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Current physiologically based pharmacokinetic (PBPK) models are inductive. We present an addi-
tional, different approach that is based on the synthetic rather than the inductive approach to
modeling and simulation. It relies on object-oriented programming. A model of the referent sys-
tem in its experimental context is synthesized by assembling objects that represent components
such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat
liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system
on which we focus. In silico experiments begin with administration of objects representing actual
compounds. Data are collected in a manner analogous to that in the referent PK experiments.
The synthetic modeling method allows for recognition and representation of discrete event and
discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An
application is developed for sucrose and antipyrine, administered separately and together. PBPK
modeling has made extensive progress in characterizing abstracted PK properties but this has
also been its limitation. Now, other important questions and possible extensions emerge. How are
these PK properties and the observed behaviors generated? The inherent heuristic limitations of
traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic
models of the type described here are specifically intended to help answer such questions. Analo-
gous to wet-lab experimental models, they retain their applicability even when broken apart into
sub-components. Having and applying this new class of models along with traditional PK model-
ing methods is expected to increase the productivity of pharmaceutical research at all levels that
make use of modeling and simulation.
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ABBREVIATIONS

CV – central vein
ISL(s) – in silico liver(s)
N1, N2,. . . – a set of experiments that explores sinusoidal network
arrangement
PBPK – physiologically based pharmacokinetic
PCs – properties and characteristics
PK – pharmacokinetic
PV – portal vein
S1, S2,. . . – a set of experiments that explores spatial relationships within
and between sinusoids
SA and SB – two classes of SS
SD – standard deviation
SM(s) – similarity measure(s)
SS(s) – sinusoidal segment(s)

INTRODUCTION

A key goal in developing pharmacokinetic (PK) models is to use
simulation to facilitate drug development and clinical pharmacology. PK
modeling has undergone considerable evolution in its efforts to achieve
this goal. Nonparametric analysis makes no model assumptions about the
body but only provides moment data, which may be used to generate PK
parameter values. More commonly, data are analyzed assuming the body
may be described as an abstract series of compartments or, in physiologi-
cally based pharmacokinetics (PBPK), by representing organs as compart-
ments connected to represent a vascular system (1,2). These and related
model types are by nature inductive: they are a cognitive reduction of the
biology to describe PK data, using representations of the hypothesized
essential determinants governing the measured phenomena. Almost all of
these models rely on systems of equations1 (typically differential equations)
and/or probabilistic networks to represent or describe essential features of
PK data.

In this report, we introduce and demonstrate an additional approach
(as distinct from alternative) to PBPK modeling—one that is based on the
synthetic, rather than the inductive method. A discretized analogue of the
system that generated the data is constructed from independent compo-
nents. It relies on object-oriented programming, and is constructed using
software objects that are representations of body components. Design and

1Inductive models can take any form. Equations fit to data are just one example.
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construction is guided by intended model uses, the problem being solved,
and model requirements, as well as the available data. Different objects
represent biological components that vary in size, type, and function.
Some represent molecules, others represent cells, and still others represent
aspects of tissue architecture, etc. The components are composed within
a software environment that includes a representation of the experimental
PK context (including the experimenters), and facilitates a cycle of creat-
ing, verifying, and changing models. Experiments are then conducted on
the in silico analogue in the same ways that wet-lab PK experiments are
conducted. In this way, the analogue system reflects the entire experimen-
tal system of interest. Simulated PK data are collected and compared to
referent PK data, when the latter are available. An acceptable degree of
similarity is taken as evidence supporting the hypothesis that the assem-
bled components have generative properties that mimic those of the corre-
sponding biological components: they are biomimetic. They exhibit their
own phenotypic attributes. They can adapt easily to new situations, such
as becoming a components of whole-body models. The envisioned ana-
logues are not alternatives to traditional PK models: the two classes of
models serve different purposes and so can be synergistic.

Recognizing that the first goal in PK modeling has been to provide
descriptions of the organ (3), we have limited this report to representing
aspects of the rat liver, as viewed from the perspective of sucrose adminis-
tered together with antipyrine. This approach is consistent with the notion
that “an overall objective of physiological modeling is to simulate the com-
plete system through a fundamental study of its component parts” (1).

PHYSIOLOGICALLY BASED MODELING

The Vision

PBPK models recognize anatomical and physiological realities, and
attempt to account for the role of differential distribution within and
between organs as well as their varying blood flows (4). The expected heu-
ristic value of PBPK modeling in research, drug development and regu-
latory science, and toxicological risk assessment is evident in the variety
of envisioned model uses discussed in several recent reviews (4–6). Sev-
eral desired and anticipated advantages of PBPK models have been cited
(4,5), but not yet realized, of which the following are just a few. It should
be straightforward to reuse a parameterized PBPK model to explore the
expected behaviors of different compounds. Models should be capable
of reflecting whatever physiological detail is relevant to the problem.
Updating needs to be facile. One should be able to replace low-resolution
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components with more detailed ones that will enable the simulation of
mechanistically based pharmacodynamics (4,7) or to account for changes
in rate-limiting steps or relevant heterogeneity within tissues and cells
(8,9). Realization of these uses is expected to allow researchers to answer
important questions such as: can we predict the PK behavior of a new,
unstudied compound by studying synthetic models validated against other
compounds with different PK behavior? Can we provide increasingly
confident explanations of events within target sites, and can we adjust
those events to take into account patient specific knowledge?

Inductive and Synthetic Methods

The inductive method for creating models dominates the PK literature.
Inductive models, by definition, abstract away the very detail required
by heuristic PBPK modeling. This has lead to top-down attempts to
graft details onto the highly abstract inductive models. Augmenting PBPK
modeling with the more flexible synthetic method provides a middle-out
strategy with two primary benefits: (1) a deep physiological model–to–
referent mapping and (2) access to unpredictable systemic phenomena
in the model (e.g., those that may result from nonlinearities). Inductive
methods, especially those dependent on continuum mathematics like ordi-
nary differential equations, often rely on assumptions like linearity for their
mathematical basis. Hence, any model developed with induction exhib-
its only the behaviors present, a priori, in the model family used for
induction. Synthetic PBPK modeling involves using independent
components to build a functioning analogue of the mechanisms (form
and function; component interactions) of which an inductive PBPK model
is an abstraction. Being composed of separate sub-models (10–14), syn-
thetic models provide more flexibility in representation and underlying
assumptions2. We posit that this flexibility is critical to the satisfaction of the
core requirements of PBPK modeling and thereby achieving the vision.

APPLYING MODELING PRINCIPLES

Models of Hepatic Elimination

How will changes in hepatic details alter the hepatic disposition
of two compounds administered simultaneously? Traditionally, answers
have been obtained using appropriately designed in vitro and in vivo
experiments. Sometimes they are not enough: the appropriate experiment

2We expand our ideas of inductive and synthetic modeling in Supplementary Material.
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can be impossible, too challenging, too costly, take too long to set up
and complete, or the researcher may be unable to uncover the precise
intrahepatic events. It would be desirable to be able to conduct experiments
in silico that would provide useful answers to questions, coupled with a
useful measure of uncertainty. The following three questions are examples
of what can be addressed using in silico experimentation on synthetic
models:

1. How might zonal differences in metabolizing enzymes influence the
hepatic elimination and metabolic profiles of compounds A and B
when they are co-administered relative to being administered sep-
arately, especially when one pathway for metabolism is saturated?

2. How might hepatic elimination respond to a pharmacological
or an inflammation-induced reduction in sinusoid diameters,
recognizing that vasoconstriction is often associated with
ischemia-reperfusion injury?

3. Can a significant difference in the ratio of metabolizing enzymes
to various transporter activities, within or between cells (in PK
terms, the relative contributions of intrinsic clearance and hepatic
permeability clearance) account for some of the interindividual
differences in the dose dependent hepatic clearance of some drug?

In this report, we provide a cornerstone for a solid foundation that
can be built upon and extended to produce models that can answer such
questions. It is envisioned that the ISL (in silico liver) will have many
properties and behaviors that partially overlap those of the current induc-
tive models of hepatic elimination3. They will also be capable of exhib-
iting properties and behaviors that are not achievable by those inductive
models. During early development of a new class of models, it is best to
have trusted, successfully used models that, for overlapping behaviors, can
serve as standards, against which to contrast members of the new class of
models. A primary reason for focusing on the liver and hepatic elimination
in this report is that the already existing rich literature provides multiple
options for cross-model validity.

Model Usage

The hepatic outflow profile of a compound is a phenotypic attribute.
The greater the similarity between the measured behaviors of an ISL and
known attributes of a liver, the more useful that ISL will become as a

3Discussions of the variety of hepatic models used in PK can be found in Refs. (8) and (15).



742 Hunt et al.

research tool and as an expression of the coalesced, relevant knowledge
of the liver. In this report, we focus on hepatic outflow profiles of sucrose
and a co-administered drug, antipyrine. To simulate the complete system
through a fundamental study of its component parts (1), this research will
produce increasing overlap between ISL behaviors, properties, and charac-
teristics, and measures of hepatic phenotypic attributes.

The long-term goal of this research is to produce increasing over-
lap between ISL behaviors, properties, and characteristics, and measures of
hepatic phenotypic attributes. Achieving that goal depends on demonstrat-
ing models that achieve at least 10 capabilities:

1. The models are capable of accurately representing intrahepatic
events.

2. There is clear physiological mapping between referent and model
components because ISL observables are designed to be consistent
with those of the referent liver.

3. When dosed with a simulated compound, the ISL generates
outflow data that are, to a domain expert (in a type of Turing
test), experimentally indistinguishable from the referent wet-lab
data; this requires that the ISL and its framework must be suitable
for experimentation.

4. To enable the above capabilities and support 6–9 below, the ISL
and its framework must use discrete interactions.

5. The ISL must be transparent: the details of the simulation, as it
progresses, need to be visualizable and measurable.

6. The components articulate: it must be easy to join, disconnect, and
replace ISL components.

7. The ISL components can be easily reconfigured to represent differ-
ent histological, physiological, or experimental conditions.

8. It must be relatively simple to change usage and assumptions, or
increase or decrease detail in order to meet the particular needs of
an experiment, without requiring significant re-engineering of the
model.

9. The ISL must be reusable for simulating the disposition, clearance,
and metabolic properties of multiple compounds in the same exper-
iment, not just one each in separate experiments.

10. The ISL must be constructed so that it can eventually function
as an organ component within a larger, synthetic, physiologically
based, whole organism model.
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Specification of an In Silico Liver

To enable achieving the 10 capabilities, we discretize hepatic anat-
omy and physiology so that important aspects of structure are mapped
to directed graph structures. We specify only the minimum number of
hepatic features needed to generate the required output and exhibit the
specified features. Features and functions that are currently not needed are
not explicitly specified. Instead, they are conflated with other ISL compo-
nents. When one of these features or functions is needed, it can be brought
back into focus and assigned to newly added components without requir-
ing significant re-engineering of the components already present.

The hepatic parenchyma of the rat is organized as several polyhe-
dral primary units—lobules—integrated into larger secondary units (16).
We assume that secondary unit functions are similar throughout a nor-
mal liver, and that each has similar incoming and outgoing fluid flows. By
making that assumption, we can collapse the graph that would be needed
to represent the entire liver into a directed graph of parallel single nodes,
each representing a secondary unit. The integration of a dozen or so lob-
ules into a secondary unit results from a common drainage by its branches
to form a central venular tree, and from the arrangement of portal tracts
and vascular septa that form a continuous vascular surface over the entire
unit. Because of their structure, secondary units can be accurately repre-
sented as small networks of primary lobules. If we assume that all lobules
in a secondary unit are similar in form and function, then we can collapse
the secondary unit graph structure into a single node (a typical lobule)
having one incoming and outgoing edge. The organization of this typical
lobule is pictured in Fig. 1.

The arterial and portal vein (PV) blood supply for one lobule feeds
into several dozen sinusoids that merge in stages to only a small fraction
of their original number as they feed into the lobule’s outgoing central
vein (CV). Those flow paths can also be represented by an interconnected
directed graph. Objects representing sinusoidal spaces and function can
be placed at the graph nodes. Within the ISL, those objects are software
agents4 called Sinusoidal Segments (SSs). Their design is discussed below
and illustrated in Fig. 2. Hepatic intralobular heterogeneity and zona-
tion are well documented (19,20). Hepatic cells, including hepatocytes, can
exhibit location-specific properties within lobules (16,21), including loca-
tion-dependent expression of drug metabolizing enzymes (8) and trans-
porters. Different sinusoids can experience different flows (22) and have

4Technically, an agent is a software object with the ability to interact with its environment
and schedule its own actions. The work of Peirce et al. (17) and An (18) are examples
of successful application of agent-based models to complex biological systems.
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Fig. 1. A schematic of an idealized cross-section of a hepatic lobule showing half an acinus
and the direction of flow between the terminal portal vein tract (PV), and the central hepatic
vein (CV). Expansion: within the ISL, flow paths are represented by an interconnected, three
zone, directed graph. Data from the literature are used to constrain the graph size and struc-
ture. A portion of the graph connects in silico PV outlets to the CV is shown. SS: sinusoidal
segment.

different surface-to-volume ratios. As needed, such heterogeneity can be
easily represented by differences within and between SSs. Interconnections
between sinusoids are frequent in the periportal region, but are rare near
the CV. Teutsch et al. (16) subdivides the lobule interior into six concen-
tric zones to quantify the enzymatic gradients between PV and CV. When
attention is limited just to drug outflow profiles, one or two zones may
be adequate. However, we want to be able to explore the consequences of
such zonation. For that, having three zones (I, II, and III in Fig. 1) is ade-
quate to start. When considering sucrose and antipyrine outflow data, bile
can be ignored. When needed, an additional outgoing edge and SS detail
can be added in to represent bile flow.

To avoid confusion hereafter and clearly distinguish in silico compo-
nents from corresponding in vitro and in vivo hepatic structures such as
a lobule, spaces such as fenestrations, objects such as an hepatocyte or a
compound, or a process such as metabolism or partition, we use SMALL

CAPS when referring to the in silico counterparts.

LOBULE Structure

We assume that there are many arrangements of lobule flow paths
that will give similar outflow profiles for a given compound. We want to
identify the in silico counterpart of that set and sample from it, thereby
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Fig. 2. A schematic of a sinusoidal segment (SS): one SS occupies each node specified by a
directed graph (Fig. 6). Grids represent spaces and can contain objects representing the func-
tions associated with sinusoids. Objects representing ANTIPYRINE and SUCROSE enter and
exit via the Core and Rim, and can access any of the other three spaces. Grid locations can
have properties and axioms that govern their interaction with mobile objects and their neigh-
bors. The potential for heterogeneous properties within different spaces is illustrated by the
expanded portion of Grid B having different shadings. Objects functioning as containers (for
other objects) are used to represent cells, and can be assigned to any grid location; a HEPA-
TOCYTE container is shown; objects representing all needed intracellular components can be
placed within those containers. Only two types of INTRACELLULAR binders recognize ANTI-
PYRINE; those that only bind (b) and those that also metabolize (e). A CELL container will
not allow SUCROSE to enter.

parameterizing a specific LOBULE. For practical purposes, we need to cir-
cumscribe that space. We do that by applying several physiologically sup-
ported constraints. The resulting set of LOBULE architectures is large but
manageable. During parameterization, if a given structure fails to generate
acceptable outflow profiles, additional components are added or removed
and parameterized until outflow profile requirements are met. Adding or
removing a component, such as a graph node or edge, has no impact on
the function of any other component. Progress from a heuristic to a pre-
dictive device is made in this fashion.

The three-zone structure requires that each zone contain at least one
node. In a later section, we discuss limiting the number of zones. Sinusoi-
dal segments (Fig. 2) are placed at each graph node. We specify that the
shortest path (from PV to CV) will pass through no more than one node
per zone; the shortest path allowed contains a single node. The expanded
section in Fig. 1 illustrates a portion of a network structure that connects
PV outlets to nodes in Zone I, from these nodes to nodes in Zones II and
III, and finally from there to the CV. Graph structure is specified by two
parameters: the number of nodes in each zone and the number of edges
between nodes. A full list of parameters is provided in the Appendix.
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The graph edge that connects one node to another specifies a “flow path.”
These paths have zero length and contain no objects.

We allow for a specified number of cross-connections between nodes
within Zones I and II, but not within Zone III. The number of such intra-
zone connections is a parameter. However, the assignment of connections
is randomized for each run to simulate intrahepatic variability. There are
also a specified number of inter-zone connections. Their assignment too
is randomized for each run. When searching the circumscribed LOBULE

space for suitable graph structures, the experimenter, keeping in mind the
approximate proportion of the total lobule volume found in each zone,
assigns an initial set of parameter values; runs the experiment; checks the
results; and then, if improved results are needed, modifies one or more
parameter values. When a similarity measure is available, this process can
be automated. In this way, the circumscribed parameter space is sampled
to find an acceptable region. For a given LOBULE parameterization, the
number of nodes per zone is specified, as are the numbers of intra- and
inter-zone edges. In a given run, if a node is left with no outlet, then it is
connected directly to the CV.

SINUSOIDAL SEGMENT Design

We have studied outflow properties using several sinusoidal segment
designs, and report here on one. Simpler designs generate behaviors that
fail to meet either a specification or our similarity measure criterion.
A SS is modeled as a tube-like space with a rim surrounded by two addi-
tional spaces. The tube and rim represent the central sinusoidal space and
its immediate borders. The tube contains a fine-grained abstract “Core”
space that represents blood. Grid A, the Rim, represents sinusoid edges
near endothelial cells. A fine-grained space (Grid B) is wrapped around
Grid A to represent the endothelial layer. Another space (Grid C) is
wrapped around Grid B to collectively represent the Space of Dissé and
hepatocytes. Because we are building a normalized model, there is no
direct coupling between locations within a grid and real measures such
as actual hepatocyte volume or fenestrae size. Additional spaces can be
added when additional functionality is needed, and any of the current
spaces can be turned off (removed) if they are not needed, without inter-
ruption of remaining functionality.

The relative grid dimensions and number of locations per grid (both
of which are flexible) determine the resolution. The properties of a grid
location can be homogeneous or heterogeneous depending on the specific
requirements and the experimental data being considered. Heterogeneous
properties are illustrated by the different Grid B shades in Fig. 2. Objects
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can be assigned to any grid location. Currently, unassigned locations in
Grid B represent intracellular gaps and fenestrae for object sieving into
the simulated Space of Dissé. The remainder of Grid B is assigned to
ENDOTHELIAL CELLS. Kupffer and/or stellate cell behaviors can be added
as they are needed. A large fraction of Grid C space is assigned to
HEPATOCYTES.

To further account for sinusoidal heterogeneity, including differences
in transit time and flow (23), topographic arrangement (24), and the
different surface-to-volume ratios within zones (19,22), we defined two
SS classes: SA and SB . From preliminary efforts to simulate sucrose out-
flow profiles using earlier models we learned that a variety of SS lengths
would be needed. Relative to SB , the SA have shorter path lengths and
smaller surface-to-volume ratios. The circumference of both SS classes is
specified by a random draw from a uniform distribution having maximum
and minimum values. To reflect the observed relative range of real sinu-
soid path lengths, SS length is given by a random draw from a modi-
fied gamma distribution having a mean and variance as specified in the
Appendix. The minimum length accepted is two grid spaces for SA and
ten for SB .

Movement of COMPOUNDS In Silico

A mobile object serves as a passive representative of a compound
as it moves through the LOBULE. The process represents molecules mov-
ing through sinusoids. The relative tendency of a COMPOUND to move
forward within the SS determines an effective flow pressure, and that
is governed by a parameter called Turbo. If there is no flow pressure
(Turbo = 0), then COMPOUND movement is specified by a simple ran-
dom walk. Increasing Turbo biases the random walk in the CV direc-
tion. The dosage function is a modified gamma function, rather than an
impulse. This is in part to account for the effects of catheters and large
vessels as detailed in Refs. (9) and (25), and is based on values used by
Hung et al. (2).

The behavior of a COMPOUND is dictated by axioms5. Axioms spec-
ify relationships between COMPOUND properties, location, and proximity
to other objects and agents. The axioms can be structured to recognize
and take into account relative compound-specific physicochemical proper-
ties (26,27). A COMPOUND that arrives at a grid location assigned to a
cell may, with a specified probability, undergo simulated partitioning and

5We use axiom to emphasize that computer programs are mathematical, formal systems
and the initial mechanistic premises in these simulations are analogous to axioms in
formal systems.



748 Hunt et al.

enter that CELL, stay put, or move to a new location. The CELL disal-
lows SUCROSE, but not ANTIPYRINE, to partition because it “sees” that an
assigned SUCROSE property indicates that it cannot partition across CELL

membranes. The analogue of a compound that can partition will enter
CELLS. Within a CELL, the object can become subject to additional axi-
oms reflecting the intracellular environment (26–29). Grid B represents an
endothelial boundary rather than a navigable space. Within it, a parame-
ter controls the size and prevalence of FENESTRATIONS: 5% is randomly
assigned to FENESTRAE; the remaining 95% is assigned to CELLS. Simi-
larly, within Grid C a parameter controls the relative density of HEPATO-
CYTES.

The following is a description of how SUCROSE and ANTIPYRINE nav-
igate the network. Each SS outlet is connected to n receiving SS targets.
An object will exit one of the n outlets at random. The probability of exit
via a chosen outlet is a function of n, the available number of SS outlets,
ai , the inlet area, described below, of each SS (i = 1, . . ., n), and ci , the
“concentration” of other solute objects just inside the target SS inlet. If
the object does not exit, then a new outlet is selected from those remain-
ing. If the SS cannot find a place for the COMPOUND (e.g., as a conse-
quence of crowding, as when “concentrations” are high) then the process
is repeated up to 10 times. The determinant for whether a SS can find
a place in an output node is the estimate of the density of COMPOUND

at the entrance of the SS. That density is estimated by the formula for
the area of a circle where the radius is derived from the circumference
(r = C/2π ); C is the width of Grid A when laid flat. Flow and concen-
tration come about, in part, due to this density calculation. If the simu-
lated concentration is high at any part of the SS, flow out of that area
will be increased, resulting from the CONCENTRATION gradient and PRES-
SURE (more objects trying to move creates a flow effect). Flow is also
partly synthesized through adjustment of the Turbo and the coreFlowRate
parameters.

Both COMPOUNDS can enter a SS at either the Core or the Rim.
Thereafter, until each is collected at the CV they have several stochastic
options, the aggregate properties of which are determined using Monte
Carlo techniques. In the Rim or Core a COMPOUND can move within that
space, jump from one space to the other, or exit the SS. When the COM-
POUND jumps from Rim into Grid B, it can move within the space, or
jump back to the Rim or on to Grid C. When it encounters a CELL,
SUCROSE moves on. SUCROSE can move within the EXTRACELLULAR por-
tion of Grid C or jump back to Grid B. After it exits a SS in Zone 3,
it enters the CV; its passage through the CV is recorded (corresponding to
being collected in the fraction collector).
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The only subcellular functions needed to represent low clearance anti-
pyrine are binding and metabolism. All cellular components that bind
or metabolize antipyrine are conflated into and represented by binding
objects placed inside the containers representing CELLS. Metabolism is
handled as a special case of binding: enzyme objects bind ANTIPYRINE for
some amount of time before either releasing or METABOLIZING it. Binding
objects are assigned randomly to all CELLS. Enzyme objects are assigned
randomly to HEPATOCYTES. Assignments are randomly drawn from a uni-
form distribution having a specified minimum and maximum. A binding
parameter specifies the number of simulation cycles that ANTIPYRINE is
bound. Enzyme objects are programmed to recognize substrates. They use
an additional parameter, the probability of being metabolized.

ANTIPYRINE moves within a SS and LOBULE as does SUCROSE, but
using its own parameter values. When ANTIPYRINE encounters a CELL

within Grids B or C it may partition into the CELL. Once inside it can
move about, exit, bind or not bind, and possibly be METABOLIZED. For
the simulations that follow, all binding objects within a HEPATOCYTE also
METABOLIZE. The probability of an ANTIPYRINE object being METABO-
LIZED is controlled by a parameter. Once METABOLIZED, that ANTIPYRINE

is destroyed (unless we wish to track metabolites).
The means for generating and managing all of the above compo-

nents and capabilities are organized within a framework, (diagrammed in
Fig. 3), and managed in part by an Experiment Agent that serves a role
similar to that of a researcher conducting and recording the results of
wet-lab experiments. Additional details are provided in the Supplementary
Material.

Fig. 3. Framework of the In Silico Liver (ISL) showing key components.
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The Stochastic Nature of In Silico Outflow Profiles

The typical rat liver outflow profile is an account of on the order
of 1015 or more drug molecules percolating through hundreds of lob-
ules. The typical in silico dose for one run with one LOBULE uses on the
order of 5,000 objects, each representing a number (�1) of molecules. An
outflow profile for such a small number of objects is noisy and is inad-
equate to represent a PK profile. At times following the outflow peak, it
is increasingly possible to encounter an interval during which no objects
are collected. A second independent run with that same LOBULE, parame-
ter settings, and dose will produce a similar but uniquely different outflow
profile. That is because a single experiment involves thousands of proba-
bilistic events. For each independent run, the seed for the random number
generator is changed, altering the specifics for all stochastic parameters.
Several stochastic parameters control the ISL organizational and spatial
architecture, specifically: the organization of the directed graph, assign-
ment of SS type to each directed graph node, the dimensions of the SS
spaces, and how the edges are used to connect SSs. Together, for each run,
they provide a unique, individual version of the LOBULE where the rel-
ative differences are analogous to the unique relative differences between
lobules in the same liver. Differences between runs also simulate some of
the uncertainty that is built into the model. The variance across runs in
the outflow fraction within a given time interval is neither constant nor
deterministic. One ISL experiment combines the results from 10 to 50
independent runs of the same LOBULE.

To reduce outflow profile noise, we use a 70-point smoothing window.
The resulting outflow profile (Fig. 4 is an example) is sufficiently smooth
for comparison with other profiles. An experimental result comprising 4–7
LOBULE runs6 is analogous to results one might obtain if one could con-
duct a perfusion experiment on one hepatic lobule. Assuming the lobules
within a normal liver are similar, the sum of the results from 10 to 50 runs
can be used to represent the outflow profile of one ISL.

Similarity Measure

When are two outflow profiles sufficiently similar to be considered
experimentally indistinguishable? The answer specifies when an in situ and
an ISL outflow profile are sufficiently similar to be experimentally indis-
tinguishable. For this study we decided that if most of the values of an

6The coefficients of variation as a function of time for six repeated in silico experiments
from Ref. (2) were calculated. The values were higher at earlier and later times. Between
2 and 80 s values ranged from 1.2% to 54.4%, averaging 16.1%.
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Fig. 4. Semilog and scatter plots show the fraction of dose per outflow unit (per ml for the
referent) as a function of time (1 unit = 1 s) after dosing. The dose contained equal amounts
of SUCROSE and ANTIPYRINE; only SUCROSE data are shown. The gray band spans the range
for the mean ± 1 standard deviation for each of six sucrose outflow profiles from the livers
of six matched rats (2). The ISL parameterizations are provided in the Appendix. The data
points are smoothed, pooled results for 48 independent runs of the same ISL. Although each
independent run uses the same parameter settings (number of nodes per zone, number of
edges within and between zones, SS type, etc.) their assignments are randomized; as a result,
the actual structure of the LOBULE is different for each of the 48 runs (e.g., see Fig. 6).

ISL outflow profile are within one standard deviation (SD) of mean val-
ues obtained from six repeated sucrose experiments, then the ISL data can
be considered “experimentally indistinguishable” from that referent data.

For simplicity, we assume that the coefficients of variation of repeat
observations within different regions of referent outflow profiles are the
same. In that way, we can use a similarity measure (SM) that is a sim-
ple, constant proportion interval. Specify a distance, d as the basis for a
match. For each observation in reference profile P , create a lower, P l, and
an upper, Pu, bound by multiplying that observation by (1−d) and (1+d),
respectively. The two curves P l and Pu are the lower and upper bounds
of a band around P . The ISL outflow profile is deemed similar to ref-
erence outflow profile if, for example, 90% or more of the second profile
stays within the band. In this study d is the standard deviation of the rel-
ative differences between each of six replicate sucrose experiments and the
mean observations for that collection interval, pooled over all collection
intervals. The data are from Ref. (2).

The SM score is the fraction of observations of the candidate time
series (typically �100 observations) that fall within the one SD envelope.
Because the variability within any ISL run is large, it is unlikely, even for
one of the better matches, to have a SM score �0.97. For these studies,
0.8 is the lower limit of acceptable values. A value �0.9 is a quite reason-
able match. For some future PBPK models more sophisticated SMs may
be needed (as discussed in Refs. (30) and (31)).
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RESULTS

In Silico ISL Outflow Profiles

In the referent wet-lab experiments, sucrose and antipyrine were
co-administered. In the in silico experiments that follow, SUCROSE and
ANTIPYRINE were both co-administered and administered separately.
Because ANTIPYRINE crosses into CELLS, whereas SUCROSE cannot, the
outflow profile for SUCROSE is much more sensitive to SS geometry than
is the profile for ANTIPYRINE, and that is a reason that it has been tra-
ditionally used as an extravascular marker (32–34). Consequently, param-
eterizations were done as follows. Lobule and SS structure were first
parameterized focusing on just on wet-lab sucrose profiles. Once accept-
able SM values were achieved, we held those values reasonably constant
and then focused on adjusting the additional parameter values that influ-
enced only ANTIPYRINE. Antipyrine, rather than a more lipophilic, higher
clearance drug was selected for assessing feasibility because its disposi-
tion properties are similar to those of sucrose. Several iterations of that
procedure were needed to obtain acceptable SM values for both COM-
POUNDS alone and administered together. Because of the key role of wet-
lab sucrose data in determining the in silico LOBULE structure, the sections
that follow focus mostly on SUCROSE.

An acceptable match for a referent, aggregate sucrose outflow profile
is shown in Fig. 4. For 200 observations the SM score was 0.906.
The complete set of parameter values, with explanations, is provided in
the Appendix. These results demonstrate that ISLs can exhibit five of
the targeted capabilities: (1) intrahepatic events are represented; (2) the
mapping between ISL and referent physiology is clear; (3) results are
experimentally indistinguishable: the “Turing test” was passed; (4) discrete
interactions are used; and (5) the transparency in generative components
is evident.

The LOBULE structure in Fig. 4 is complicated: 53 nodes, 65 edges,
and two types of SS. Is all of that detail needed? It depends on the stated
objectives. For small numbers of nodes and edges the frequency distri-
bution of available path lengths and intra-LOBULE residence times is no
longer smooth. Clusters form easily within the graph structure, and this
causes bumps to appear in the outflow profiles (data not shown). These
bumps are smoothed out by having a sufficient variety of path and resi-
dence time options.

The profile change induced by a modest change in one parameter
can be reasonably compensated for by adjustments in several of the other
parameters. However, the relationships that produce the compensations are
highly nonlinear. As an illustration, to increase throughput for sucrose
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one can: increase circumference of SSs; shorten the SSs; remove cycles
from the graph; add more inter-zone edges; remove intra-zone edges; or
increase the parameter Turbo. Overall, the parameters have overlapping
influences and the map between the parameters, their values, and the
observables is nonlinear, as would be the case if the analogous prop-
erties in the actual liver were modified, were it possible to make such
modifications.

For the data in Fig. 4, the ISL parameters were tuned to generate
a profile that fit reasonably well within the ±1SD band. The parameters
may also be tuned so that ISL output provides an acceptable match to an
individual sucrose profile (e.g., one of the six from Ref. (2)). An example
is presented in Fig. 5A. The parameter values are listed in the Appendix
(Table A2); the SM score was 0.93. The SUCROSE input function, repre-
senting the catheter effects in the in silico perfused liver system, is shown
in Fig. 5B. To obtain that curve all of the SSs were effectively discon-
nected so that all of the SUCROSE that would have entered the 30 Zone
1 SSs moves directly to the CV where it is collected and measured.

There is one automatically generated graph structure for each ISL
run. The graphs corresponding to four of the runs in Fig. 4 are shown in
Fig. 6. The graphs were generated using Tulip (www.tulip-software.org/).
This graph visualization style shows every node and every edge in a 2D
layout for easy visual examination.

There is a direct relationship between the size of the graph, the
dose, and the number of runs needed to meet the experimental objectives.

Fig. 5. (A) Semilog and scatter plots show a SUCROSE outflow profile, as in Fig. 4. The ISL
parameters have been tuned in the absence of ANTIPYRINE to match a specific sucrose data
set: the solid line-segments connect the sucrose data from one rat liver (fraction of dose/ml;
from Ref. (2)). The gray band is the same as in Fig. 4. Dark gray circles: SUCROSE outflow
values using the tuned parameter set in the Appendix, Table A2. (B) The SUCROSE input
function for (A) and for Figs. 4 and 7. The input function simulates the catheter effects, as
discussed in the text. The curve was obtained by disconnecting all SSs so that the dose moves
directly from PV to CV.



754 Hunt et al.

Fig. 6. Graph structures for four of the 48 runs in Fig. 4; the graph generated for run num-
bers 002, 010, 012, and 036 were selected at random. Graph layout is not organized by zone.
All Zone 1 nodes are unfilled, rounded-corner squares; they have one edge connecting them
to the PV, and can be connected to other SSs in Zone 1 as well as to other zones. Zone 3
and Zone 2 nodes that are directly connected to the CV are shown as black diamonds. All
other Zone 2 nodes are shown as black squares. By chance, an edge exiting one node in both
002 and 010 connects back to that same node; those edges are shown as loops. By chance,
the nodes and edges in light gray were not assigned an incoming edge. If, after all 65 edges
have been assigned, there is still one or more Zone I or II SS with no outgoing edge, then
the SS will be connected directly to CV.

As the dose is metered into the Zone 1 nodes (by the Fig. 5B dosing
function), there needs to be sufficient space and available grid locations
into which the SUCROSE can move; otherwise, it cannot be metered out as
required. In addition, SUCROSE at the leading end of a Zone 1 node needs
to get out of the way in order to make room for incoming dose. The larger
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the dose, the larger the sum of entry spaces needs to be. For the data in
Figs. 4 and 5, that area is determined by SS circumference (Grid A width)
and number of nodes in Zone 1. For the simulation in Fig. 4, if dose and
nodes are reduced by 50% and the number of runs is doubled, then the
results will be the same but total run time is longer; so, there is a trade-off
between total run time and model size. Further reductions may not result
in equivalent simulations, however. That is because graph interconnected-
ness can be compromised when there are not enough options.

The results in Fig. 7 show the outflow profile of ANTIPYRINE given
alone and in combination with SUCROSE for the same parameterizations
as in Fig. 4. It is evident that the ISL and wet-lab profiles are similar. The
additional ANTIPYRINE-specific parameter values are listed in the Appen-
dix. With these results, we have demonstrated capability 9 (capable of rep-
resenting PK properties of multiple compounds).

Influences of Parameterization Changes

To demonstrate the sensitivity (or lack thereof) of results to changes
in ISL structure or parameterization, we report results from two sets of
experiments in which the ISL was dosed with an equal combination of
ANTIPYRINE and SUCROSE given together as in the original wet-lab exper-
iments. They were designed to explore the ease with which model fea-
tures could be changed along with the consequences of those changes, and
thereby demonstrate capabilities 6 (easy to join, disconnect, and replace

Fig. 7. Semilog and scatter plots show the fraction of dose per outflow unit (per ml for
the referent) as a function of time (1 unit = 1 s) after dosing. Each dose contained SUCROSE

and/or ANTIPYRINE. The ISL and the experimental protocol are same as in Fig. 4; parameter
values are listed in the Appendix. Open circles: outflow values for ANTIPYRINE. Gray circles:
antipyrine data from one rat liver (fraction of dose/ml; from Ref. (2)); black line-segments
connect the data for coadministered sucrose. The width of the light gray SM band assumes
the same variance as in Fig. 4. Inset: ANTIPYRINE coadministered with SUCROSE. The ANTI-
PYRINE data are smoothed, pooled results for 48 independent runs of the same ISL.
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components), 7 (components easily reconfigured to represent different con-
ditions), and 8 (simple to change assumptions or details without requiring
significant re-engineering).

The first set of experiments (designated N) study sinusoidal network
arrangement, and reference a control ISL, N1, which gave a good match
to a referent sucrose outflow profile, similar to that presented in Fig. 4.
The experimental group examined four changes, N2–N5: the zonal dis-
tribution of nodes is changed in four ways, as listed in Table 1, while
all other parameter values are unaltered. In N2, the Zone I:II node ratio
is changed from 30:15 to 25:20. In N3, the nodes are evenly distributed
across all Zones. N4 is analogous to a retrograde perfusion in that nodes
per zone are reversed relative to N1, whereas in N5 all the nodes are in
one zone. The results for SUCROSE are presented in Fig. 8. The results
for ANTIPYRINE were very similar (as would be expected), and so are not
shown.

The results of experiments N1–N3 are within the in silico experimen-
tal system variability. The right shift of the peak in N4, the simulated
“retrograde perfusion,” is an artifact of the model implementation: with

Table 1. Values of primary parameters changeda in the network arrangement (N ) and spatial
relationships (S) experiments

Parameter Experiment

Nodes N1 N2 N3 N4 N5 S1 S2 S3 S4
Zone

I 30 25 16 2 0 30 30 30 30
II 15 20 16 15 47 20 20 20 20
III 2 2 15 30 0 3 3 3 3

Inter-zone connections
I → II 15 20 16 15 0 20 20 20 20
II → III 2 2 15 30 0 10 10 10 10

Intra-zone connections
I → I 15 12 8 1 0 20 0 20 20
II → II 7 10 8 7 23 15 15 15 15

SA (% total) 80 80 80 80 80 90 90 90b 10
SB (% total) 20 20 20 20 20 10 10 10b 90
Cell density, Grid B 0.8 0.8 0.8 0.8 0.8 0.95 0.95 0.95 0.95
Cell density, Grid C 0.2 0.2 0.2 0.2 0.2 0.95 0.95 0.95 0.95
Turbo 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1

aThe N experiments use 25 simulation runs; the S use 50. In all cases, there are no I → III and
III → III connections. All other parameters are the same as for the sucrose outflow profile in
Fig. 4.
bIn S3 the surface-to-volume ratios of SA and SB are reversed; relative to SB the SA in this
study have a shorter path length and a larger (rather than smaller) surface-to-volume ratio.
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Fig. 8. Semilog and scatter plots, as in Fig. 4, of outflow fraction following dose adminis-
tration to ISLs having different sinusoidal network arrangements. Each dose contained equal
amounts of SUCROSE and ANTIPYRINE; only SUCROSE data are shown because the patterns
for each were essentially the same. The outflow profiles were generated from ISLs with a con-
trol (N1; closed circles) and one of the four experimental arrangements (N2–N5; open cir-
cles) specified in Table 1. All other parameter values were unchanged relative to those of N1.
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only two nodes in Zone I, there is insufficient space for the incoming dose,
and so for a short interval it backs up at the PV source. The slightly higher
peak for N5 relative to N1 is because there are more 1-node paths between
PV and CV. The lower values between t = 30 and 70 followed by a some-
what shallower tail are a consequence of the random assignment of edges
within this arrangement, allowing for more and longer multi-node paths.
The data for N2–N4 provide a measure by which topological properties of
the sinusoidal network can be prioritized, which would not be possible in
a model induced solely from outflow profiles. The N5 results, supported by
those from N2–N4, clearly demonstrate that in order to match antipyrine
and sucrose profiles it is not necessary to have a three-zone arrangement.
Rather, it is essential to have a sufficient number of inter-SS connections
to insure a diversity of PV-to-CV path lengths.

The properties associated with zonation are expected to become more
important for high clearance compounds. Relative to N1, it seems less
likely that the SSs and the connections between them for N2–N5 could be
arranged, three-dimensionally, in a biologically realistic way. Having struc-
tures that can be separately arranged in a biologically realistic way within
a realistic 3D space was not one of our initially targeted attributes. When
required, such requirements can be added easily because of the synthetic
nature of the model. The N2–N5 structures are from outside that circum-
scribed space and so are invalid for normal livers (but possibly not for dis-
eased livers).

The second set of experiments (designated S) explored the conse-
quences of changes in relative spatial relationships within the ISL, start-
ing with a parameterization (experiment S1) that gave a good match to
a referent sucrose outflow profile (similar but not identical to N1). In S2,
we eliminate all intra-zone cross-connections in Zone I. In S3, we reversed
the SA and SB surface-to-volume ratios so that relative to SB the SA had
a longer path length and a larger (rather than smaller) surface-to-volume
ratio. In the last experiment (S4), we reversed the ratio of SA to SB SSs
from 9:1 to 1:9. The results for SUCROSE are presented in Fig. 9. As with
the experiments above, the results for ANTIPYRINE were very similar to
those for SUCROSE, and so were not shown.

In S2, eliminating Zone I intra-connections resulted in an increase
in the number of short PV-to-CV paths as evidenced by the slightly
earlier and larger peak fraction. Changing SS spatial properties in S3
resulted in a considerable increase in space outside the Core. SUCROSE

and ANTIPYRINE roamed around within this space, resulting in a lower
peak fraction occurring later. It also caused a dramatic increase in the var-
iance of the outflow data, because of the increased variation in length,
volume, and area of all possible paths. Reversing the SA:SB ratio (S4) also
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Fig. 9. Semilog and scatter plots, as in Fig. 4, show ISL outflow fraction following dose
administration to ISLs having altered SS spatial relationships (S). Each dose contained equal
amounts of SUCROSE and ANTIPYRINE; only SUCROSE data are shown because the patterns
for each were essentially the same. The outflow profiles correspond to one of the four rela-
tionships detailed in the text; the parameterizations for S1, S2, and S4 are detailed in Table
1. (A) Relative to S1, for S2 all intra-zone connections in Zone 1 were eliminated. (B)
Relative to S1, S3 had volume ratios of SA and SB that were reversed relative to S1. (C)
Relative to S1, in S4 the SA and SB ratio was changed from 8:2 to 2:8. Otherwise, param-
eterizations were the same as for N1 and Fig. 4.

increases space outside the Core. This reversal apparently caused paths
to form three clusters in terms of their properties, as evidenced by the
three peaks in the outflow profile (at about t = 8, 22 and 40). The first
peak is the result of a set of short, small capacity paths. Such variation in
path properties may be characteristics of some hepatic disease states that
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increase intrahepatic heterogeneity. These experiments support the exten-
sion of the convection-dispersion model to two compartments (9) while
simultaneously providing for many more compartments to facilitate vali-
dation against observables with a finer-grain (higher information content)
than the outflow profile.

DISCUSSION

The ISL is a representative of an entirely new class of physiologi-
cally based models. By designing components and composing them in a
synthetic model capable of exhibiting nine of the ten targeted capabili-
ties (discussed below) we have created a vehicle for continual clarification
at multiple levels of what occurs within the liver during passage of com-
pounds of interest. The greater the similarity between the properties and
characteristics of the ISL and the liver attributes to which they map, the
more useful the ISL is expected to become as a PBPK tool. We can make
progress in achieving the larger PBPK vision by systematically increasing
liver and ISL similarity at four levels:

• outflow or PK profiles;

• measures of related phenotypic attributes;

• generative components;

• component interactions and their organization.

Nine of Ten Capabilities Achieved and Demonstrated

Intrahepatic events. The fixed and dynamic relationships within the
ISL (Figs. 1 and 2) are relativistic and realistic at the current level of
resolution. For the specific, simple task of representing sucrose and antipy-
rine outflow profiles, components that are more accurate and detailed than
those used proved not to be needed. Instead, it was important that com-
ponent interactions in silico reasonably matched the corresponding refer-
ent interactions, such as the fraction of time ANTIPYRINE objects spend in
different environments.

Physiological mapping. By conceptually extending the ISL model and
the in silico experimental procedure beyond the liver to include key com-
ponents associated with the actual wet-lab system, catheters and fraction
collection, for example, it proved easier to make the observables from each
consistent. It has been widely recognized that such system factors, outside
of the biological component, must be factored into hepatic clearance mod-
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els (35). The dosing function can be easily changed to represent different
experimental systems without having to change any LOBULE property.

Two classes of observables influenced physiological mappings: histo-
logical and dynamic. We used the former to set constraints: acceptable in
silico components and relationships needed to fall within those constraints
to be consistent. Where they fell, such as the number of graph nodes, their
interconnections and SS properties, and number of ENZYMES per HEPATO-
CYTE, were controlled by the dynamic observable, of which we had one
type: outflow profiles. By increasing the number of compounds that an
ISL can represent (discussed below), we will be iteratively improving the
physiological mapping along with the accuracy of the detail within.

Turing test. Because of the many Monte Carlo controlled options at
each cycle, each trek of dose through the same lobule is unique and no
two lobules are identical. By pooling results from several simulations, we
generated a unique outflow profile. In these ways, the ISL has represented
uncertainty in observations as well as in the biology and the outflow pro-
files. Using an acceptably parameterized ISL, we demonstrated that once
the SM criteria were satisfied, then from data alone, the results from wet-
lab and in silico experiments were experimentally indistinguishable.

Transparency. The transparency of synthetic models helps bring con-
ceptual clarity to the opacity of biological systems. We can record where
SUCROSE and ANTIPYRINE go and what they do. We can then visual-
ize such detail as the simulation progresses. We can, for example observe
how any SS is connected to others or how many HEPATOCYTES an ANTI-
PYRINE visits before being METABOLIZED. From a modeling perspective,
such capabilities provide a means of identifying potential flaws in the soft-
ware, its assembly, and operation in ways that can feed back and influence
the design of future experiments and how we think about the referent.
Having transparency makes it possible to contrast visual and abstract fea-
tures of the ISL and to observe how processes give rise to characteris-
tic features. We can trace cause-effect relationships to specific subcellular
components.

Articulation. To make model evolution facile, the PBPK modeler
needs the ability to easily explore an alternate sinusoidal topography,
for example, or to alter the spatial arrangement of TRANSPORTERS and
ENZYMES (26,27). We have demonstrated that it is straightforward to plug
SS components together, later disconnect them, and replace some with
new components (Figs. 8 and 9). The same can be done within the SS
functional unit: a grid or cells can be removed and modified. Cells can be
added to or removed. The functions and interrelations of the other com-
ponents remain unaltered.
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Reconfigurability. Internal and external factors can lead to impor-
tant differences between livers. The PBPK vision anticipates being able
to explore the significance and consequences of such differences. Using
directed graphs to represent connectivity between units of function, one
of several possible approaches, enables us to manipulate the representation
of both histology and physiology. We have shown that it is easy to alter
these representations and explore the consequences. Although not demon-
strated here, it is similarly easy to alter the experimental context. The ISL
represents an isolated, perfused liver. By altering the lobule input func-
tions, we can change the system to represent the liver in a living rat or
within a different perfusion system. We can unplug HEPATOCYTES from
the ISL and study their properties in simulated in vitro experimental con-
ditions (28,29). Given appropriate in vitro data we can also refine, repa-
rameterize and validate the HEPATOCYTES, and return them to the ISL to
observe the consequences within the whole-liver context.

Change usage. With traditional PBPK models, changing assumptions as
we did for Fig. 8, can require a different set of differential equations where
the mapping between the new and the original parameters is not straightfor-
ward. This reality often hampers exploring the consequences of alternative
sets of assumptions. Consequently, some PBPK models can acquire a degree
of inertia. Researchers find it easier or more cost effective to adjust their
requirements and model use to available models, thereby avoiding dealing
with such challenges and forgoing the benefits they might have obtained.
Elimination of such situations is the motivation for capability eight.

Multiple compounds. We have demonstrated a powerful, scientifically
useful characteristic of the ISL. An ISL parameterized for one COM-
POUND, SUCROSE in this case, can be used to represent the outflow pro-
file of a new compound, such as ANTIPYRINE, without compromising the
model’s ability to interact as before with the first compound. We need
only change those parameters that are influenced differently by the new
compound’s physicochemical properties. Should one or two new features
be needed, they can be added without compromising existing ISL capa-
bilities. It remains to be demonstrated if a single ISL can be extended
to a large set of compounds. The ISL exists and is capable of function-
ing whether or not it is dosed with SUCROSE and/or ANTIPYRINE. Each
COMPOUND has properties that can be recognized by the ISL components.
They can even be given recognition algorithms so that after acquiring a
mobile object’s properties, the ISL components automatically adjust their
responses according to a separate or learned algorithm and the objects
they encounter.

Discrete interactions. We demonstrated that adopting graphs (net-
works) as a fundamental modeling tool allows us to achieve the above
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nine capabilities. By restricting the model to discrete interactions, it
ensures that graphs can be used throughout the ISL, which ensures the
above nine capabilities and makes the resulting device more explorable.

Whole organism. Having the ISL become a component in a whole
organism model is a special case of the articulation, reconfigurability, and
change usage capabilities. Attaining it is essential to achieve the full PBPK
vision and strengthen the case being made for this class of models. Aspects
of an ISL can be separately validated against in vitro data, for example,
prior to inclusion within the whole organism model.

Detail, Accuracy, and Realism

How much detail does an ISL need; how accurate and realistic does it need
to be? The answers require having other information, such as a clear statement
of why the model is needed. The PBPK vision is such a statement. We also
need to state the uses to which the model will be put, such as to mimic spe-
cific aspects of hepatic functionality along with PCs of the referent system that
we deem important for the analogue to possess. These PCs were a significant
determinant of the detail reflected in Figs. 1 and 2. Depending on how PCs
are specified, they will circumscribe a space of allowable ISLs that can range
from relatively simple to complex. The referent PCs are expected to have direct
counterparts in the ISLs. For example, if at least 50% of the sinusoids near the
PV in the referent lobules are (or are assumed to be) interconnected, and this
property is among the listed PCs, then at least 50% of the SSs near the PV in
the ISL should be interconnected.

Most important are the measurable observables of the referent. They
are used for model validation (see Supplementary Material). They circum-
scribe the behavior space of each ISL. The similarity measures used to
compare referent and ISL observables provide an acceptance criterion for
the accuracy; and so, indirectly they are part of the ISL specification.
They influence the ISL’s detail and fidelity. For example, if we had decided
to be satisfied with outflow profiles that fit within a ±2SD band about the
target outflow data, and we had decided to tolerate a few modest bumps
in the simulated outflow profile, then we could have accepted lobule graph
structures having significantly less detail.

Several ISL features can be cited as being realistic; others can be crit-
icized as being unrealistic. We have dealt with the former. Relative to the
latter, here are three examples. (1) In a lobule, only adjacent sinusoids are
interconnected, whereas in the ISL, connections between nodes are ran-
domly assigned without consideration of relative location. (2) Because the
SA and SB are randomly assigned, the range of path lengths in terms
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of total grid length can be unrealistically broad. For example a one-node
path could be as short as two grid spaces in length; whereas, a three-node
path could be 50 grid spaces or longer. It seems unlikely that the range
in actual lobule path lengths will be that broad. To make relative path
lengths more realistic, we need to add a data-driven constraint to our list
of targeted PCs. (3) The graph structures (Fig. 6) are intended to repre-
sent plausible paths, not actual measurable lengths. They are not intended
to be scale models of actual sinusoidal arrangements.

Because of the random assignment of edges, a Zone 1 or 2 node
can be connected to itself by a single edge (the loop in graphs 002 and
010 in Fig. 6) that forces some compound to revisit the same region
of functionality many times. We did not eliminate this feature because,
even though it does not seem realistic, we did not have experimental evi-
dence to rule out such path options occurring at a low frequency. Should
the evidence become available (or a convincing argument be offered)
that no such paths exist in livers, a constraint can be added disallowing
them.

The ISL is complicated, and yet we are only dealing with antipyrine
and sucrose. We do not yet address any of the potentially complex intra-
cellular events encountered by some drugs. Is this ISL too complicated?
To achieve the PBPK vision will require a combination of sophisticated
knowledge, skills, and tools. The problems can have complex origins. Com-
plicated problem solving and decision-making skills require complicated
technology (or experienced experts or both). As the overlap between in
silico and referent phenotypes increases, the complexity of ISLs and simi-
lar devices will approach that of their referents.

CONCLUSION

There is increasing impetus for the inclusion of in silico PBPK
modeling in defining compound PK properties and their suitability for
clinical use (36). To achieve these goals it is becoming necessary to pro-
vide increasingly more useful predictions and detailed explanations for
observed PK behaviors and properties. Achieving the required detail is
limited by the abstractive nature and inherent heuristic limitations of cur-
rent inductive PBPK models. The synthetic ISL is an early example of a
class of models specifically intended to help provide the required detail
and deliver improved insights.
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APPENDIX
Table A1. Description of ISL Parameters and Their Values for the Simulations in Figs.
4 and 5

Parametera Description Value(s) Rangec

S/(S+A)b

Device framework parameters
cycleLimit (B)d Provides the simulation with an

artificial stopping criterion so that it
will not run forever.

200 200

monteCarloRuns (I)d The number of runs in a Monte-
Carlo set. Aggregate measures for the
whole system are calculated at the end
of all Monte-Carlo runs.

48 [2, 50]

similarityMeasure Specifies which similarity measure to
use.

global sd global sd

nominalProfile (S)d Specifies which model to use
as the nominal for use in calculat-
ing similarity between the experimen-
tal and nominal models.

experimentalProfile (S) Specifies which model to use as
the experimental for use in calculat-
ing similarity between the experimen-
tal and nominal models.

In silico liver parameters
StepsPerCycle (I) Parametrizes the granularity of

time for the Research model (the ISL).
The data have a “sampling rate” that
provides a default time scale for it.
Finer granularity requires interpola-
tion between the data points. The Ref-
erence (PK) modela is a time-revers-
ible, continuous function, which allows
sampling at any frequency.

2 2

GraphInputFile (S) Specifies the file to read if the
SS graph is to be specified by an
explicit graph (file format is GML).

null

(S) Provides the lobule graphical
specification, and specifies the base
file name (extension.ls) to be used if
the graph is to be specified accord-
ing to the Lobule Specification.
Nodes in Zone I 30 [20, 30]
Nodes in Zone II 20 [10, 30]
Nodes in Zone III 3 [3, 15]

GraphSpecFile
Intra-Zone I edges 20/13 [10, 30]
Intra-Zone II edges 15/9 [5, 25]
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Table A1. Continued

Intra-Zone III edges 0 0
Zone I → Zone II edges 20/25 [2, 45]
Zone I → Zone III edges 0 [1, 20]
Zone II → Zone III edges 10/15 [5, 25]

GraphSpecIterates (I) Tells the framework to modify
LOBULE specification and run a
Monte-Carlo set (consisting of N
runs) for each different LOBULE

specification. Set to 1, it runs 1 set
and provides 1 set of outputs. Set
to 5, the first run uses the current
contents of lobule.ls; it then runs
4 more sets, slightly modifying the
LOBULE specification each time,
resulting in 5 sets.

1 [1, 10]

DirSinRatio (F)d Specifies the percentage of SS
that are type SA (“direct”).

0.90/0.875 [0, 1]

TortSinRatio (F) Specifies the percentage of SS
that are SB (“tortuous”).

0.10/0.125 [0, 1]

DirSinCircMin (I) Sets the upper and lower bounds
for a pseudo-RNG (random number
generator) using the uniform distri-
bution to choose a circumference for
each SS.

50 [1, 50]

DirSinCircMax 50 [1, 100]
TortSinCircMin 4 [1, 4]
TortSinCircMax 4 [1, 20]
DirSinLenAlpha (F) Sets the parameters for a pseudo-

RNG using a modified form of the
Gamma distribution; the modification
consists of a left-right shift of the dis-
tribution, allowing the user to clip off
the front.

2.0 [0.5, 3.0]

DirSinLenBeta 0.215 [0.125, 0.325]
DirSinLenShift 0.0 0.0
TortSinLenAlpha 10.0 [6, 18]
TortSinLenBeta 0.10/0.1125 [0.03, 0.14]
TortSinLenShift −35.0/−32.5 −(40.0, −35.0)
SinusoidTurbo (F) The complement of the amount

of turbulence allowed in any given SS.
Lower turbo means more tendency of
any one COMPOUND to wander sideways
or backwards. Higher Turbo means a
stronger flow from the input to the out-
put of the SS.

0.1/0.2 [0.05, 0.95]
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Table A1. Continued

ECDensity (F) Specifies the relative ENDOTHE-
LIAL CELL density, given that the
number of grid points in Grid B

0.95 [0.25, 1.00]

is set by the geometry parameters of
the SS; it specifies the percentage of
Grid B points that index an endo-
thelial cell.

ECDensity (F) Specifies the relative ENDOTHE-
LIAL CELL density, given that the
number of grid points in Grid B is
set by the geometry parameters of
the SS; it specifies the percentage of
Grid B points that index an endo-
thelial cell.

0.95 [0.25, 1.00]

HepDensity (F) Specifies the relative HEPATO-
CYTES density within Grid C,
given that the number of grid
points in Grid C is set by the
geometry parameters of the SS,
it specifies the percentage of Grid
C points that index a hepato-
cyte.

0.95 [0.15, 0.99]

CoreFlowRate (I) The number of slots solute in the
SS core moves forward during each
step.

3 [1, 5]

S2EJumpProb (F) Specifies the probability that,
when given the option, SUCROSE

will jump from the sinusoid
rim space to the endothelial
space.

0.5/0.35 –

E2SJumpProb (F) Specifies the probability that,
when given the option, SUCROSE

will jump from the endothe-
lial space to the sinusoid rim
space.

0.5 –

E2DJumpProb (F) Specifies the probability that,
when given the option, SUCROSE will
jump from the endothelial space to
the space of dissé.

0.5/0.35 –

D2EJumpProb (F) Specifies the probability that,
when given the option, SUCROSE will
jump from the space of dissé to the
endothelial space.

0.5 –
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Table A1. Continued

BindersPerCellMin (I) Max and min for a uniform
pseudo-random draw for the num-
ber of binding agents inside each
CELL. Simple binders for ECs and
ENZYMES for HEPATOCYTES.

5

BindersPerCellMax 37
MetabolizationProb (F) Probability that an ENZYME

will metabolize a SOLUTE before it
releases it.

0.10 [0, 1]

SoluteBindingProb (F) Probability that, when a binder
and SOLUTE make contact, the SOL-
UTE will be bound.

0.15 [0, 1]

SoluteBindingCycles (I) Number of cycles a binder will
bind a solute.

10

SoluteScale (F) Specifies the number of mole-
cules being represented by one COM-
POUND. Because everything in the
model is normalized, this amounts
to a magnitude factor on the output
fraction.

7.0 [1.0, 8.0]

BolusStartTime (I) Dictates when to let COMPOUNDS

flow into the LOBULE.
5 [4, 7]

DosageParame (F) Parameter (A) of the
dosage function: D(t) =
A[BC t(C−1)e(−Bt)]/(C − 1)!, where
t = current cycle; parameter (A)
simply raises the amplitude of the
function.

2000 [1000, 7000]

DosageParamB (F) Parameter (B) of the dosage
function.

1 [1, 2]

DosageParamC (F) Parameter (C) of the dosage
function.

2 [2, 3]

Actual dose for Fig. 4. 3,682

aThere are four classes of parameters: device framework, research model, reference model, and
data model. Here, the research model is the ISL. Only a subset of the device framework param-
eters is listed here. The data model includes all the data against which the SM is being applied,
and uses a parameter that specifies whether to interpolate between observations of the in silico
data. The reference model is a traditional PK model previously fit to the in silico experimental
data; it is run concurrently with the research model.
bS: parameter values when only SUCROSE was dosed; (S + A) parameter values when SUCROSE

and ANTIPYRINE were dosed in combination.
cRanges from which values were drawn during searches of model and parameter space.
d B: Boolean; F: floating; I: integer; S: string.
eThe total dose is the area under the dosage function curve.
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Table A2. A comparison of parameters values for the sucrose outflow
profiles in Figs. 4 and 5A

Parameter Fig. 4 value(s) Fig. 5A value(s)

Nodes in Zone II 20 15
Nodes in Zone III 3 2
Intra-Zone edge: I 20 15
Intra-Zone edge: II 15 7
Intra-Zone edge: III 0 0
Edges

Zone I → II 20 15
Zone I → III 0 0
Zone II → III 10 2

DirSinRatio 0.90 0.80
TortSinRatio 0.10 0.20
TortSinLenBeta 0.10 0.105
TortSinLenShift −35.0 −40.0
SinusoidTurbo 0.1 0.3
ECDensity 0.95 0.8
HepDensity 0.95 0.4
S2EJumpProb 0.5 0.3
E2SJumpProb 0.5 0.3
E2DJumpProb 0.5 0.3
D2EJumpProb 0.5 0.3
BolusStartTime 5 4

aThe parameters are the same as in Table A1. Only the parameters that
are different between Figs. 4 and 5 are listed. All other parameter values
are as listed in Table A1.
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SUPPLEMENTARY MATERIAL

Visualizations of compounds moving within a SS and an entire
LOBULE are available at [http://dx.doi.org/10.1007/s10928-006-9031-3]. The
supplementary material includes additional detail on the following eight
topics: (1) the inductive and synthetic methods; (2) contrasting inductive
and synthetic models; (3) comparison of inductive and synthetic models;
(4) validation of synthetic models; (5) in silico framework: technical detail;
(6) in silico experimental method; (7) building an acceptable in silico liver
model; and (8) higher and lower levels of resolution.
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