresponding sample.

The importance sampling estimator is the empirical average over the weighted T

realizations. The variability of this approximation decreases when increasing the

number of samples T [17].

Tests

Analysis of variance (ANOVA)

The data are analysed with the model not including the gene effect, Mbase. We used

the conditional expectation (mean) of the individual parameters provided by the

MCMC procedure in SAEM as the empirical Bayes estimates (EBE). Then, the

equality of the mean between the three genotypes is tested with an analysis of

variance. The statistic is compared to the critical value of a Fisher distribution

(F-distribution) with 3 - 1 = 2 numerator degrees of freedom and N - 3

denominator degrees of freedom, 3 being the number of genotypes to consider.

In our model, the log-parameters are normally distributed and the natural

parameters, which have a biological meaning, are log-normally distributed. We

apply the ANOVA on both the log-parameters and the natural parameters, but it is

usually considered that ANOVA is rather insensitive to departure from the normal

assumption as long as the observations have the same non-normal parent

distribution with possibly different means [18].

Global Wald test

The data are analysed with the model including the gene effect, Mmult. The

significance of the gene effect coefficient is assessed by the following statistic:

320 J Pharmacokinet Pharmacodyn (2009) 36:317–339

123



W ¼ b1

b2

� �T

V�1 b1

b2

� �
ð4Þ

where V is the block for b1 and b2 of the estimation variance matrix. The statistic W
is compared to the critical value of a v2 with 2 degrees of freedom.

Likelihood ratio test (LRT)

The data are analysed with Mbase and Mmult. These two models are nested, thus the

LRT can be used. The test statistic -2 9 (Lbase - Lmult), where Lbase and Lmult are

the loglikelihood of respectively Mbase and Mmult, is compared to the critical value

of a v2 with 2 degrees of freedom, corresponding to the difference in the number of

population parameters between the two models.

Study designs

We simulated data according to four designs. The first three have the same total

number of observations and represent different trade-offs between the sample size N

and the number of samples per patient n. The fourth design contains more subjects

with many observations per patient to be closer to asymptotic conditions. Figure 1

illustrates the differences between the four designs regarding the samples allocation

in time and the sampling size. The graph is composed of four rows (one per design)

on top of the pharmacokinetic profile. Within each design, the sampling times of a
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Fig. 1 Mean simulated concentration-time curve and allocation of the sampling times within each of the
designs N = 40/n = 4, N = 80/n = 2, N = 100/n = 4,1 and N = 200/n = 4 (separated by solid
horizontal lines): the vertical lines denote the four possible sampling times, the dashed horizontal lines
join samples within the same group and the circles size is proportional to the sample size within each
elementary design
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group are represented as linked circles of size proportional to the number of subjects

in the group with this sampling time.

(1) N = 40/n = 4

The first design is inspired from a real world example, the PK sub-study from

the group of subjects receiving indinavir boosted with ritonavir b.i.d. in the

COPHAR 2-ANRS 111 study, a multicentre non-comparative pilot trial of

early therapeutic drug monitoring in HIV positive patients naı̈ve of treatment

[11, 12]. This design includes 40 subjects with 4 samples at time 1, 3, 6 and

12 h after the drug intake, which leads to a total of 160 observations. At the

time of the study, these sampling times were empirically determined.

(2) N = 80/n = 2

In the second design, we require 80 subjects with two samples per patient and

sampling times within the set of the original design. We used the Federov-

Wynn algorithm that maximizes the determinant of the Fisher information

matrix within a finite set of possible designs and which is implemented in the

PFIM Interface 2.1 software [13]. We had to set the regression function f, the

error model and a priori values of the population parameters (see Simulation

study) as well as an initial guess for the population design. Regarding these

constraints, the optimal design consists of 80 subjects sorted in two groups of

30 and two groups of 10 with two samples per subject respectively scheduled

at 1 and 3 h, 6 and 12 h, 3 and 12 h and 1 and 12 h.

This configuration provides a rather sparse design keeping a total number of

observations of 160.

(3) N = 100/n = 4,1

Third, we consider a pragmatic design with 20 subjects with the original set of

sampling times (1, 3, 6 and 12 h) and 80 subjects with only a trough

concentration (12 h) potentially collected in clinical routine. This combined

design also contains a total number of observations of 160.

(4) N = 200/n = 4

The last design includes 200 subjects having the original set of sampling times.

Simulation study

The model and parameters used for the pharmacokinetic settings come from a

preliminary analysis without covariates of the indinavir data described above using

the FO algorithm implemented in NONMEM (see details in [8]). The concentrations

are simulated using a one compartment model at steady state with first order

absorption (ka), first order elimination (k), a diagonal matrix for the random effects

and a proportional error model (a fixed to 0). The dose is set to 400 mg. The fixed

effects are ka = 1.4 h-1, the apparent volume of distribution V/F = 102 l and

k = 0.2 h-1, this parameterization was chosen to have only one parameter linked to

the bioavailability, F. The between subjects variabilities on these parameters are

respectively set to 113%, 41.3% and 26.4%. The coefficient of variation for the

residual error is set to 20% (a = 0, b = 0.2). The first value in a series of simulated
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concentration below the limit of quantification (LOQ = 0.02mg/l, according to the

indinavir measurement technique in the COPHAR2 trial) is set to LOQ/2 and the

remaining values are discarded [19].

The genetic framework is inspired from two SNPs of the ABCB1 gene coding for

the P-glycoprotein, found to have an influence on the PK of protease inhibitors [20,

21]. We simulate a diplotype of SNP1 and SNP2 with C and G respectively the wild-

type allele for the 2 exons and T the mutant allele. Their distribution mimic that of

exon 26 and exon 21 of the ABCB1 gene as reported by Sakaeda et al. [22] yielding

for SNP1 unbalanced frequencies of 24%, 48% and 28% respectively for CC, CT

and TT genotypes. As in the intestine, the P-glycoprotein restricts drug entry into

the body we consider an effect on the drug bioavailability through the volume of

distribution V/F, so that:

V=Fi ¼ V=FebG1i edG2i egV=F;i ð5Þ

where G1i denotes the genotype for SNP1 and G2i the genotype for SNP2, bG1i
is 0,

b1 or b2 if G1i = CC, CT or TT and ddG2i is 0, d1 or d2 if G2i = GG, GT or TT.

Under the null hypothesis both ebG1i and edG2i ¼ 1; 1; 1; whereas under the

alternative hypothesis, we set a genetic model of co-dominance and multiplicative

effects: ebG1i ¼ 1; 1:2; 1:6 and edG2i ¼ 1; 1:1; 1:3: These values were chosen to be

consistent with results found in the literature for ABCB1 polymorphisms on drugs

disposition [23] and provide clinically relevant effect, with V/F and CL/F (= k 9 V/F)

increasing from 105.4 to 200.5 l and 21.1 to 40.1 l/h respectively between wild

and mutant homozygotes for SNP1. In the following, tests focus on the effect of

SNP1 even if we simulated diplotypes.

For the three designs (1), (2) and (3) with the same total number of observations,

1000 data sets are simulated both under the null (H0) and the alternative hypothesis

(H1). The design (4) with N = 200/n = 4 is simulated only under H0, providing

evaluation of the type I error on 1000 data sets in conditions close to asymptotic to

verify the convergence of the estimation algorithm. The technical description of the

simulations is given in [8]. Figure 2 represents spaghetti plots of simulated

concentrations versus time for the three designs with a total number of observations

of 160, for one simulated data set respectively under H0 and under H1. According to

their genotype for SNP1 = CC, CT or TT, subjects curves are represented in plain,

dashed or dotted lines, respectively, as well as the 12 h sample with circles,

triangles or plus for subjects of the N = 100/n = 4,1 design. It is not readily

apparent within each column which of the two data sets includes the gene effect.

Evaluation

In this work we use the SAEM algorithm implemented in the MONOLIX software

version 2.1 [10]. The number of iterations during the two estimation phases and the

number of Markov chains are set to provide fine convergence on one representative

data set for each design under both hypotheses. Other parameters of the estimation

algorithm are left to the default values.
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On a given data set, the same seed is used to estimate parameters from Mbase and

Mmult but two different seeds are used for the importance sampling in the

computation of the likelihood. A preliminary work was also performed to set the

number of samples T of this importance sampling for each design. We considered 6

different values of T = 1000, 3000, 5000, 7000, 10000, 15000, 300000. For each

value of T, the log-likelihood was estimated 25 times on one representative data set

with both Mbase and Mmult and the corresponding LRT was computed. The 25

estimations allowed us to discard any bias related to the choice of a seed as we used

5 different seeds for the random number generator at the estimation step and 5

different seeds for the random number generator at the importance sampling step. In

the rest of the study, the number of samples T was set to a value that provides both a

relative standard deviation on the 25 LRT estimates below 15% and moderate

computing times.

Our work aims to evaluate the tests for the different designs dealing with

statistical significance issues, which not necessarily imply clinical relevance [24].

First, the three tests are used to detect an effect of the SNP1 (the effect of SNP2 is

not included in these analyses) on the bioavailability through the apparent volume

of distribution parameter (V/F) in the 1000 data sets simulated under H0 for the four

designs. Then, the type I error of each test is computed as the percentage of data sets

where the corresponding test was significant. Based on the central limit theorem and
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Fig. 2 Concentrations (ng/ml) simulated for the designs N = 40/n = 4 (left), N = 80/n = 2 (center)
and N = 100/n = 4,1 (right) for a representative data set under H0 (top) and a representative one under
H1 (bottom). Solid lines represent the subjects CC while dashed and dotted lines represent the subjects CT
and TT for the exon SNP1, respectively. For the N = 100/n = 4,1 design, circles represent the subjects
CC while triangles and plus represent the subjects CT and TT for the exon SNP1, respectively
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with 5% the expectation for this percentage under H0 the predicted interval around

the type I error estimate is ½0:05� 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05�ð1�0:05Þ

1000

q
� ¼ ½3:6; 6:4�: To ensure a

type I error of 5%, we define a correction threshold as the 5th percentile of the

distribution of the p-values of the test under H0.

In a second step, for the designs N = 40/n = 4, N = 80/n = 2 and N = 100/

n = 4,1 the tests are performed using the 1000 data sets simulated under H1. Then,

the power is defined as the percentage of data sets where the corresponding test was

significant. We use the corrected threshold to compute the corrected powers, to

allow comparison of the different tests taking into account the type I error different

from 5%. In a third step, we have computed the data sets simulated under H1 where

the test was significant and at least one of the gene effect coefficient estimates (the

absolute value) was clinically relevant i.e. greater than 20%. This calculation

provided us with an estimate of each test ability to detect a clinically relevant effect

on V/F (and thus CL/F) [24]. For the ANOVA only, one data set under H0 and two

data sets under H1 where the number of subjects with a given SNP1 was less than 2

were discarded from the analysis.

The ANOVA is based on the EBE for the parameter of interest, here the volume

of distribution V/F. To assess the quality of the individual estimates from Mbase, we

compute the extent of the shrinkage on V/F for the four designs. A measure of the

shrinkage of empirical Bayes estimates has been proposed by Savic et al. as 1 minus

the ratio of the empirical standard deviation of g over the estimated standard

deviation of the corresponding random effect [25]. Shrinkage estimators in literature

are computed with a ratio of variances shrinking the observation toward the

common mean [26, 27]. By analogy with these shrinkage estimators, in the present

work, we define shrinkage on V/F as:

ShgV=F
¼ 1�

var gV=F;i

� �

x2
V=F

ð6Þ

where varðgV=F;iÞ is the empirical variance of g for the volume of distribution and

x2
V=F is the estimated variance of the corresponding random effect. A shrinkage,

computed on standard deviation, over 30% is considered to potentially impact on

covariates testing according to [25], therefore here we consider a threshold of

50%.

We also compare the empirical SE and the distribution of the SE obtained with

SAEM for b1 and b2 for the different designs under both hypotheses. The empirical

SE is defined as the sample estimate of the standard deviation from the b1, b2

estimates respectively on the 1000 simulated data sets.

To address point estimate and bias and how it may impact on the tests type I error

and power, we compute the relative bias and relative root mean square error (RMSE)

for V/F, x2
V=F and the residual error parameter b from Mbase on the data sets

simulated under H0 and V/F, b1, b2, x2
V=F and b from Mmult on the data sets simulated

under H1. In addition, we have computed the relative bias and relative RMSE on the

estimates obtained with FOCE-I in [8] on the N = 40/n = 4 and N = 200/n = 4

designs.
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Results

The number of samples for the importance sampling, T, was set to 10000 and 15000

for the designs N = 40/n = 4 and N = 80/n = 2 and 20000 for both designs

N = 100/n = 4,1 and N = 200/n = 4. SAEM achieves convergence on all data sets

simulated with the four designs and each hypothesis.

Table 1 reports the estimated type I error for the three tests performed on the four

designs. ANOVA has a correct type I error estimate for all designs with a value for

the design at N = 80/n = 2 although close to the upper boundary. The results are

analogous whether we consider the log-parameters or the natural parameters of the

apparent volume of distribution (V/F), 5.5% and 5.3% respectively on the original

design. The Wald test and the LRT, which are asymptotic tests, have significantly

increased type I error in the three designs with a total number of observations equal

to 160. Yet, the inflation remains moderate as all the estimates are below 10%. On

the N = 200/n = 4 design, the Wald test and the LRT type I error returns to the

nominal level of 5%.

The estimates for the power and the corrected power are given in Table 2, for the

three designs N = 40/n = 4, N = 80/n = 2 and N = 100/n = 4,1. Before the

correction, the Wald test and the LRT appeared wrongly more powerful than

ANOVA. The ability to detect a clinically relevant effect is lower than the power to

detect a statistically significant effect for the ANOVA, but identical for the Wald

test and the LRT. In the following, we consider only the corrected power for

comparisons across tests and designs as it accounts for the type I error inflation (or

Table 1 Type I error estimates (for 5% level test) on the N = 40/n = 4, N = 80/n = 2, N = 100/

n = 4,1 and N = 200/n = 4 designs for each of the three tests using 1000 replicated data sets

N = 40/n = 4 N = 80/n = 2 N = 100/n = 4,1 N = 200/n = 4

ANOVA Log-parameters 5.5 6.2 3.8 4.2

Natural parameters 5.3 6.4 4.3 5.0

Wald 8.9* 8.7* 8.4* 5.1

LRT 7.6* 7.8* 6.8* 5.9

* Outside the prediction interval for 5% ¼ 3:6� 6:4½ �

Table 2 Power estimates without and with (Powercorr) correction for the type I error inflation under H0

on the N = 40/n = 4, N = 80/n = 2 and N = 100/n = 4,1 designs for each of the three tests using 1000

replicated data sets

N = 40/n = 4 N = 80/n = 2 N = 100/n = 4,1

Power Powercorr Power Powercorr Power Powercorr

ANOVA Log-parameters 75.6 74.2 93.6 92.5 80.8 82.2

Natural parameters 71.1 70.9 93.4 91.5 78.3 79.5

Wald 81.8 73.0 95.5 92.5 85.7 81.8

LRT 78.6 73.3 94.6 92.2 82.9 79.7
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reduction for the ANOVA). For each design, the corrected power is rather

analogous for the three tests within each design. For the three tests, the corrected

power is greater for the design optimized using PFIM, with more subjects and less

sample per subjects. In classical analysis increasing N improves the power and this

also applies in longitudinal data analysis up to a point. Not only must N increase,

but n also should be considered as well as the sampling schedule. This trade-off was

achieved through optimal design and led to a satisfactory sparse design that even

ANOVA, based on EBE, can handle.

Figure 3a displays the shrinkage for the apparent volume of distribution

estimated using Mbase on data sets simulated under H0 and H1 for the four designs

under study. In Figure 3b and c, the type I error of the ANOVA on the log-

parameters is plotted versus the median shrinkage for V/F under H0 and the power

of ANOVA on the log-parameters is plotted versus the median shrinkage for V/F

under H1. The median shrinkage is lower than 40% for the design N = 200/n = 4

under H0 and for the designs N = 40/n = 4 and N = 80/n = 2 under both

hypotheses. Only the design with N = 100/n = 4,1 subjects shows shrinkage with a

potential impact on covariates testing, i.e. greater than 50%. This high value of

shrinkage is essentially due to the 80 subjects with one sample (median value of

shrinkage around 75% for these subjects versus 21% for the other subjects with 4

samples in this design). Under the alternative hypothesis, we simulated a mixture of

normals with similar variance but three different means for the individual

N=40/n=4 N=80/n=2 N=100/n=4,1 N=200/n=4

0
20

40
60

80
10

0
0

S
hr

in
ka

ge
 o

n 
V

/F
 (

%
)

Median shrinkage on V F under H0 (%)
10 20 30 40 50 60 70 10 20 30 40 50 60 70

0
2

4
6

8
10

A
N

O
V

A
 ty

pe
 I 

er
ro

r 
(%

)

Median shrinkage on V F under H1 (%)

60
70

80
90

10
0

A
N

O
V

A
 c

or
re

ct
ed

 p
ow

er
 (

%
)

(a)

(b) (c)

Fig. 3 a Boxplot of shrinkage on V/F from Mbase obtained with SAEM on the 1000 data sets simulated
under H0 (grey) and H1 (black) for the designs N = 40/n = 4, N = 80/n = 2, N = 100/n = 4,1 and
N = 200/n = 4, b type I error for the ANOVA on the log-parameters versus the empirical shrinkage on
V/F for the designs N = 40/n = 4 (�), N = 80/n = 2 (D), N = 100/n = 4,1 (?) and N = 200/n = 4
(9) simulated under H0, c Corrected power of the ANOVA on the log-parameters versus the empirical
shrinkage on V/F for the designs N = 40/n = 4 (�), N = 80/n = 2 (D) and N = 100/n = 4,1 (?)
simulated under H1
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parameters of V/F. Under both hypothesis, the shrinkage is computed using the

estimates from Mbase. Under H1, both the empirical variance of gV/F,i and the x2
V=F

estimates are larger compared to the estimates under H0. However, the empirical

variance of gV/F,i increased more than x2
V=F , thus the shrinkage estimates appeared

to be consistently lower under H1. For all designs under study, the type I error

estimates of ANOVA remain within the prediction interval around 5% whereas the

shrinkage estimates range from 19% to 64%. We do not observe a clear relationship

between the power of ANOVA and the shrinkage on V/F, but the power decreases

between the sparse and the combined design. Indeed, the ANOVA obtains a

corrected power of 58% when performed only on the 80 subjects with one sample

from the combined design, while on the optimized design with the same N but

n = 2 its power was of 92.5%.

The relative Bias and RMSE for the estimated parameters are displayed in

Table 3. SAEM and FOCE-I obtained unbiased estimates on both designs and

similar relative RMSE except for V/F on the N = 200/n = 4 design where the

Table 3 Relative Bias and root mean square error (RMSE) in % evaluated from 1000 simulated data sets

with Mbase under H0 for the volume of distribution (V/F), its interindividual variance (x2
V/F) and the

residual error parameter (b) for the N = 40/n = 4, N = 80/n = 2, N = 100/n = 4,1 and N = 200/n = 4

designs and from 1000 simulated data sets with Mmult under H1 for V/F, b1, b2, x2
V=F and b for the

N = 40/n = 4, N = 80/n = 2 and N = 100/n = 4,1 designs, using estimates from SAEM and FOCE-I

when available in [8]

Parameter N = 40/n = 4 N = 80/n = 2 N = 100/n = 4,1 N = 200/n = 4

SAEM FOCE-I SAEM SAEM SAEM FOCE-I

Mbase under H0

Biais (%) V/F 0.23 2.9 0.04 0.62 0.08 1.4

x2
V=F -2.8 -0.6 0.2 -4.2 -0.8 0.7

b -0.3 -1.9 -3.8 -0.9 0.008 -1.8

RMSE (%) V/F 8.6 9.5 8.5 11.8 3.8 11.1

xV=F 28.1 28.9 27.8 38.5 13.4 13.3

b 8.8 10.3 15.8 12.4 4.0 4.8

Mmult under H1

Biais (%) V/F 4.1 6.7 3.9 5.1

b1 -1.0 -0.8 -2.5 -1.4

b2 -1.0 -1.0 -1.8 -1.3

xV/F -7.5 -5.2 -1.3 -7.1

b -0.6 -2.2 -3.5 -0.02

RMSE (%) V/F 17.9 19.2 15.0 19.9

b1 19.9 20.0 15.3 18.1

b2 21.7 21.7 16.5 21.3

xV/F 29.7 29.6 26.7 39.1

b 9.22 10.1 16.8 13.0

With FOCE-I, convergence was achieved and thus estimates were obtained from 969 and 950 data sets

under H0 and H1 respectively for N = 40/n = 4 and 978 data sets under H0 for N = 200/n = 4
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expected improvement was observed only with SAEM. As the bias were null the

discrepancies in RMSE across the designs arised only from the precision of

estimation and the SE predicted by PFIM matched the lowest RMSE. Regarding the

precision of estimation on b1 and b2 under both hypotheses for the designs under

study in Fig. 4a, the SAEM algorithm shows good statistical properties: as expected,

lower SE are observed for the design closer to asymptotic and the SE obtained with

SAEM are close to their empirical value, albeit lightly under-estimated. Among the

three designs with a total of 160 observations, the design N = 80/n = 2 provided

the best performances; i.e., its empirical SE for estimates of the gene effect

coefficients are the lowest. In Fig. 4b, the type I error of the Wald test is plotted

versus the ratio of the median SE over the empirical SE for b2 estimated under H0.

The under-estimation of the SE appears to be related to the type I error inflation of

the Wald test as the three designs with a ratio below 0.98 have type I error estimates

significantly above the nominal level. In Fig. 4c, the corrected power of the Wald

test is plotted versus the empirical SE for b2 estimated under H1. The SE appears to

be related to the power of the Wald test as it decreases as the SE increases with the

highest power for the N = 80/n = 2 design.

Figure 5 represents the density function of a v2 with 2 degrees of freedom along

with a focus on the values above 5.99 (the theoretical threshold) overlaid on a

histogram of the LRT statistics obtained with the four designs simulated under H0.
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Fig. 4 a Boxplot of the estimated standard errors (SE) and corresponding empirical SE (dotted line)
obtained with SAEM for b1 and b2 on the 1000 data sets simulated under both H0 (grey) and H1 (black)
for the N = 40/n = 4, N = 80/n = 2, N = 100/n = 4,1 and N = 200/n = 4 designs, b Wald test type I
error versus the ratio of the median SE over the empirical SE for b2 for the designs N = 40/n = 4 (�),
N = 80/n = 2 (D), N = 100/n = 4,1 (?) and N = 200/n = 4 (9) simulated under H0, c Wald test
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N = 100/n = 4,1 (?) simulated under H1
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For the first three designs, the density curve is slightly shifted to the left compared to

the histogram obtained under H0 while for the N = 200/n = 4 design the

superposition is complete.

Here, the corrected power of the Wald test is about 70% for the design N = 40/

n = 4. In our previous work, we used the FOCE-I algorithm implemented in

NONMEM version V [9] and we observed, for this design, a much lower corrected

power of the Wald test (25%). Figure 6 displays, the standard errors of the gene

effect coefficients b1 (left) and b2 (right) versus their estimates when using FOCE-I

(top) or SAEM (bottom). With the FOCE-I algorithm, we observe a correlation

between the estimate of the gene effect coefficients and its estimation error, that we

do not observe with the SAEM algorithm. Such relationship leads to decreased

values of the Wald statistic and therefore reduces the power to detect a gene effect.

Discussion

In the present study, we describe the impact of four designs on the performances of

three tests for a pharmacogenetic effect in NLMEM using an exact maximum

likelihood approach, the SAEM algorithm.

This work follows a previous study [8] which evaluated those three tests on two

designs (N = 40/n = 4 and N = 200/n = 4) using the estimation algorithms FO

and FOCE-I in NONMEM version V [9]. Type I error and power of Tables 1 and 2

in [8] can be compared to those in Tables 1 and 2 of the present paper respectively
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for the designs N = 40/n = 4 and N = 200/n = 4. The ANOVA in [8] was

performed on the natural parameters. That simulation study has shown poor

performances with the FO algorithm. The results obtained here with SAEM, in

terms of type I error and power are rather similar to those obtained previously using

FOCE-I, except for the Wald test. Indeed, with FOCE-I the type I error of the Wald

test was still inflated on the design N = 200/n = 4 and the power was much lower.

We hypothesised that the reduced power of the Wald approach could result partly

from a poor estimation of the estimation variance matrix of the fixed effects due to

the log-likelihood function linearisation, as we observed with FOCE-I a high

correlation between the estimate and its estimation error. We did not meet this

problem with SAEM. Besides, both algorithms obtained unbiased estimates with a

similar improvement in relative RMSE on design N = 200/n = 4 except for V/F

with FOCE-I. Moreover, FOCE-I had convergence problems for several data sets or

did not provide the estimation variance matrix on design N = 40/n = 4 under H1,

while SAEM achieved convergence on all data sets whatever the design with the

estimation variance matrix always provided. In the evaluation of model selection

strategies in [8], we underlined the very poor performance of the Akaike criteria

(AIC). This finding remains with SAEM (data not shown).

Other studies have evaluated by simulation the performance of tests for discrete

covariate on continuous responses using NLMEM with various designs and

estimation methods. The articles reporting these studies are summarized and sorted

by year of publication in Table 4. Linearization based algorithms were mostly used

with the exception of two recent works also using SAEM [17, 28]. Furthermore,

categorical covariates were always simulated in two classes, apart from one study

where it was up to three classes [29] and one study with continuous covariate [30].
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In the present study, the ANOVA obtains the best performances with respect to

type I error as no inflation is observed on the four designs, so there is no need in

practice to correct the threshold for the test based on the EBE. This finding is in

accordance with the results from Bonate et al. [31]. Considering t-tests on

individual estimates, Comets et al. observed no inflation either [32]. Panhard et al.

[33] obtained inflated type I error for t-tests for small n, however they studied cross-

over trials where the model is fitted for each treatment separately and then the EBE

are derived. With small n, the individual parameters estimates are thus shrunk

toward the mean within each group, artificially increasing the statistic of the test.

Analysing the whole data set, we thought that the ANOVA would be conservative in

presence of sparse data, because shrinkage leads to regression of the individual

parameters estimates towards the mean. Indeed, this phenomenon appears likely to

reduce the test ability to discriminate means between the genotypes. In our study,

the shrinkage may not have been strong enough as the sparse design was an optimal

design and the one with more shrinkage had some subjects with rich design. Another

advantage of ANOVA is that it requires only the model with no covariate to

converge. It is noteworthy though that with unequal sample size within groups

ANOVA is sensitive to heterogeneity of variances [34], this feature has not been

studied in this simulation setting.

We explain the type I error inflation observed for the Wald test and the LRT by

the designs with a total of 160 observations being far from the asymptotic. This

result differ from those of Panhard et al. [33], Gobburu et al. [30] and Wählby et al.

[29] which had similar trade-off in N an n given the number of model parameters

with less that 160 observations (Table 3) as well as similar interindividual

variability for the parameter of interest (&30%) and residual error variability

(20–10%). Besides, Samson et al. [17] and Panhard et al. [28] observed no inflation

of the type I error for these tests using SAEM for a covariate simulated in two

classes with equivalent group size and at least n = 6. We hypothese therefore that

the departure from the asymptotic found here is related to the covariate distribution,

with only 11 mutant homozygotes in average for the design N = 40/n = 4.

Distribution of genetic covariate (from a biallelic SNP with C and T, the wild and

the mutant allele) is indeed very specific; the Hardy–Weinberg proportions [35] lead

to proportions of 1/4, 1/2, 1/4 for CC, CT, TT being the less unbalanced of the

possible distributions. Thus, we recommend to correct the type I error of asymptotic

tests for genetic polymorphism with unbalanced genotypes including small number

of subjects. Furthermore, such recommendation is relevant for any other covariate

with several classes and very unbalanced distribution, such as disease status or

tumor classes.

For the Wald test, we relate this inflation to the under-estimation of the SE of the

gene effect coefficients. Indeed, when we performed the Wald test using the

empirical SE rather than the estimated SE, we observed that the type I error was

then no longer significantly different from the nominal level for all designs. Panhard

et al. [36] observe this relationship with FOCE-I as well and show that modelling

interoccasion variability in cross-over trials leads to a better estimation of the SE of

the covariate effect coefficients providing type I errors of the Wald test and the LRT

close to the nominal level. Here, the SE are obtained by MONOLIX after the
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estimation with SAEM using a linearization of the model around the conditional

expectation of the individual parameters, yet Dartois et al. [37] have also observed

under-estimated SE when using the computation approach based on Louis’ principle

[38]. With SAEM, as expected, the inflation did not worsen when increasing the

number of samples per subjects as reported for FO, FOCE-I in NONMEM [39, 29,

31, 30, 32] or FOCE-I in nlme [40, 33, 36]. This slight inflation can be handled

using randomisation tests [41], computing the true distribution of the statistic for the

data set under study and deriving a p-value. Approximate tests could also be used

with degrees of freedom derived from the information in the design i.e. accounting

for k, n and N [42], although there is no real consensus on how to do it for nonlinear

mixed effect models. An additional advantage of the Wald test is that only the

model including the covariate is required and, assuming symmetric confidence

intervals, it is not a problem to test if the gene effect coefficients equal 0.

To assess the power, we have simulated a 60% increase in V/F which leads to a

relevant adjustment in the dose in the TT genotypes for SNP1; a 40% increase.

There was no or slight changes in the proportion of data sets simulated under H1

where the three tests were significant when considering for a clinically relevant

genetic effect, with the exception of the ANOVA on the design N = 100/n = 4,1.

We show the impact of the shrinkage due to the subjects with only one sample in the

design N = 100/n = 4,1 on the ANOVA performance. In our simulation setting, the

reduction in the test ability to discriminate means between the genotypes is more

pronounced under the alternative hypothesis. For the N = 40/n = 4 design the

median shrinkage was 14.2% for V/F (Fig. 3) and 30.5% and 36.2% for ka and k

respectively, thus the shrinkage should not have impacted on the power of the

ANOVA had the effect been assessed on those parameters. Besides, the shrinkage

was also found to be lower under the alternative hypothesis, further research on this

trend would be interesting. For the Wald test, we show a direct relationship between

the design, the precision of estimation for the covariate effect and the power. Indeed

the design N = 80/n = 2 optimised using PFIM has both the lowest SE on the gene

effect coefficients (b1 and b2) and the highest power. Our previous results with

FOCE-I also underline that unbiased SE estimates are required to perform the Wald

test. We should note however that we used the population model without covariate

for design optimisation. Our results are in accordance with the work performed by

Retout et al. [14]. Indeed, they studied design optimization to improve the power of

the Wald test using a model including the covariate and also found that the power

increases when the number of subjects increases and the number of samples per

subject decreases. For this work, Retout et al. developed the Fisher information

matrix for population model with covariate. But this development has not yet been

implemented in the available version of the PFIM software. One extension of the

present work would be to investigate other criteria such as DS-optimality criterion to

design pharmacogenetic studies specifically focusing on gene effect coefficients.

In the choice of the two additional designs compared to [8] used for this

simulation study, we account for practical considerations. Basically, we increased

the number of subjects to fit the requirements of the EMEA [3]. However,

increasing the number of subjects can lead to practical issues in terms of blood

sampling, as extensive sampling can not be performed in all subjects for practical
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reasons. Therefore, we consider two designs. First, an exploratory study where we

use PFIM to define different groups with two samples per subjects within a

predefined set of sampling times. This approach could be used in studies with

pharmacogenetics as primary endpoint when the population pharmacokinetic model

is already known; for instance, studies on pharmacokinetic evaluation of a chemical

entity when the genetic variation is likely to translate into important differences in

the systemic exposure. Second, a more practical study in which we use trough

concentrations collected during routine monitoring as well as a small group of

subjects with more extensive sampling. The latter could be a phase III or IV clinical

study where genotyping will support recommendations for use in genetic

subpopulations [43].

In this work, we assume that the gene effect only acts on a single parameter, the

bioavailability, so we use k (the elimination constant rate) rather than CL/F in order

to have only one parameter related to F, the oral volume of distribution V/F.

However, population models are more commonly parameterized using CL/F, thus

another perspective of this work would be to consider a gene effect on several

parameters: CL/F and V/F. Besides, more than one exon control the complex

pathway leading from DNA to metabolic activity. Thus, it would be interesting to

investigate how model-based tests handle haplotypes [44] which lead to a larger

number of unbalanced classes. Here, we could hardly consider haplotypes due to the

small sample sizes. Finally, investigating genes not on the same chromosome will

also raise the issue of multiple covariates.

In conclusion, the ANOVA can be applied easily and performs satisfactorily as

long as the design provides low shrinkage on the parameter of interest. Whereas for

asymptotic tests, a correction has to be performed on designs with unbalanced

genotypes including small number of subjects. Design optimization algorithms for

models with covariate are well suited and offer perspectives to handle pharmaco-

genetic studies but have still to be implemented in the available softwares.
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11. Duval X, Mentré F, Rey E, Auleley S, Peytavin G, Biour M, Métro A, Goujard C, Taburet AM,

Lascoux C, Panhard X, Tréluyer JM, Salmon D (2009) Benefit of therapeutic drug monitoring of

protease inhibitors in HIV-infected patients depends on PI used in HAART regimen—ANRS 111

trial. Fundam Clin Pharmacol. in press

12. Bertrand J, Treluyer JM, Panhard X, Tran A, Rey SE, Salmon-Céron D, Duval X, Mentré F,
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