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Modelling is an important applied tool in drug discovery and development for the predic-
tion and interpretation of drug pharmacokinetics. Preclinical information is used to decide
whether a compound will be taken forwards and its pharmacokinetics investigated in human.
After proceeding to human little to no use is made of these often very rich data. We sug-
gest a method where the preclinical data are integrated into a whole body physiologically
based pharmacokinetic (WBPBPK) model and this model is then used for estimating popu-
lation PK parameters in human. This approach offers a continuous flow of information from
preclinical to clinical studies without the need for different models or model reduction. Addi-
tionally, predictions are based upon single parameter values, but making realistic predictions
involves incorporating the various sources of variability and uncertainty. Currently, WBPBPK
modelling is undertaken as a two-stage process: (i) estimation (optimisation) of drug-depen-
dent parameters by either least squares regression or maximum likelihood and (ii) accounting
for the existing parameter variability and uncertainty by stochastic simulation. To address
these issues a general Bayesian approach using WinBUGS for estimation of drug-dependent
parameters in WBPBPK models is described. Initially applied to data in rat, this approach is
further adopted for extrapolation to human, which allows retention of some parameters and
updating others with the available human data. While the issues surrounding the incorporation
of uncertainty and variability within prediction have been explored within WBPBPK model-
ing methodology they have equal application to other areas of pharmacokinetics, as well as
to pharmacodynamics.
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GLOSSARY

WBPBPK Whole body physiologically based pharmacokinetic model,
model

MCMC Monte Carlo Markov Chain,
MVNp p-dimensional multivariate normal distribution,
IG inverse gamma distribution,
IW inverse Wishart distribution,
K p tissue-to-plasma partition coefficient,
K pb tissue-to-blood partition coefficient,
R blood-to-plasma partition coefficient,
f u fraction of drug unbound in plasma,
f ub fraction of drug unbound in blood,
CLINT hepatic intrinsic clearance,
p (A |B ) conditional probability distribution of A given B,
ykij either concentrations or log-concentrations depending on

whether, normality or log-normality is the more appropriate
assumption of the data,

fk (·) structural model,
Zi p × q covariate-effect design matrix for individual i ,
µ vector of q fixed effects parameters,
�(p × p) inter-individual variance-covariance matrix,
σ 2

k residual error variance for the kth response,
trace plot line connecting successive samples plotted against iteration

number; useful graphics for investigating convergence,
(Kernel) a refinement of a histogram or frequency plot. The variable

density is plotted on the x-axis and the frequency is plotted on the
plot y-axis. Kernel density plot is computed based on the Fast

Fourier Transform (FFT) algorithm as suggested by
Silverman, Applied Statistics, Royal Statistical Society, 33
(1982).

LI liver,
KI kidney,
BR brain,
SPL intestine,
ST stomach,
MU muscle from the hind limb,
AD adipose,
SK skin after removal of hair,
TE testes,
HT heart,
LU lungs,
ART arterial blood pool,
VEN mixed venous blood pool.
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INTRODUCTION

Whole body physiologically based (WBPBPK) models predict drug
kinetics using knowledge about an organism’s anatomy and physiology,
aided by drug specific data. Compared, for example, to empirical modelling,
which uses a sum of exponentials, which is purely descriptive of the observed
behaviour of the compound, WBPBPK modelling provides a mechanistic
and more realistic description of the behaviour of the drug in various tis-
sues and blood. It allows the prediction of the pharmacokinetic behaviour of
a compound only from its descriptors, such as lipophilicity, molecular size
and shape. Although not currently realizable, such information combined
with a generic WBPBPK model may enable a reasonable initial prediction
of the likely behaviour in vivo in some tissues, especially those involving
passive diffusion processes. These in silico computations may be combined
with in vitro data, such as plasma protein binding, microsomal or hepato-
cyte intrinsic clearance and cell membrane permeability, which would allow
for the inclusion of active processes involved in metabolism and membrane
transport. Corroboration and further refinement of this generic physiolog-
ical model can only be performed in animals, although the main objective
is to predict likely human pharmacokinetics. Traditionally, the allometric
approach, which assumes that species differences are driven by body size
alone, has been the method used for inter-species scaling. However, this
approach is limited as it does not account for species differences in active
processes. WBPBPK modelling offers an alternative method for inter-species
scaling to help decide on the first dose in human. Human studies are ini-
tially conducted in healthy subjects. Body weight and composition, hepatic
and renal functions vary among patients. Patients also differ in the severity
of the disease, consumption of other drugs, etc. WBPBPK modelling offers
an improvement upon conventional approaches by providing a mechanistic
framework for exploring the impact of these components and their variabil-
ity on the pharmacokinetic profile in any tissue.

The current approach to WBPBPK modelling, termed naı̈ve pooled
data analysis, as the name suggests, pools animal tissue data (data usually
comes from a small number of animals per time point), implicitly assum-
ing the data come from a single animal, which is clearly erroneous. The
main difficulty in estimation with WBPBPK models is the large number
of parameters, often comparable to the number of observations in a typi-
cal PK experiment. It is desirable to estimate the distribution of individual
characteristics and the associated population quantities. Ideally, we would
also like to determine how these quantities vary as functions of individual
characteristics, such as sex, age and body mass. The goal is then to esti-
mate the distribution of population characteristics rather than a single set
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of parameters representing the “average subject”. Yet the majority of the
reported studies in the literature use WBPBPK models to make single sub-
ject predictions by assuming only a structural model (1–3). Another issue
is that physiologically based pharmacokinetics is currently a two-stage pro-
cess where first the drug-dependent parameters (tissue-to-plasma concen-
tration ratios, clearances, fraction unbound in plasma, blood-to-plasma
ratio) are estimated, followed by acknowledging the variability in those
parameters by performing stochastic simulations. Due to the difficulty of
parameter estimation, it is also common practice to reduce the number of
parameters to be estimated in a pharmacokinetic model. This is done by
either fixing all but a few parameters to assumed values or by setting up
a model with very few parameters, such as a one- or two-compartment
model. The first approach has the serious problem of producing inaccurate
estimates and underestimating uncertainty when the parameters to be fixed
are not known accurately (4). The second approach has been used success-
fully (5) but has the limitation of not allowing realistic multi-compartment
models to be fit. Recent developments in statistics and specifically Bayes-
ian analysis using Monte Carlo Markov Chains (MCMC), have made pos-
sible parameter estimation of physiological models with formal inclusion
of prior knowledge.

Whole body physiologically based models are occasionally used for
inter-species extrapolation. However, while highly informative the current
practice after having proceeded to Phase I human studies (healthy vol-
unteers) is to abandon much of the preclinical data, including the model
itself. This is because human data are invariably limited to plasma, blood
and urine. Phase I and later phases often involve fitting compartment
models to interpret data, which although having the potential to be some-
what more mechanistic than empirical models (e.g., sum of exponentials)
are still not fully mechanistic. Due to the large number of parameters in
WBPBPK models and the inability of parameter estimation in a frequen-
tist framework, these models are not used for studying human pharma-
cokinetics. There arises the question as to whether to retain, collapse or
abandon the animal WBPBPK model. Although this poses a very impor-
tant problem with significant consequences, it has not been fully investi-
gated. Previously, we proposed a methodology based on global sensitivity
analysis for formally collapsing the structural WBPBPK model (6). Here,
we explore retaining the full mechanistic animal physiological model for
predicting human drug disposition using a population Bayesian approach.
This approach allows retention of the mechanistic WBPBPK model with
updating some PK parameters using the available human data.

Bayesian analysis is a method that produces statistical distributions
(called ‘posterior distributions’) of the parameter values rather than single
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point estimates. These posterior distributions are consistent with both the
experimental data and the prior assumptions. The posterior distributions
can be approximated by random draws using MCMC simulations. If a
population model (7) is used, the Bayesian approach yields posterior dis-
tributions not only for the parameters of each subject but also for the
population. This approach has been applied successfully to classical PK
compartment models (5, 8) and more recently proposed in a WBPBPK
context for toxicological experiments with repeated measurements with
human data (e.g., 9–11).

The current work is focused on WBPBPK modelling of animal
data and its subsequent extrapolation to predict human pharmacokinet-
ics, which were addressed by using a population approach in a Bayesian
framework. We illustrate the application to the pharmacokinetics of diaz-
epam in rats and human, the problem that motivated this work.

METHODOLOGICAL CONSIDERATIONS

General Concepts in Bayesian Population WBPBPK Models

Hierarchical Models

Here, we describe a typical Bayesian population WBPBPK model.
Our notation is generally based for consistency on that used by (12),
where the concepts for Bayesian analysis for population PK/PD models
are developed. Our work is an extension of their approach to WBPBPK
models. Suppose, we have a number (ni ) of PK measurements for M
responses made on each of L individuals, who are indexed by j . Denote
the jth measurement of the kth response for individual i by yki j and the
associated time by tki j . Further, denote the p-dimensional vector of PK
parameters for individual i by θi and the residual error variance for the
kth response by σ 2

k . At the first of the three stages in our hierarchical
model, we typically assume

p
(

yki j

∣∣∣θi , σ
2
k

)
∝ N

(
fk

(
θi ; tki j ; Di

)
, σ 2

k

)
,

i = 1, . . . , L , j = 1, . . . , ni , k = 1, . . . , M,

where throughout, p (A |B ) denotes the conditional probability distribu-
tion of A given B. Here the yki j are either concentrations or log-con-
centrations depending on whether normality or log-normality is the more
appropriate assumption of the data. The structural model fk (·), which is
a function of individual specific parameters θi , time tki j and the ith indi-
vidual dosing history Di , is defined on the same scale.
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At the second stage of the model, we make distributional assumptions
regarding the individual-specific PK parameter vectors θi :

p (θi |µ,�) = MVNp (Zi , µ,�) , i = 1, . . . , L ,

where MVNp (·, ·) denotes a p-dimensional multivariate normal distribu-
tion, Zi is a p × q covariate-effect design matrix for individual i , µ is a
vector of q fixed effects parameters and �(p × p) is the inter-individual
variance–covariance matrix.

The third stage of the hierarchical model comprises the prior specifi-
cation, in which prior distributions are assigned to σ 2, µ and �:

p
(
σ 2

)
= IG (a, b) , p (µ) = MVNp (η, H) , p (�) = IW (R, ρ) ,

where IG (·, ·) and IW (·, ·) denote inverse-gamma and inverse-Wishart dis-
tributions, respectively. The values of a, b, η, H, R, ρ, also called hyperpa-
rameters, must be stated explicitly.

A schematic representation of a general population WBPBPK model
in Bayesian framework is given in Fig. 1.

Fig. 1. Schematic representation of a population WBPBPK model (see text for definitions).
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Priors

Traditionally, the distributional form of the priors has been cho-
sen for mathematical convenience so that closed form posteriors may be
derived analytically. For instance, an inverse-gamma prior, which is the
conjugate prior for the normal variance, is typically specified for σ 2

k . Now-
adays with the availability of several reliable methods for sampling from
non-standard distributions the choice of priors is no longer restricted. In
our studies non-informative priors for the intra-individual variance σ 2

k and
informative and vague priors for � have been used.

Convergence

Two issues arise when considering convergence: (i) is the chain sta-
tionary, i.e., at what point does the chain forget where it started and (ii)
how many samples must be generated to make accurate predictions. A
number of formal techniques exist for addressing these issues and many
of them have been implemented in the CODA software package (13). It is
informative to inspect the “trace” plot, where a line connecting successive
samples is plotted against iteration number.

Software

WinBUGS is a general software package for performing Bayesian
inference. However, until recently it could not handle WBPBPK models
as it lacked a routine for simultaneous solution of ordinary differential
equations. Recently, such a routine, in particular a Runge–Kutta fourth
order procedure, was added to WinBUGS. Alternatively, another software
package specifically written for Bayesian inference for WBPBPK models is
MCSim, authored by Gelman et al. could be used (9). We choose Win-
BUGS, which as general software for Bayesian inference offers greater flex-
ibility and reliability.

Diazepam WBPBPK Model in the Rat

The parameters of any WBPBPK model can be classified as drug-
dependent (tissue-to-plasma partition coefficients Kps, fraction unbound
in plasma fu, blood-to-plasma ratio R, intrinsic clearances CLINT, etc.)
and drug-independent (blood flows, tissue volumes, etc.). The experimental
data together with the WBPBPK structural model are described in detail
in (14). Here only a brief description is provided and the system of ordi-
nary differential equations describing tissue disposition is given in Appen-
dix. Tissue and arterial blood concentration-time profiles following an
intravenous infusion over 5 min, were collected following administration of
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1 mg/kg diazepam to each of 24 male Sprague-Dawley rats. Four of these
animals were then sacrificed at each of the following times 7, 10, 20, 35,
95 and 245 min from the start of the infusion when various tissues were
dissected out for analysis. These tissues were liver (LI), kidney (KI), brain
(BR), intestine (SPL), stomach (ST), muscle from the hind limb (MU),
adipose (AD), skin after removal of hair (SK), testes (TE), heart (HT)
and lungs (LU). Plasma samples were taken from the carotid artery at
those same times, as well as at 2 and 5 min into the infusion, and plasma
obtained by centrifugation. Drug was administered by constant-rate infu-
sion into the jugular vein (mixed venous compartment). The hepatic com-
partment receives drug input directly from the hepatic artery as well as
from the splanchnic organs via the hepatic portal vein. The lungs close the
circulation loop and receive blood at a flow rate equal to the cardiac out-
put. Elimination is assumed to occur entirely from the liver compartment,
as extrahepatic metabolism and renal excretion of diazepam are minor.
The whole body PBPK model for diazepam (Fig. 2) comprises 12 tissue
compartments and two blood compartments (ART—arterial and VEN—
mixed venous). Each tissue is assumed to have perfusion-rate limited dis-
tribution and be represented by a single, well-stirred compartment, with
the extent of drug distribution being characterized by the equilibrium tis-
sue-to-venous blood concentration ratio, Kpb (Kpb = K p × R).

Organ and tissue volumes as well as blood flows for a 250 g standard
weight rat (SWR) are given in Table I. Tissue weights were taken from the
literature (15). Blood flows, assumed unaffected by drug administration,

Fig. 2. Diazepam WBPBPK model. See text for definition of symbols.
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Table I. Physiological Parameter Values for Rat (15, 16) and Human (17)

Rat Human

Compartment Blood flow (mL/min) Weight (g) Blood flow (L/h) Weight (kg)

Whole Bodya 80 250 360 70.0
VEN 80 13.6 360 3.9
ART 80 6.8 360 1.7
LU 80 1.2 360 0.47
LIb 3.55 11 23.4 1.8
KI 16.61 2 68.4 0.31
ST 1.9 1.1 3.60 0.15
GI 20.25 15 50.4 1.01
MU 16.25 125 61.2 30
AD 2.55 10 18.0 12.5
SK 7.1 43.8 18.0 2.6
BR 0.78 1.2 43.2 1.4
HT 4.2 1 14.4 0.33
TE 1.9 2.5 3.6 0.035
Rest of body 4.91 15.8 55.8 16.8

a Cardiac output and total body weight.
b Autonomous liver flow via the hepatic artery. Total liver flow is the sum of the flows to liver,
stomach and intestine.

were reported for 300g rats (16). We calculated the fraction of different
blood flows to the cardiac output for 300 g rats and used the same frac-
tion to compute the blood flows for 250 g rats. The fraction unbound in
plasma ( fu) was experimentally determined to be 0.15 and the blood-to-
plasma concentration ratio (R) was assumed to be 1 (14).

In our study the drug-dependent parameters (Kps and CLINT) were
estimated by either pooling the data across different animals or recogn-
ising that the data comes from a population. Although the main aim of
our study was the second one the first approach was undertaken to inves-
tigate the effect of assuming different priors on the posterior estimates as
well as to provide a comparison with previous estimation using non-linear
weighted least squares regression (14). In our study the number of animals
was 24, the number of responses 12 (11 tissues and plasma) and we had
between 3 and 6 measurements in plasma with one tissue concentration
measured per rat per time point. Using the naı̈ve pooled data approach
the following model was assumed y = f (x, θ) + ε, where the residual
error is one and the same for all tissues. The prior Kpb were either exper-
imentally measured (15) or calculated by an in silico method proposed by
Poulin and Thiel (18). Unfortunately, measures of Kpb variances were not
provided by either of these publications. These being the case, different
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coefficients of variation were assumed for each Kpb, ranging from 10 to
90%.

The following population diazepam WBPBPK models were fitted to
the diazepam data.

yki j = fk
(
xi j , θi

) + εi j εi j ∼ N
(

0, σ 2
)

, (1)

yki j = fk
(
xi j , θi

) + εki j εki j ∼ N
(

0, σ 2
k

)
. (2)

Multiplicative error models were also investigated. Random effects were
also added to estimate inter-animal variability, namely

yki j = fk
(
xi j , θ + bi

) + εi j εi j ∼ N
(

0, σ 2
)

× bi ∼ N (0, Di ) , Di ∼ (µ,�) , (3)

yki j = fk
(
xi j , θ + bi

) + εki j εki j ∼ N
(

0, σ 2
k

)

× bi ∼ N (0, Di ) , Di ∼ (µ,�) . (4)

Multiplicative error models, by applying a log transformation to the data
and the predictions, were also investigated. In each of these models the
priors of the fixed effects parameters had as mean the value given by the
experimental values (15), with an assumed CV of 20%. Non-informative
priors were assumed for both the residual variances (IG(0.01, 0.01)) and
the random effects IW(0.01, 0.01). Consequently, to stabilise the estima-
tion process informative priors were used for the random effects. Priors for
�CLINT , which finally was our only random effect, were non-informative
and specifically IW(0.5, 0.1).

Convergence following 4000 iterations with the first 2000 samples dis-
carded was checked by visual inspection of the traces of the fixed effects
and residual variance, as well as by the diagnostic checks in CODA.

Diazepam WBPBPK Model in Human

Eleven healthy volunteers, who have been described in a previous
report (19) were included in the analysis. Briefly, single doses of 7 mg
intravenous dose of diazepam were given to all subjects. Plasma samples
were collected at 5, 15, 30, 45, 60 min and at 1, 1.5, 2, 3, 4, 6, 8, 10, 24,
30, 36, 48 and 72 hr.
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The following model was used for fitting the human data

yki j = fk
(
xi j , θ + bi

) + εi j εi j ∼ N
(

0, σ 2
)

bi ∼ N (0, Di ) , (5)

Di ∼ (µ,�) ,

where CLINT had an inter-individual variance component and Kpb were
fixed effects. Multiplicative error models, by applying a log transformation
to the data and the predictions, were also investigated. As the MCMC
simulations proved to be quite time consuming initially only 1000 itera-
tions with the first 500 samples discarded with an informative CLINT prior
were performed. Subsequently convergence following 4000 iterations with
the first 2000 samples discarded and 8000 iterations with the first 4000
samples discarded for the informative and non-informative CLINT priors,
respectively were checked by visual inspection of the parameters traces as
well as by diagnostic checks in CODA.

RESULTS

Diazepam WBPBPK Model in Rat

The mean values of the two different sets of priors used in the naı̈ve
pooled data approach are plotted in Fig 3. CVs of 10, 20, 40, 70 and 90%
were assumed to investigate their impact on the posterior Kpb estimates.
The mean values of Kpb posterior estimates with the extreme CVs of 10
and 90% are plotted in Fig. 3b together with mean estimates coming from
a previously published nonlinear weighted least squares regression (14).
The corresponding numerical values are listed in Table II. Convergence
was checked by examining trace plots (not shown) and it was accepted
that stationarity of the chain was achieved after 4000 iterations. The pos-
terior Kpb estimates, after recognising that the data come from a pop-
ulation and assuming different residual variances in the different tissues
(model from Eq. 2), are listed in Table III. Convergence was checked by
the Raftery and Lewis criterion, trace plots inspection as well as Heidel-
berger and Welch stationarity and interval halfwidth tests (13). It appeared
that stationarity of the chain was achieved. Attempts were made to add
random effects to estimate the inter-individual variance in Kpb using a
multiplicative model as given in Eq. 4. Initially, vague priors were assigned
to bi but this resulted in difficulties in running the MCMC estimation. It
was found that the posterior estimates of the random effects were heavily
dependent on the priors, which resulted in abandoning this more complex
model (Eq. 4) in favour of the fixed effects model with different residual
variances for the tissues (Eq. 2).
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Fig. 3. (a) Rat prior mean Kpb values from in silico calculations (white), reported by Pou-
lin and Thiel (18) and experimental measurements (black) from (15), (b) Comparison of the
rat posterior mean Kpb estimates using priors derived from in silico calculations (shaded)
reported by Poulin and Thiel (18), experimental values with either 10% CV (black) or 90%
CV (white), measured in (15), as well as those estimated using nonlinear weighted least
squares regression (dark grey), reported by Gueorguieva (14).

Using the full Bayesian approach, intrinsic clearance (CLINT) was
estimated simultaneously with the tissue-to-blood concentration ratios
(Kpb). The priors for the Kpb were based again on those reported by
(15) with an assumed 20% CV. Two scenarios were investigated, with non-
informative and with informative priors for the CLINT. The informative
CLINT prior was based on the estimate of total clearance from fitting the
plasma data only in NONMEM, assigning all the clearance to hepatic
metabolism and then calculating CLINT assuming that the liver acts as
a well-stirred compartment. Convergence was checked after 6000 itera-
tions by examining the trace plots (Fig. 4), which show that stationarity
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Table II. Naı̈ve Pooled Data Approach: Rat Tissue-plasma Concentration Ratio Estimates

Weighted nonlinear
Priors Posteriors LS regression

Tissue Igari et al. Mean (sd) In silico
Kps Igari et al. In silicoa 10% CV 90% CV mean (sd) Mean (SE)

LU 3.3 5.8 4.2 (0.4) 4.3 (0.4) 4.4 (0.4) 4.9 (0.6)
ST 2b 7c 3.3 (0.2) 3.3 (0.2) 3.4 (0.2) 3.7 (0.4)
SPL 1.8 7.3 3.2 (0.2) 3.3 (0.2) 3.3 (0.2) 5.2 (0.6)
KD 2.3 4.5 4.5 (0.2) 4.6 (0.2) 4.4 (0.2) 5.3 (0.6)
MU 1.4 2.9 2.4 (0.6) 2.6 (0.6) 2.7 (0.6) 1.9 (0.2)
AD 12.9 48.6 14.3 (1.0) 15.0 (1.0) 15.7 (0.9) 21.2 (3.2)
SK 3.4 6.4 2.4 (0.8) 2.4 (0.7) 2.5 (0.7) 3.3 (0.4)
HT 2.2 3.9 5.4 (0.2) 5.5 (0.2) 5.6 (0.2) 1.7 (0.2)
BR 1.0 9.4 1.9 (0.4) 1.9 (0.4) 2.0 (0.4) 5.6 (0.6)
TE 3b 8c 5.0 (0.2) 5.2 (0.3) 5.3 (0.2) 5.2 (0.6)
LI 4.5 5.1 9.1 (0.3) 9.2 (0.4) 9.4 (0.4) 7.8 (0.9)
RE 4d 8d 3.2 (1.4) 3.2 (1.7) 4.1 (1.8) 18.2 (4.0)
σ 2 –e –e 365.2 (33) 365.2 (33) 365.2 (33) –

a CV 20% assumed.
b not reported in (15).
c could not be estimated from (18) due to lack of tissue composition data.
d value assumed based on preliminary simulations.
e non-informative prior gamma (0.001, 0.001).

Table III. Rat Posterior Population Kpbs Mean (sd) and
Residual Variance Mean (sd) Estimates

Tissue Kpb mean (sd) Residual variance mean (sd)

LU 4.6 (0.3) 0.3 (0.1)
ST 4.9 (0.5) 0.5 (0.1)
SPL 3.4 (0.5) 0.8 (0.1)
KD 4.8 (0.3) 0.3 (0.1)
MU 3.7 (0.3) 0.5 (0.1)
AD 21.7 (2.9) 0.5 (0.1)
SK 2.9 (0.3) 0.5 (0.1)
HT 5.6 (0.6) 0.6 (0.1)
BR 2.1 (0.2) 0.7 (0.1)
TE 4.9 (0.3) 0.3 (0.0)
LI 8.8 (1.0) 0.6 (0.1)
ART – 0.7 (0.1)

of the chain was achieved. The resulting posterior estimates are listed in
Table IV and representative population fits to diazepam data are given in
Fig. 5.
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Fig. 5. 2.5 and 97.5% concentration-time profiles for diazepam disposition in tissues in rats
(solid lines) and data (circles), using the full Bayesian approach.
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Table IV. Rat Posterior Mean (sd) for K pbs and CLINT, Inter-individual CLINT Variance
and Residual Variance Estimates with Informative and Non-informative Priors for CLINT

Non-informative case Informative case
posteriors mean (SD) posteriors mean (SD)

Tissue K pb Residual variance σ 2b Tissue K pb Residual variance σ 2b

LU 4.5 (0.4) 0.3 (0.0) 4.6 (0.4) 0.3 (0.0)
ST 4.8 (0.5) 0.5 (0.1) 4.9 (0.5) 0.5 (0.1)
SPL 3.4 (0.5) 0.7 (0.1) 3.4 (0.5) 0.7 (0.1)
KD 4.7 (0.4) 0.3 (0.0) 4.7 (0.4) 0.3 (0.0)
MU 3.7 (0.3) 0.5 (0.1) 3.7 (0.3) 0.5 (0.1)
AD 21.0 (2.9) 0.5 (0.1) 21.0 (2.9) 0.5 (0.1)
SK 2.9 (0.3) 0.4 (0.1) 2.9 (0.3) 0.4 (0.1)
HT 5.4 (0.6) 0.6 (0.1) 5.4 (0.6) 0.6 (0.1)
BR 2.0 (0.2) 0.6 (0.1) 2.0 (0.2) 0.6 (0.1)
TE 4.8 (0.3) 0.3 (0.0) 4.9 (0.3) 0.3 (0.0)
LI 8.6 (1.7) 0.5 (0.1) 8.9 (1.7) 0.4 (0.1)
PLASMA – 0.7 (0.1) – 0.7 (0.1)
CLINT 397.5 (86.1) – 412.2 (85.8) –
�a

CLINT
0.5 (0.1) – 0.5 (0.1) –

a non-informative priors gamma (1, 0.01).
b non-informative priors gamma (0.1, 0.1).

Diazepam Human Population WBPBPK Model

The full diazepam WBPBPK model structure for rats (Fig. 1) was
retained when analysing the human data. Human plasma data in 11
healthy volunteers following iv bolus dosing were available from (19, indi-
vidual data, personal communication). The fraction unbound f u in man
was reported to be 0.015 and the blood-to-plasma ratio R 0.65 (19).
Similarly to other researchers we assumed that human KpU B values are
identical with rat KpU B (15). Rat KpU B values were calculated from the
previously estimated rat Kp by K pU B = K pb/ f u. These KpU B values were
used as informative priors for making inferences in man. Bayesian infer-
ences were carried out with both informative and non-informative priors
for CLINT. The mean values for the CLINT prior were based on a NON-
MEM fit of the plasma data, whereas the variance for the informative
case was that obtained from NONMEM and for the non-informative sce-
nario a CV of 70% was assigned. The prior and resulting posterior mean
and standard deviation estimates for tissue Kpbs and CLINT, together
with CLINT inter- and intra-individual variance with informative priors
for CLINT and KpBs obtained after 1000 and 4000 iterations, are listed
in Table V. Prior and resulting posterior estimates with a non-informative
prior for CLINT and informative priors for KpBs are given in Table VI.
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Table V. Human Prior and Posterior Mean and Standard Deviation Estimates for K pbs and
CLINT Together with the Inter- and intra- individual Variance for CLINT with Informative
priors following 1000, 4000 and 8000 Iterations

Tissue Priors 1000 Iterations 4000 Iterations 8000 Iterations

K pb Mean (SD) Posterior Mean (SD) Posterior Mean (SD) Posterior Mean (SD)

LU 0.7 (0.1) 0.7 (0.1) 0.7 (0.1) 0.7 (0.2)
ST 0.7 (0.1) 0.7 (0.2) 0.7 (0.2) 0.7 (0.2)
SPL 0.5 (0.1) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1)
KD 0.7 (0.0) 0.7 (0.2) 0.7 (0.2) 0.7 (0.2)
MU 0.5 (0.1) 0.3 (0.1) 0.2 (0.0) 0.2 (0.0)
AD 3.3 (0.4) 6.6 (1.8) 5.3 (1.8) 3.4 (0.3)
SK 0.5 (0.1) 0.4 (0.1) 0.4 (0.1) 0.4 (0.1)
HT 0.8 (0.1) 0.8 (0.3) 0.8 (0.2) 0.8 (0.2)
BR 0.3 (0.0) 0.3 (0.1) 0.3 (0.1) 0.3 (0.1)
TE 0.8 (0.1) 0.8 (0.1) 0.8 (0.2) 0.8 (0.2)
LI 1.4 (0.2) 0.8 (0.3) 0.8 (0.3) 0.7 (0.2)
CLINT 70.8 (20) 23.1 (18.7) 41.9 (24.7) 74.8 (5.3)
�CLINT – a 0.15 (0.0) 0.15 (0.0) 0.16 (0.4)
σ 2 – b 0.7 (0.1) 0.6 (0.1) 0.5 (0.03)

a non-informative priors gamma (5, 0.01).
b non-informative priors gamma (0.01, 0.01).

Convergence was checked in all scenarios by examining the trace plots
and the different diagnostic criteria in CODA. Trace plots after 1000 and
4000 iterations with informative priors for CLINT and representative KpB

are shown in Fig. 6a, b, respectively. Convergence was achieved for K ps ,
which was confirmed by Raftery and Lewis criterion and Heidelberger and
Welch stationarity test. However this was not the case for CLINT where
after 4000 iterations a ‘snake-like’ appearance of its traces, indicative of
nonconvergence is apparent. The trace plots for CLINT after 8000 itera-
tions with informative and non-informative priors are shown in Fig. 7a.
Additionally representative trace plots after 8000 iterations for K ps are
shown in Fig. 7b. It seems that convergence was achieved for all estimates
in the two scenarios, which was also confirmed by Raftery and Lewis cri-
terion and Heidelberger and Welch stationarity test. Human population
plasma and brain predictions with informative and non-informative priors
(superimposed) after 8000 iterations are shown in Fig. 8.

DISCUSSION

Our study illustrates the use of Bayesian statistics to estimate ani-
mal and population PK parameters though physiological modeling. The
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Table VI. Human Prior and Posterior Mean and Standard Deviation Estimates for K pbs
and CLINT Together with Inter and intra individual Variance for CLINT with Non-informa-
tive priors after 1000 and 8000 Iterations

1000 Iterations 8000 Iterations

Tissue Kpb Priors Mean (SD) Posterior Mean (SD) Posterior Mean (SD)

LU 0.7 (0.1) 0.7 (0.2) 0.7 (0.2)
ST 0.7 (0.1) 0.7 (0.2) 0.7 (0.2)
SPL 0.5 (0.1) 0.5 (0.1) 0.5 (0.1)
KD 0.7 (0.0) 0.7 (0.2) 0.7 (0.2)
MU 0.5 (0.1) 0.2 (0.0) 0.2 (0.0)
AD 3.3 (0.4) 3.4 (0.3) 3.4 (0.3)
SK 0.5 (0.1) 0.4 (0.1) 0.4 (0.1)
HT 0.8 (0.1) 0.8 (0.2) 0.8 (0.2)
BR 0.3 (0.0) 0.3 (0.1) 0.3 (0.1)
TE 0.8 (0.1) 0.8 (0.2) 0.8 (0.2)
LI 1.4 (0.2) 0.8 (0.3) 0.7 (0.2)
CLINT 70.8 (63.7) 75.7 (5.9) 75.0 (5.5)
�CLINT –a 0.16 (0.0) 0.16 (0.0)
σ 2 –b 0.5 (0.0) 0.5 (0.03)

a non-informative priors gamma (5, 0.01).
b non-informative priors gamma (0.01, 0.01).

method is very general and, we propose that it could be applied for
integrating preclinical, human healthy volunteer and patient data into
a WBPBPK model, which would allow continuous flow of information
through the different stages of drug discovery and development. In this
section, we discuss the methodological aspects of the study and address
the results obtained and their importance.

Diazepam WBPBPK Model in Rat

A previously developed model for diazepam disposition (14) was used
in a population Bayesian framework. The population WBPBPK model
was fitted to the data and provided a good overall description of the con-
centrations in plasma and tissues. Although, we were not able to estimate
inter- and intra-individual variability of the tissue-to-blood ratios Kpbs ,
possibly due to either the data quality or the destructive nature of the
experiments, we obtain estimates of inter- and intra-individual variability
of intrinsic clearance as well as of the residual variance of each tissue.
In our study the physiological parameters, blood flows and volumes, were
held fixed to their mean values. Alternatively, we could have assigned prior
distribution to them, as well as to the fraction unbound in plasma and
blood-to-plasma ratios but, we believe that with the available data their
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Fig. 6. Trace plots of, (a) human CLINT with informative prior after 1000 and 4000
iterations and (b) Kps (KD, MU, AD, SK) after 4000 iterations in human.

estimation would not have been possible. The resulting mean and stan-
dard deviations estimates from the naı̈ve pooled data approach with the
two different sets of priors were almost identical, which indicated that the
posterior in these cases was led by the likelihood rather than prior knowl-
edge. That is also the reason why the mean estimates from the Bayesian
naı̈ve pooled data analysis were similar to those obtained from a previ-
ously reported nonlinear weighted least squares regression (14). The most
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Fig. 7. Trace plots of (a) CLINT with informative and non-informative prior after 8000
iterations and (b) representative Kps (KD, MU, AD and LI) after 8000 iterations in human.

pronounced differences in the mean estimates were observed for adipose
and rest of the body Kps . Possibly any difference between the estima-
tion techniques are reflected in these two estimates because adipose is the
most slowly equilibrating tissue and RE accounts for the mass balance
considerations, hence these two organs are most sensitive to any discrep-
ancies between the estimation methods. However, as expected, the stan-
dard deviations for the Kps from the Bayesian analysis were smaller than
the corresponding standard errors from the nonlinear regression analysis.
Using population modelling with a different residual variance for each
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Fig. 8. Median human population plasma, (a) and brain, (b) predictions with informative
(8000 iterations; dotted line) and non-informative (8000 iterations; solid line) priors. The two
predictions with the informative and non-informative priors are superimposed.

tissue (Eq. 2) improved the estimate of the residual variability compared
to when it was assumed to be one and the same for all tissues (Eq. 1).
Initially, we assumed non-informative priors for �Kps

(Eq. 4) which led to
the inability to run the estimation. We then made the priors more infor-
mative, which resulted in posterior estimates that were very similar to the
priors, indicating that there was minimal information about the covariance
in the data. As, we did not have any confidence in these prior values we
chose the model structure given Eq. 2, with multiplicative error as our
final rat WBPBPK model. It is possible that the mixed effects WBPBPK
model was not identifiable, which could explain our inability to estimate
inter-subject variability. However, we have not performed formal identifi-
ability analysis and this issue requires future investigation.

Diazepam Human Population WBPBPK Model

Fitting the full WBPBPK to the human plasma data using Bayesian
analysis proved to be a time consuming process (app 20 days for 8000 iter-
ations). This was mainly due to the fact that as only plasma data was
available, all the tissue data was treated as censored data, which led to
a great number of iterations to calculate posterior estimates. The poster-
ior estimates of the tissue-to-blood partition coefficients after 8000 itera-
tions in all cases were almost identical to the priors. This was expected as
there was no human tissue data to facilitate the estimation process. After
4000 iterations there were however two exceptions, namely adipose and
liver KpBs . The difference in liver Kpb estimate can be explained by the
high correlation to the intrinsic clearance, which was estimated simulta-
neously. The other exception was adipose Kpb, which had a higher pos-
terior estimate compared to its prior (see Table V, columns 3 and 4). A
close inspection of the trace plots (Fig. 6b) showed that the adipose Kpb

had not converged. It was anticipated that the posterior estimate of CLINT
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in the two scenarios would be in close agreement with that obtained from
a NONMEM fit of the plasma data only. Although the estimates might
not closely correspond due to the different structural models used it was
expected that there would be agreement between the two, especially in the
case with informative prior for the CLINT. It was obvious that conver-
gence was not achieved with 1000 iterations (Fig. 6a, left panel), which led
to increasing the number of iterations to 4000. Although improvement was
made convergence did not appear to be achieved (Fig. 6a, right panel).
After reaching convergence, following 8000 iterations the posterior esti-
mates of CLINT in the two scenarios were very close to those estimated by
NONMEM using only the plasma data. The population prediction where
8000 iterations were used improved the CLINT convergence, and conse-
quently produced population fitting close to the human data (Fig, 8a).

The posterior mean and inter-individual CLINT were similar when
informative and non-informative priors were used, however the estimated
inter-subject variance for CLint is small. Possibly, the estimated inter-indi-
vidual CLINT variance will not be the same if, we had analysed only the
plasma data and estimated the between-subject variance in total CL. Com-
parison between the two situations is not very easy, however, as there are
a number of other factors, such variance in fraction of drug unbound in
plasma, blood-to-plasma ratio, as well as in the WBPBPK model the esti-
mation of Clint is but one parameter in this global model to accommodate
the variability. In addition to these reasons we assume there is some form
of model misspecification—presumably the model for the random effects.
Clearly it is a poor estimate of the true inter-subject variability and that
requires further investigation.

The WBPBPK model developed, tested and calibrated for rats was
retained in human with estimating some of the parameters. Retaining the
full model provides a complete representation of drug PK behaviour in
human. Using a WBPBPK model in a Bayesian framework provides a
flexible approach throughout drug discovery and development as, we can
continuously update the model in the light of new information, whether
physiological, disease or drug related.

APPENDIX: WBPBPK MODEL EQUATIONS

Non-eliminating tissues

VT
dCT
dt = QT CART − QT

CT
K pT

T = MU, AD, TE, SK, HT, BR, KI, RE, ST, SPL
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Liver

VLI
dCLI

dt = QHACART + ∑
j

Q j C j
K p j

− C LINT
CLI

K puLI
− Q H

CLI
K pLI

= QHACART − CLI

(
Q H +C LINT fUB

K pLI

)
+ ∑

j

Q j C j
K p j

j = ST, SPL; Q H = QHA + QHP = QHA + QST + QSPL,

where QHA hepatic arterial blood flow; QHP blood flow perfusing the
hepatic portal vein which drains the intestines (SPL) and stomach (ST);
fUB = fU /R: fraction unbound in whole blood; K pULI = K p/ fUB: tissue-
to-unbound plasma partition coefficient.
Lungs

VLU
dCLU

dt
= QVENCVEN − QLU

CLU

K pLU
,

QLU = QVEN = QART.

Arterial Blood

VART
dCART

dt
= QLU

CLU

K pLU
− QARTCART.

Mixed Venous Blood

VVEN
dCVEN

dt
=

∑
i

Qi Ci

K pi
+ QH

CLI

K pLI
− QLUCVEN + RO,

i = KI, MU, AD, SK, HT, BR, TE, RE

RO =
{

Dose
TSTOPPING INFUSION

i f t < TSTOPPING INFUSION = 5 min,

0 i f t � 5 min.
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