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Indirect pharmacodynamic response (IDR) models were developed for agents which alter the
generation of cell populations with arbitrary lifespan distributions. These models extend life-
span based IDR models introduced previously [J. Pharmacokinet. Biopharm. 27: 467, 1999]
for cell populations with the same lifespan (“delta” distribution). Considered are cell popula-
tions exhibiting time-invariant lifespan distributions described by the probability density func-
tion �(τ). It is assumed that cell response (R) is produced at a zero-order rate (kin(t)) and
is eliminated from the population when the cell lifespan expires. The cell loss rate is calcu-
lated as kin ∗ �(t), where ‘∗’ denotes the convolution operator. Therapeutic agents can stim-
ulate or inhibit production rates according to the Hill function: 1 ± H(C(t)) where H(C(t))
contains the capacity (Smax) and potency (SC50) parameters and C(t) is a pharmacokinetic
function. The production rate is kin(t) = kin ·[1±H(C(t))]. The operational model is d R/dt =
kin(t)−kin∗�(t) with the baseline condition R0 = kin ·TR , where TR is the mean lifespan. Sin-
gle populations as well as populations with precursors were examined by simulation to estab-
lish the role of lifespan distribution parameters (mean and standard deviation) in controlling
the response vs. time profile. Estimability of parameters was assessed. Numerical techniques
of solving differential equations with the convolution integral were proposed. In addition, the
models were applied to literature data to describe the stimulatory effects of single doses of
recombinant human erythropoietin on reticulocytes in blood. The estimates of Smax and SC50
for these agents were obtained along with means and standard deviations for reticulocyte life-
span distributions. The proposed models can be used to analyze the pharmacodynamics of
agents which alter natural cell production yielding parameters describing their efficacy and
potency as well as means and standard deviations for cell lifespan distributions.
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INTRODUCTION

Cell populations of pharmacological interest are those affected by drugs
with therapeutic or toxic effects. Hematopoietic cells, neoplastic cells, para-
sites and bacteria are examples. Mathematical models that describe popula-
tion size as a function of time after exposure to a therapeutic agent become
increasingly important in rational design of various treatments against can-
cer, bacterial infection and many others. Turnover models combine the phys-
iology of treated organisms with the pharmacology of the administered
drugs. The most common technique employs compartmental models where
various pools represent different cell populations and cells are transferred
between compartments at first-order rates (1,2). Recognition of cell aging or
maturation led to development of cell kinetic models where primary enti-
ties were distributions of age (3,4). First-order cell loss was a key process
in both of these approaches. Models of cell turnover incorporating senes-
cence as a mechanism of cell removal have been developed (5–7). Only the
simplest point cell lifespan distributions with a single parameter (the mean
cell lifespan) were considered. The continuous distribution of cell lifespans
has been utilized in analysis of tracer cell kinetic data (8,9). It was assumed
that tracer radioactivity represented the probability that a certain number
of cells would survive up to a given age that could be calculated from the
cumulative lifespan distribution (10–12). Nonparametric methods of deter-
mination of the mean lifespan and standard deviation from cell survival
data have been developed for RBC (13) and platelets (14). Various para-
metric models for lifespan distribution of RBC and platelets have been pro-
posed (10,15,16). Such models have been combined with PD models where
the primary response consisted of cell count (1). In the absence of cell sur-
vival data the lifespan distribution parameters have been estimated from cell
count data along with other PD parameters (17). We apply this methodol-
ogy in the following report.

The purpose of this paper is to apply the PD modeling approaches
introduced previously (1,17) and extend the formalism we introduced for
single lifespan cell populations to more realistic cell lifespans distributions
(6). We investigate the role of continuously distributed lifespan in char-
acterization of cell kinetics for hematopoietic populations stimulated by
growth factors. An indirect mechanism of drug action is assumed with
two parameters describing drug efficacy (Smax) and potency (SC50) (18).
We also study the feasibility of estimating lifespan distribution param-
eters (mean and standard deviation) for commonly accepted probability
density functions for hematopoietic cell populations (10,15,16). The lim-
itations of available software for pharmacokinetic and pharmacodynamic
(PK/PD) data analysis regarding incorporation of the convolution integral
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into a model described by differential equations prompted us to develop
numerical techniques that can solve the model equations using existing
commercially available software. We have not tested applicability of pre-
viously introduced programs created for pharmacokinetic models with the
convolution operator (19). Our model was evaluated by analysis of stimu-
latory effect of recombinant human erythropoietin (rHuEPO) using litera-
ture data (20).

THEORETICAL

A fundamental assumption is that every cell in the population is
assigned a unique lifespan. If the age of a cell reaches its lifespan, then the
cell has to leave the population. The most natural example is cell senes-
cence, where the cell death determines its lifespan as the duration of the
aging process. However, other mechanisms of cell loss can be interpreted
as expiration of the lifespan. If cell loss is lifespan based, then cells of the
same age will leave the population at the same time. In the most simplis-
tic case, all cells have the same lifespan (i.e., point distribution). A more
realistic assumption would be that the lifespan is continuously distributed
and characterized by a probability density function (p.d.f.) �(τ) where the
probability of finding a cell in the population with the lifespan smaller
than t can be calculated as:

P(τ ≤ t) =
t∫

0

�(τ)dτ (1)

This assumption makes the lifespan a random variable defined for a given
cell population. The mean lifespan (T ) and standard deviation (SD) for
its distribution are (16)

T =
∞∫

0

τ�(τ )dτ and SD =



∞∫

0

(τ − T )2�(τ)dτ




1/2

(2)

Our next assumption is that the lifespan distribution is time independent.
Although realistically one should consider changes in lifespan distribu-
tion due to external factors (disease, toxicity, drug therapy, etc.), anal-
ysis of such circumstances will require much more complex formalism
falling out of the present scope. This assumption is based on the sta-
tionarity principle applied to lifespan distribution parameters considered
as pharmacodynamic parameters. However, one must be aware of potential
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bias introduced to estimates of such parameters should this principle be
violated.

The cell turnover in the population is determined by two processes:
production and loss (see Fig. 1). If the production rate kin(t) and loss
rate kout(t) are functions of time, then the change in the cell number N
is determined by the following equation:

d N

dt
= kin(t) − kout(t) (3)

The assumption that each cell exits the population when its lifespan
expires allows one to determine kout(t) if the lifespan distribution is known
(see Appendix A):

kout(t) =
∞∫

0

kin(t − τ)�(τ )dτ (4)

Since for negative lifespans the p.d.f. �(τ) = 0, the integral in Eq. (4) can
be written as the convolution of kin ∗ �(t) and Eq. (3) can be simplified

d N

dt
= kin(t) − kin ∗ �(t) (5)

Note that for the delta distribution of the lifespan �(τ) = δ(τ − T ), the
convolution in Eq. (5) creates a delay in time

kin ∗ �(t) = kin(t − T ) (6)

and Eq. (5) reduces to the single lifespan model introduced previously (6).
For most model applications it will be assumed that prior to any perturba-
tion of the cell population (e.g., by drug treatment), the system will remain
in steady-state with a constant rate of cell production kin(t) ≡ kin0 for t <

0. Then, one can determine the baseline number of cells N0 (see Appendix
B)

N0 = kin0 · T (7)

If the production rate is stimulated or inhibited by a drug, then for t ≥ 0

kin(t) = kin0 ·
(

1 ± Emax · C(t)

EC50 + C(t)

)
(8)
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Fig. 1. Schematic diagrams representing the basic LIDR model (upper) and basic LIDR
model with a precursor pool (lower). The cells are produced at a constant rate kin0. A drug
stimulates the production rate via the Hill function (open box) characterized by the parame-
ters Smax and SC50. The product kin0 and the Hill function is represented by the time depen-
dent function kin(t). The cells exit the population after their lifespan expires. The cell loss
rate is determined by the convolution of kin(t) with the p.d.f. for the lifespan distribution
�N (t). For the precursor model, the input rate to the central pool N is the output rate from
the precursor pool kin ∗ �M (t). The elimination rate from the central pool is determined by
the convolution of kin ∗ �M (t) with �N (t).

where ‘+’ is for stimulation and ‘−’ for inhibition. Here C(t) denotes the
drug concentration at the site of action, Emax is the maximum effect and
EC50 stands for drug concentration eliciting 50% of maximum effect (18).
Eq. (8) is valid for negative times if C(t) = 0, for t < 0. Eq. (5) with kin(t)
described by Eq. (8) constitutes the basic lifespan based indirect response
model (LIDR).

If there is a precursor pool for the cell population (M), then Eq. (5)
would apply to describe the number of cells

d M

dt
= kin(t) − kin ∗ �M (t) (9)

Here kin(t) denotes the precursor cell production rate and �M (τ ) is the
p.d.f. for precursor cell lifespan distribution. If each cell that exits the pre-
cursor enters the successor pool, then loss rate for cells M coincides with
the production rate for cells N . Consequently,

d N

dt
= kin ∗ �M (t) − kin ∗ �M ∗ �N (t) (10)

�N (τ ) is the p.d.f. for the lifespan distribution for cells in the central pool.
The baseline conditions for the precursor (M0) and central pools (N0)

become:

M0 = kin0 · TM and N0 = kin0 · TN (11)
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where TM and TN denote the means of lifespan distributions for M and
N . Eq. (11) can be derived similarly to Eq. (7). If a drug inhibits or stim-
ulates the production of the precursor cells, then Eq. (8) should be used
in the convolution terms in Eq. (9) and (10).

METHODS

Calculation of the Convolution Operator for Various Lifespan Distributions

The proposed models contain the convolution operator that is not
implemented into standard PK/PD software packages. Our approach was
to develop a technique that allows one to calculate the convolution of
arbitrary functions using ordinary differential equations which are avail-
able in PK/PD software. If the p.d.f. for the lifespan distribution �(τ) is a
specific function (e.g., poly-exponential, polynomial, or gamma), then the
convolution with kin(t) can be exactly calculated. For arbitrary p.d.f. (e.g.,
lognormal) we provide an approximation. Below we present the equations
allowing one to calculate the convolution integrals for lifespan distribution
described by the gamma function (15, 16) and Dornhorst function (10).
We also demonstrate how to calculate the convolution integral for an arbi-
trary p.d.f. using the frequency histogram as an approximation.

Let �n(τ ) denote the gamma distribution

�n(τ ) = 1
τ0

(τ/τ0)
n−1

(n − 1)! e−(τ/τ0) (12)

Eq. (12) has been introduced to describe the platelet lifespan distribu-
tion in the multiple-hit model (15, 16). The basic mechanism for plate-
let removal from the circulation is random collisions (hits) with walls of
blood vessels or other circulating cells. The parameter τ0 denotes the mean
time between hits and n is the number of hits. The convolution can be cal-
culated as

kin ∗ �n(t) = Xn (13)

where the dummy variables Xi (i = 1, . . . , n) satisfy the following ordinary
differential equations:

d X1

dt
= 1

τ0
kin(t) − 1

τ0
X1, X1(0) = kin0 (14)

and for i = 2, . . . , n

d Xi

dt
= 1

τ0
Xi−1 − 1

τ0
Xi , Xi (0) = kin0 (15)
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The case n = 1, reduces �n(τ ) to the mono-exponential p.d.f. that describes
distribution of cell lifespans for a population exposed to a random
destruction. For derivations see Appendix C.

The Dornhorst model of RBC survival assumes that erythrocytes are
randomly removed from the circulation up to time TR (their common life-
span) when they die due to senescence (10). Then the distribution function
Eq. (1) becomes

P(τ ≤ t) = θ(TR − t)e−λt (16)

where λ denotes the random killing rate constant and θ(t) is the Heaviside
step function θ(t) = 1, if t ≥ 0, and θ(t) = 0 otherwise. Consequently, the
p.d.f. for the Dornhorst RBC lifespan distribution is

�D(τ ) = δ(TR − τ)e−λTR + λθ(TR − τ)e−λt (17)

The convolution can be calculated as follows

kin ∗ �D(t) = kin(t − TR)e−λTR + λX (t) (18)

where the dummy variable X satisfies the following differential equation

d X

dt
= kin(t) − kin(t − TR)e−λTR − λX, X (0) = kin0

λ

(
1 − e−λTR

)
(19)

For derivations see Appendix C. In the case of the model with the precur-
sor pool one needs to calculate the double convolution in Eq. (10). This
can be reduced to calculation of single convolutions if kin(t) in the above
equations is replaced by kin ∗ �M (t), since for t < 0 kin ∗ �M (t) ≡ kin0.

Below we present a way of calculation of the convolution integral
Eq. (4) for any p.d.f. that is described by an explicit continuous function.
Our approach is based on an approximation of the continuous p.d.f. with
a histogram of known a priori number of bins (n). Then the convolu-
tion integral can be calculated for the histogram p.d.f. If n becomes suffi-
ciently large and the bin width decreases with n, then the error for such
an approximation becomes small. Let τ1 = 0 < τ2 < · · · < τn+1 denote the
limits for the bins. If one chooses the same width �τ for each bin, then
τi = (i − 1)�τ, i = 1, . . ., n + 1. The height of the ith bar of the histogram
can be calculated as

ai = αi

α1(τ2 − τ1) + · · · + αn(τn+1 − τn)
where αi = �((τi+1 + τi )/2),

i = 1, . . ., n (20)
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Then the histogram can be defined as

�hist(τ ) =
n∑

i=1

aiθ(τ − τi )θ(τi+1 − τ) (21)

Fig. 2 shows the plots of �(τ) and �hist(τ ) that illustrate how the approxi-
mation Eq. (20) works. If we introduce dummy variables X0, X1, . . . , Xn+1
that satisfy the following system of differential equations

d Xi

dt
= kin(t) − kin(t − τi ), Xi (0) = kin0τi , i = 1, . . ., n + 1 (22)

then

kin ∗ �hist(t) =
n∑

i=1

ai (Xi+1 − Xi ) (23)

The derivation of Eq. (23) is shown in Appendix C. The mean and SD for
the lifespan distribution described by �hist(τ ) can be calculated as follows

Thist = 1
2

n∑
i=1

ai

(
τ 2

i+1 − τ 2
i

)
and

SD2
hist = 1

3

n∑
i=1

ai

(
(τi+1 − Thist)

3 − (τi − Thist)
3
)

(24)

Simulations

A series of simulations was performed to investigate the role of con-
tinuous lifespan distribution parameters (mean, SD) in control of the
response curve. The kinetic function was monoexponential

C = Dose
V

e−kel t (25)

where V = 1, kel = 0.1. Because of the simplicity of calculations of the
convolution operator, the gamma distribution p.d.f. Eq. (12) was used for
simulations. The mean time (T ) and standard deviation (SD) for such dis-
tributions are (16)

T = n · τ0 and SD = √
n · τ0 (26)
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Fig. 2. Response vs. time profiles corresponding to the lognormal lifespan distribution.
Upper panel: Plots of p.d.f. �(τ) (thick line) and �hist(τ ) (thin line) for lognormal lifespan
distribution described by Eq. (31) and (21) with m = 3, σ = 0.3, n = 60, and �τ = 1. Lower
panel: Response vs. time profiles for the basic LIDR model corresponding to the lifespan
distribution described by �hist(τ ). The responses (lines) were generated for the PK function
Eq. (25) at doses 100, 1000, and placebo. Remaining PK and PD parameters are listed in
Table I. The symbols (•) indicate the mean values of the 100 individual erroneous response
profiles with normally distributed noise generated according to the variance model Eq. (32).
The bars denote the standard deviations.
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The values for SD were selected such that for a given T , the parameter n
in Eq. (26) became an integer.

The absolute cell number N in the central pool was scaled by the vol-
ume of the central pool Vc to obtain measurable responses

R = N/Vc (27)

where Vc = 1. Then the differential equations for R in the basic model
become

d R

dt
= kinR ·

(
1 + SmaxC(t)

SC50 + C(t)

)
− kinR ·

(
1 + SmaxC

SC50 + C

)
∗ �R(t) (28)

and for the model with the precursor

d R

dt
=kinR ·

(
1+ SmaxC

SC50 + C

)
∗ �P (t) − kin R ·

(
1 + SmaxC

SC50 + C

)
∗ �P ∗ �R(t)

(29)

where according to Eq. (7)

kinR = R0/TR (30)

The R0 denotes the baseline value for R and was assumed = 60 through-
out simulations. The TR was the mean cell lifespan for the central pool.
There was no need to solve a differential equation for M , since the M var-
iable is not present in Eq. (29). The convolution operators were calculated
according to Eqs. (13)–(15). The simulations were performed by ADAPT
II (21).

Estimability of PD Parameters in the Basic LIDR Model

To verify if the PD parameters can be identified for a data set that
consists of responses described by the basic LIDR model, an analysis of
computer generated data was performed. Eq. (25) was used to simulate
the PK function that was a driving force for the response R calculated at
selected time points according to Eq. (28) with Smax = 4 and SC50 = 10
and the baseline R0 = 60. The lognormal distribution of cell lifespans were
assumed (22)

�log(τ ) = 1

στ
√

2π
e

−(ln τ−m)2

2σ2 (31)
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with m = 3 and σ = 0.3. The convolution integral in Eq. (28) was cal-
culated using approximation �hist(τ ) and Eqs. (22)–(23) where the number
of bins n = 60 and �τ = 1. Both �log(τ ) and �hist(τ ) are shown in Fig.
2. The responses were simulated at two dose levels of 100 and 1000 and
placebo. There were 8 sampling times per dose selected to cover the entire
response vs. time curve. Fig. 2 shows the response profiles. Residual vari-
ability normally distributed was introduced to generated responses accord-
ing to the following variance model

V ar(Y ) = aY b (32)

where a =0.04 and b=2 and Y = R was the predicted by the model response
value. One hundred replicates of erroneous responses were simulated. Each
replicate was fitted with the same model that has been used for generating
the errorless responses and the PD parameters R0, Smax, SC50, m, and σ

were estimated. Tmean, SD, and kinR were secondary parameters. The max-
imum likelihood estimator was applied with the variance model Eq. (32)
where a and b were fixed. The minimization procedure was considered suc-
cessful if it converged and the estimated values were within (0.1 × (true
value), 10 × (true value)) interval. No limits on parameters were imposed
during estimation. Analysis was performed using ADAPT II (21). The mean
prediction percent error (MPE) was used as a measure of bias (23)

MPE =
1
k

∑k
j=1 (p j − p)

p
100 (33)

where p j is the estimated value of the parameter p for the jth data set
and k denotes the number of successful minimizations. The root mean
squared prediction percent error (RMSPE) was used as a measure of pre-
cision for parameter estimation (23).

RMSPE =
√

1
k

∑k
j=1 (p j − p)2

p
100 (34)

Stimulation of Reticulocyte Production by rHuEPO

The LIDR model with various lifespan distribution functions was
applied to a previously analyzed data set (20) to examine the estimabil-
ity of lifespan distribution parameters along with dynamic parameters of
rHuEPO. Recombinant human erythropoietin mimics the endogenous hor-
mone which is a major regulator of erythropoiesis. After binding to its
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receptors expressed on early progenitor cells in the bone marrow, it stim-
ulates their proliferation leading to increased reticulocyte numbers in the
blood. The rHuEPO serum concentrations and reticulocyte counts were
obtained at various times after subcutaneous administration of rHuEPO
to healthy subjects (20). These data were also used to test a PK/PD model
where fixed lifespans were assumed for precursor and central pools (6).

The PK data were described by the following equations as previously (6).

CEPO(t) =




C0, i f t < 0

C0 + C1

(
1 − e−k1t

)
, i f 0 ≤ t ≤ tlag

C0 + C1

(
e−k1(t−tlag) − e−k1t

)
+ C2

(
e−k2(t−tlag) − e−k2t

)
, i f t > tlag

(35)

where tlag denotes the time at which the zero-order absorption of rHuEPO
ends and first-order absorption begins. The basic model with a precursor
(Eq. 29) was used to describe the stimulatory effects of rHuEPO on reti-
culocytes. The progenitor cells in the bone marrow constituted the precur-
sor (P) and the reticulocyte count expressed as the percent of RBC was
the response (R). Since the simulations showed that the SD for the pre-
cursor cell lifespan distribution is poorly estimable, the delta distribution
was applied for the precursor pool

�P (τ ) = δ(τ − TP ) (36)

where TP denotes the precursor cell lifespan. Reticulocytes are considered
a subpopulation of circulating erythrocytes; therefore the Dornhorst life-
span distribution (Eq. 20) was used for the reticulocyte lifespan distribu-
tion. Consequently, Eq. (29) became

d R

dt
= kinR ·

(
1 + SmaxCdel(t)

SC50 + Cdel(t)

)
− kinR ·

(
1 + SmaxCdel

SC50 + Cdel

)
∗ �R(t)

(37)

where

Cdel(t) = CEPO(t − TP ) (38)

The probability density functions tested for reticulocyte lifespan variation
included gamma �n(τ ) Eq. (12), Dornhorst �D(τ ) Eq. (17), and lognor-
mal �log(τ ) Eq. (31) distributions and these models allowed estimating
the mean and standard deviation for the reticulocyte population. When
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�D(τ ) was used for, the reticulocyte lifespan distribution, the convolution
operator in Eq. (37) was calculated according to Eqs. (18) and (19). The
reticulocyte data were simultaneously fitted with fixed PK parameters. In
response to rHuEPO or severe anemia (erythropoietic stress), reticulocytes
are released prematurely from the bone marrow and mature in the circu-
lation (24). This increased portion of younger reticulocytes requires the
parameters λ and TR to vary with dose. The mean (TRET) and standard
deviation (SDRET) for the reticulocyte lifespan distribution were calculated
from Eq. (2) as secondary parameters

TRET = 1
λ

(
1 − e−λTR

)
and SD2

RET = 1
λ2

(
1 − 2λTRe−λTR − e−2λTR

)
(39)

For the gamma distribution p.d.f. �n(τ ), Eq. (37) was calculated based on
Eqs. (13)–(15). The n = 40 was assigned throughout the fittings and the τ0
was estimated in a dose-dependent manner. The TRET and SDRET for the
reticulocyte lifespan distribution were obtained from n and τ0 according to
Eq. (26). The lognormal distribution �log(τ ) was approximated by the his-
togram Eq. (21) and the convolution in Eq. (37) was solved by Eqs. (22)–
(23). The parameters m and σ were allowed to vary with dose and these
estimated parameters were subsequently used to compute the distribution
parameters for the reticulocyte pool as follows:

TRET = e(m+σ 2/2) and SD2
RET = e(2m+2σ 2) − e(2m+σ 2) (40)

The number of bins for the histogram was n = 100 and �τ = 3.5 h. To
compare the lifespan distribution models with the fixed lifespan model
for describing the responses, this data set was also reanalyzed using the
fixed lifespan distribution (i.e., SDRET = 0) with a dose-dependent mean
lifespan of reticulocyte (TRET) to make the estimated parameters and
goodness-of-fit criteria comparable with those from other models.

The models were allowed to estimate the endogenous precursor pro-
duction rate kinR . The baseline reticulocyte counts (R0) were calculated as a
secondary parameter by rearranging Eq. (30). In addition, since erythropoi-
etin is present endogenously, the baseline of the cell population needed to
take into consideration the predose level of erythropoietin (C0) and yielded

R0 = kinR · TRET ·
(

1 + Smax · C0

SC50 + C0

)
(41)

The baseline of endogenous erythropoietin (C0) was fixed at the value of
13.55 mIU/ml obtained by averaging the pre-dose values from all doses.
The estimations were performed by ADAPT II (21) using the maximum
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likelihood estimator with the variance model Eq. (32) where Y denoted the
model predicted reticulocyte counts and a and b were variance parameters.
ADAPT II subroutines used to calculate CEPO(t) and reticulocyte response
R for all lifespan distributions discussed above are shown in Appendix D.

RESULTS

Simulations

The effects of dose on the response curve for a cell population
with a continuous lifespan distribution are shown in Fig. 3. Contrary to
responses generated for a population with the point lifespan distribution,
the responses lack sharp peaks and the peak times depend on dose. With
increasing doses the peaks shift to later times and become sharper. Also,
the peak values increase with increasing doses to approximate the peak
values for the fixed lifespan responses. Since these approach the limiting
value R0 · (1 + Smax) for large doses, we can conclude that the same limit
is achieved by the responses for cell populations with continuous lifespan
distribution if doses become very large.

The peak time for the response curve for the basic LIDR model well
correlates with the peak time for the lifespan distribution as shown in Fig.
4. For the gamma distribution the peaks occur at T − τ0 where T is the
distribution mean. Consequently, increase in the population mean lifespan
with conserved SD results in delay of the peak response. Additionally, the
response peak value decreases and the peak plateaus. This behavior was
observed for the cell populations with the point lifespan distribution (6).
Fig. 5 shows the response vs. time profiles for the cell populations with
the same mean lifespan but varied SD. The sharpest response corresponds
to the point distribution (SD = 0). With increased SD, the peak becomes
shallower and the peak value decreases, indicating that the increased var-
iability in lifespan distribution results in dispersion of the response. How-
ever, the change in SD does not alter the peak time of the response but it
remains the same.

In the presence of a precursor pool the responses for the basic LIDR
model are delayed. As shown in Fig. 6 the lag times for the response vs.
time curves correlate with the mean lifespan for the precursor pool (TM ).
The response profiles are shifted by the lag time and their shapes are con-
served. This is because the major determinants of the response TR, SDR ,
and kinR were the same, contrary to analogous determinants for the pre-
cursor pool M . Both TM and M0 are varying which results in different
baseline values as seen in Fig. 6. Similar behavior of the responses for the
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precursor and central pools were observed for the point lifespan distribu-
tions (6).

The effect of varying SDM in the precursor lifespan distribution on
the response R is shown in Fig. 7. Two-fold change in SDM results in little
change of the response curve that approximates the response vs. time pro-
file corresponding to the point precursor lifespan distribution. The peak
time remains the same since the mean lifespan values for the precursor
and central pools are the same.

Estimability of PD Parameters in the Basic LIDR Model

The identifiability of basic LIDR model Eq. (28) was tested on a simu-
lated 2 dose and placebo response data set. One hundred data sets with nor-
mally distributed noise having a coefficient of variation of about 20% were
fitted by the same equation and parameter estimates were recorded. The
lognormal distribution of lifespans (Eq. 31) was assumed and was approxi-
mated by p.d.f. Eq. (21). The minimization did not converge in 8 cases due
to numerical problems with solving differential equations. The estimated σ

values for 5 data sets were greater than 3.0 (10-fold higher than the true
value), and the PD parameter estimates were excluded from further analy-
sis. The histograms of frequency distributions of the estimates are shown in
Figs. 8 and 9. The largest dispersion about the true value was observed for
σ and SC50 indicating the low precision of their estimates. The RMSPE for
σ was 215% and for SC50 it was 93%, whereas RMSPE for the estimates of
remaining PD parameters were below 30% (see Table I). The low precision
of σ propagated on the variability of SDhist but not on Thist and was lower
than the variability of σ . Both σ and SC50 were distinctly biased with MPE
higher than 30%. No bias was detected for the estimates of the remaining
PD parameters including calculated Thist and SDhist.

Stimulation of Reticulocyte Production by rHuEPO

The biexponential function with a lag time (Eq. 31) was used to fit
the rHuEPO serum concentration versus time data. This empirical func-
tion was fitted to the data and PK parameters were estimated for each
dose level. Such an approach was taken to avoid developing a complex
PK model that might not satisfactorily describe the data and contribute to
improper identification of the PD model parameters. The PK parameters
were fixed for the PD data analysis. Their estimated values are presented
in Table II.

The fixed lifespan IDR model (6) was modified so that the Dorn-
horst distribution �D(τ ) Eq. (17), gamma distribution �n(τ ) Eq. (12), and
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Table I. The Bias and Precision of Estimates of PD Parameters for
the Basic LIDR Model with the Lognormal Lifespan Distribution

Parameter True value Mean SD MPE RMSPE

R0 60 59.7 3.5 −0.5 5.7
Smax 4 4.3 1.1 6.5 27.8
SC50 10 13.1 8.9 31.1 93.3
m 3 2.9 0.5 −2.2 16.7
σ 0.3 0.44 0.63 48.0 215
T a

hist 21 21.0 5.6 −0.2 26.3
SD a

hist 6.4 6.1 4.9 −5.7 75.5

The number of successful minimizations was 87 out of 100 analyzed
data sets.
asecondary parameter
MPE – mean percent predictive error.
RMSPE – the root mean squared prediction percent error.

lognormal distribution �log(τ ) Eq. (31) were used to describe the p.d.f.
for the reticulocyte lifespan and the convolution operator in Eq. (37)
was calculated according to Eqs. (18)–(19), Eqs. (13)–(15), and Eqs. (22)–
(23), respectively. Our objective was to determine if any of these distribu-
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Table II. The Estimated Values of PK Parameters for rHuEPO

Dose (IU/kg)

Parameter 450 900 1350 1800

C0, IU/l 13.55a 13.55a 13.55a 13.55a

C1, IU/l 932 (15) 2142 (16) 3291 (19) 5427 (14)
C2, IU/l 200.7 (41) 292.4 (55) 490.5 (42) 345.3 (94)
k1, h−1 0.135 (25) 0.073 (22) 0.081 (25) 0.045 (17)
k2, h−1 0.031 (17) 0.022 (20) 0.022 (15) 0.017 (30)
tlag, h 39.0 (11) 38.4 (14) 41.3 (15) 42.2 (12)

The parameters were obtained from fitting Eq. (35) to the data from
(20). The numbers in parenthesis denote CV%.
a parameter was fixed in the fitting procedure.

tions was better suited for the reticulocyte data than the point distribution
used in the fixed lifespan model. We allowed the p.d.f. parameters to be
dose-dependent. The remaining PD parameters were same across all doses.
The reticulocyte baselines, TRET, and SDRET were calculated as secondary
parameters. The estimated values of PD parameters are shown in Table
III. The gamma and lognormal distribution LIDR models performed sim-
ilarly to the fixed lifespan model both in terms of goodness of fits and the
estimated values of the PD parameters. The Dornhorst distribution LIDR
model resulted in the best fitting measured by the value of the objective
function (OBJF) (see Fig. 10). For this model the estimates of the retic-
ulocyte random destruction rate (λ) were highly variable and resulted in
values ranging from 0.0001 to 0.005 h−1. The estimates of the reticulo-
cyte senescent lifespan TR were in the range 7.1 to 7.9 days, resulting in
the mean reticulocyte lifespan TRET of 5.0 to 7.4 days, and SDRET of 0.7
to 2.8 days. Although TRET and SDRET were calculated from TR and λ,
the imprecision in λ estimates did not propagate on variability of TRET
and SDRET values (CV% ranged 6–10%). The estimates of drug related
parameters Smax and SC50 were 5.7 and 206 IU/L, respectively. Since the
absolute values of reticulocyte counts were not available, the reported kin
was expressed as percent increase per hour. All LIDR models were inferior
to the fixed lifespan model based on Akaike Information Criterion (25)
mostly due to an increase in number of lifespan distribution PD param-
eters that did not improve the fittings. However the AIC values were not
noticeable different for any of these models (range 86–93).
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Fig. 10. Fitting of serum rHuEPO concentrations (upper panel) using Eq. (35) and retic-
ulocyte counts versus time (lower panel) using Eq. (37) after subcutaneous administration
of rHuEPO doses of (•) 450, (�) 900, (�) 1350, and (�) 1800 IU/kg. The values of fitted
parameters are presented in Tables II and III. Original data were obtained from (20).
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DISCUSSION

The PD models presented are a natural extension of previous models
describing cell turnover affected by a therapeutic agent but restricted by
the assumption of a single lifespan for all cells in the population (6). We
derived all equations necessary to account for a continuous distribution
of cell lifespans preserving the same paradigm that cell loss is determined
by the expiration of cell lifespans. The subsequent mathematical formalism
replaced the delay operator with the convolution integral and the numer-
ical problem of calculating it arose. We presented several p.d.f. that were
particularly useful for that purpose including a calculation of the convolu-
tion operator for a histogram that can approximate any arbitrary lifespan
p.d.f..

The properties of the gamma p.d.f. are very convenient for description
of the continuous lifespan distribution. If the gamma function is used, then
the convolution integral describing the cell elimination rate can be calcu-
lated by solving a system of ordinary differential equations that have the
structure of the transduction model (26). Transit compartments for model-
ing the delay between the site of drug action and measurable response have
been used to describe platelet (1) and leukocyte (2) kinetics. In our model
they are not present, since they are only a means of numerical calculation
of the convolution integral. If computer software allows, then other typical
p.d.f. (e.g., normal distribution) can be used to describe cell lifespan dis-
tributions. However, available programs for PK/PD analysis do not include
calculation of the convolution integral and the techniques presented in this
report merely circumvent this computational obstacle.

Simulations were performed using the gamma distribution p.d.f. to
assess the role of the key PD parameters in controlling the shape of the
response vs. time curve. Another objective was to determine the differ-
ences between the proposed model and the fixed lifespan model intro-
duced previously (6). Unlike the previous observation that the peak time
of the response was dose-independent, it was found that the maximum
response occurs later with increasing doses. As expected, these models
coincide if the standard deviation of lifespan distribution becomes very
small. Increase in the SD results in attenuation of the response curve: the
peak diminishes and the curve flattens. However, the changes in SD for
either precursor or central pools do not change the time of the maximum
responses. The dependence of the response on the mean lifespan of the
central as well as precursor cell pools is analogous to the fixed lifespan
models. Accordingly, the mean lifespans can be easily identified from the
peak and lag times of the response curve. However, one can expect diffi-
culties in precisely resolving the SD parameter for the central pool. Based
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on our simulations, the small change in SD of precursor lifespan distribu-
tion may not be significant in controlling the response profiles, suggesting
that the SD for the precursor might not be identified from the central pool
response unless the precursor population was also measured.

Our expectation of problems with identifiability of the SD from the
LIDR data was confirmed by the results of the LIDR model identifiability
study where we attempted to estimate PD parameters from a data gener-
ated with their known values. The SD was highly variable as well as the
estimates of SC50. The estimates of remaining PD parameters (including
the mean lifespan T ) were neither biased nor imprecise. The problems with
accurate and precise resolution of the EC50 parameter of the IDR mod-
els have been reported previously (27,28). The reason for poor estimabil-
ity of SD is the limited information about this parameter contained in
the response vs. time data. This is an inherent problem even for cell sur-
vival studies designed to obtain T and SD values only (29). A suggested
approach to rectify this problem is to apply the LIDR model with a fixed
lifespan and compare it with the LIDR model containing SD. The met-
rics of model performance (e.g., Akaike Information Criterion (25)) can
be used to make a selection. Ideally, one can improve the precision of SD
estimates by adding cell survival data to the experimental design. Such an
approach has been successful in PK/PD modeling of drug effects on plate-
let lifespan (1).

Literature data were used to exemplify applications of LIDR model
to reticulocytes stimulated by rHuEPO (20). The estimates of PK param-
eters for rHuEPO serum concentrations did not differ from those previ-
ously reported (6) since both the data and the PK model were the same.
The PD data were refitted with the LIDR models that applied all life-
span p.d.f. presented in this report. We aimed at testing if any of the
p.d.f. resulted in a better fitting of the data. None of the models yielded
noticeable improvement of the fittings measured by the objective function
value than the fixed lifespan models. Also, the AIC values were compara-
ble across all models meaning that the slight improvement in fittings was
at expense of an increased number of estimated parameters. Therefore we
conclude that for the tested data the LIDR models performed equally well
as the fixed lifespan model. The estimated values of PD were consistent
with the analogous parameters reported previously for the same data set
(6). The SC50 remained inside the 95% confidence intervals. The 4-fold
increase in the Smax value might be caused by the lack of the cell mag-
nifying factor η in our PD model. Reticulocyte data exhibited a rebound
in later times, whereas our model necessitated that responses return to the
baseline. Consequently, the terminal parts of the data were over-predicted.
The tolerance phenomenon in reticulocyte counts has been reported in the
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literature. Possible mechanisms include a negative delayed feedback from
the circulation to the production of progenitor cells (30) or depletion of
early progenitor cell pool (31). The advantage of the LIDR models over
the fixed lifespan model was additional information gained on variability
of the lifespan of the circulating cells. Since there is limited information
in the literature reporting SD of lifespan distributions for reticulocytes,
assessment of accuracy of our estimates is difficult.

The presented cases of data analysis demonstrate the applicability
of the continuous cell lifespan distribution approach in modeling cell
turnover affected by a therapeutic agent. These models are more flexible
than the fixed lifespan LIDR models, however the standard deviation of
the lifespan distribution might not be estimated as precisely as the mean.
The drug efficacy (Smax) and potency (SC50) can be accurately identified.
The use of the convolution operator generalizes the transit compartment
approach to modeling signal transduction. Further development of com-
putational tools is necessary to explore use of various cell lifespan distri-
butions in controlling cell responses.

APPENDIX A

Derivation of Eq. (4)

By definition, for a small time increment �t ,

kin(t)�t = No. cells that entered the population between times

t and t + �t (A1)

kout(t)�t = No. cells that exited the population between times

t and t + �t (A2)

If the distribution of lifespans for the cell population is known, then
the cell loss rate kout(t) is uniquely determined by the production rate
kin(t) and the p.d.f. for the lifespan distribution �(τ). To derive this rela-
tionship, notice that for a small lifespan increment �τ

kin(t)�t�(τ)�τ = No. cells that entered the population between

times t and t + �t and have lifespans between τ and τ + �τ (A3)

Suppose that all cells that enter the population have age 0; then this
cohort of cells kin(t)�t�(τ)�τ will exit the population between the times
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t + τ and t + τ + �t + �τ . Consequently, it will contribute to the num-
ber kout(t + τ)(�t + �τ). By the same token, the number of cells that
entered the population at t − τ, kin(t − τ)�t�(τ)�τ will contribute to the
number of cells that exited the population at time t, kout(t)(�t +�τ). If τ

is not continuous but discrete, τ = i�τ, i = 0, 1, . . ., then the contribu-
tions of cells of lifespans i�τ entering the population will be included to
kout(t)(�t +�τ) when the entry times are t −i�τ, i = 0, 1, . . .. Therefore

kout (t)(�t + �τ) =
∞∑

i=0

kin(t − i�τ)�t�(i�τ)�τ (A4)

Letting �τ → 0, the sum in Eq. (A4) becomes the integral and

kout(t)�t =
∞∫

0

kin(t − τ)�t�(τ)dτ (A5)

After canceling out of �t from both sides of Eq. (A5) one can derive Eq.
(4).

APPENDIX B

Baseline Equation

If the production rate kin(t) ≡ kin0 is constant, then the right hand
side of Eq. (5) is 0, and there is an infinite number of solutions. To select
the baseline solution N0 one can state an additional requirement that in
the absence of cell production the cell number must decline to 0 for large
times. This can be written as

d N

dt
= θ(−t)kin0 − kin0θ(−t) ∗ �(t) (B1)

and

N (t) → 0 as t → ∞ (B2)

The solution of Eq. (B1) for t ≥ 0 is of the form

N (t) = N0 − kin0t

∞∫

t

�(τ)dτ − kin0

t∫

0

τ�(τ )dτ (B3)
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Assuming that the first moment of �(τ) exists (see Eq. 4), the condition
Eq. (B2) is satisfied only if

N0 = kin0

∞∫

0

τ�(τ )dτ (B4)

Eq. (B4) expresses the baseline value.

APPENDIX C

Calculation of the Convolution Integrals

The basic relationship for all of subsequent derivations is

d

dt
(kin ∗ �) (t) = kin(t) · �(0) + kin ∗ d�

dt
(t) (C1)

If �n(t) is the gamma function in Eq. (12), then for i > 1

d(kin ∗ �i )

dt
= 1

τ0
kin ∗ �i−1 − 1

τ0
kin ∗ �i and kin ∗ �i (0) = kin0 (C2)

and for i = 1

d(kin ∗ �1)

dt
= 1

τ0
kin(t) − 1

τ0
kin ∗ �1 and kin ∗ �1(0) = kin0 (C3)

If Xi denotes the solution of Eq. (14) or (15), then

Xi = kin ∗ �i (C4)

and Eq. (13) follows. If �D(t) is described by Eq. (17), then

kin ∗ �D(t) = kin(t − τR)e−λτR + λkin ∗ (θ(τR − t)e−λt ) (C5)

If one defines X as

X = kin ∗ (θ(τR − t)e−λt ) (C6)

then the differentiation of X results in Eq. (19), since

d

dt

(
θ(τR − t)e−λt) = δ(τR − t)e−λt − λθ(τR − t)e−λt (C7)
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and direct integration shows that

kin ∗ (θ(τR − t)e−λt )(0) = 1
λ

(
1 − e−λτR

)
(C8)

To derive Eq. (23) one can integrate its both sides. The direct integration
results in

∞∫

0

kin(t − τ)�hist(τ )dτ =
n∑

i=1

ai

τi+1∫

τi

kin(t − τ)dτ (C9)

For i = 1, 2, . . ., n + 1 let us define

Xi =
τi∫

0

kin(t − τ)dτ (C10)

Then Eq. (C9) can be written as

kin ∗ �hist(t) =
n∑

i=1

ai (Xi+1 − Xi ) (C11)

Evaluation of Eq. (C10) at t = 0 yields

Xi (0) = kin0τi (C12)

Since

τi∫

0

kin(t − τ)dτ =
t∫

t−τi

kin(τ )dτ (C13)

from Eq. (C10) it follows that

d Xi

dt
= kin(t) − kin(t − τi ) (C14)

Eqs. (C11) and (C14) are exact versions of Eqs. (22) and (23).

APPENDIX D

ADAPT II Subroutines for Modeling the Reticulocyte Response

All codes are presented to model a single rHuEPO dose (450 IU/kg)
reticulocyte response. Straightforward adjustments are necessary to account
for modeling of multiple dose responses.
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Pharmacokinetic Function Describing rHuEPO Serum Concentrations

The parameters C1, C2, k1, and k2 were estimated from the PK data
and subsequently fixed at their estimated values to analyze the PD data.

Function Cepo (t)
Implicit none
Include ‘globals.inc’
Include ‘model.inc’
Real*8 Cepo,Ct,Cepo0,T,C1,C2,k1,k2,tlag
Cepo0=13.55
C1=932
C2=200.7
k1=0.135
k2=0.031
tlag=39.0
If =(T.GT.0) Then

If=(tlag.GE.T) Then
Ct=C1*(1-EXP(-k1*T))

Endif
If (tlag.LT.T) Then
Ct=C1*(EXP(-k1*(T-tlag))-EXP(-k1*T))
+C2*(EXP(-k2*(T-tlag))-
EXP(-k1*(T-tlag)))

Endif
Else

Ct=0
Endif
Cepo=Cepo0 + Ct

Return
End

Reticulocyte Response Described by the Fixed Lifespan IDR Model

Subroutine DIFFEQ(T,X,XP)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 T,X(MaxNDE),XP(MaxNDE)
Real*8 kin,R0,Smax,SC50,Tr,Tp,lambda,HCt0,HCtP,
Real*8 HCtR,Cepo
Smax=P(1)
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SC50=P(2)
Tp=P(3)
Tr=P(4)
kin=P(5)
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
HCtP=1+Smax*Cepo(T-Tp)/(SC50+Cepo(T-Tp))
HCtR=1+Smax*Cepo(T-Tp-Tr)/(SC50+Cepo(T-Tp-Tr))
XP(1)=kin*HCtP-kin/100*HCtR
Return
End
Subroutine OUTPUT(Y,T,X)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 Y(MaxNOE),T,X(MaxNDE)
Real*8 kin,R0,Smax,SC50,Tr,Tp,lambda,HCt0,HCtP,
Real*8 HCtR,Cepo
Smax=P(1)
SC50=P(2)
Tp=P(3)
Tr=P(4)
kin=P(5)
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
R0=Tr*kin*HCt0
Y(1)=X(1)+R0
Return
End

Reticulocyte Response Described by the LIDR Model with the Dornhorst
Lifespan Distribution

Subroutine DIFFEQ(T,X,XP)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 T,X(MaxNDE),XP(MaxNDE)
Real*8 kin,R0,Smax,SC50,Tr,Tp,lambda,HCt0,HCtP,
Real*8 HCtR,Cepo,X20
Smax=P(1)
SC50=P(2)
Tp=P(3)
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Tr=P(4)
lambda=P(5)
kin=P(6)
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
HCtP=1+Smax*Cepo(T-Tp)/(SC50+Cepo(T-Tp))
HCtR=1+Smax*Cepo(T-Tp-Tr)/(SC50+Cepo(T-Tp-Tr))
R0=Tr*kin*HCt0
X20=R0/Tr/lambda*(1-EXP(-lambda*Tr))
XP(1)=kin*HCtP-kin*HCtR*EXP(-lambda*Tr)
-lambda*(X(2)+X20)
XP(2)=kin*HCtP-kin*HCtR*EXP(-lambda*Tr)
-lambda*(X(2)+X20)
Return
End

Subroutine OUTPUT(Y,T,X)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 Y(MaxNOE),T,X(MaxNDE)
Real*8 kin,R0,Smax,SC50,Tr,Tp,lambda,
Real*8 HCt0,Cepo
Smax=P(1)
SC50=P(2)
Tp=P(3)
Tr=P(4)
lambda=P(5)
kin=P(6)
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
R0=Tr*kin*HCt0
Y(1)=X(1)+R0
Return
End

Reticulocyte Response Described by the LIDR Model with the Gamma Life-
span Distribution

Subroutine DIFFEQ(T,X,XP)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 T,X(MaxNDE),XP(MaxNDE)
Real*8 kin,R0,Ttrans,Ncom,Smax,SC50,Tr,Tp,SD,HCt0
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Real*8 HCtP,Cepo
Integer N,M,Ntrans
Smax=P(1)
SC50=P(2)
Tp=P(3)
Ttrans=P(4)
Ncom=P(5)
kin=P(6)
Tr=Ncom*Ttrans
SD=SQRT(Ncom)*Ttrans
Ntrans=INT(Ncom)
M=Ntrans+1
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
HCtP=1+Smax*Cepo(T-Tp)/(SC50+Cepo(T-Tp))
XP(1)=kin*HCtP - (X(2)+kin*HCt0)
Do N=2,M-1
XP(N)=(X(N+1)-X(N))/Ttrans
ENDDO
XP(M)=(kin*HCtP - (X(M)+kin*HCt0))/Ttrans
Return
End

Subroutine OUTPUT(Y,T,X)
Implicit None
Include ‘‘globals.inc’’
Include ‘‘model.inc’’
Real*8 Y(MaxNOE),T,X(MaxNDE)
Real*8 kin,R0,Ttrans,Ncom,Smax,SC50,Tr,Tp,HCt0,Cepo
Smax=P(1)
SC50=P(2)
Tp=P(3)
Ttrans=P(4)
Ncom=P(5)
kin=P(6)
Tr=Ncom*Ttrans
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
R0=Tr*kin*HCt0
Y(1)=X(1)+R0
Return
End
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Reticulocyte Response Described by the LIDR Model with the Lognormal
Lifespan Distribution

Subroutine DIFFEQ(T,X,XP)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 T,X(MaxNDE), XP(MaxNDE)
Real*8 Tlast,dtau,sum,alpha(100),ss,Tp,Smax,Sigma
Real*8 SC50,m,Tmean, Cepo,kin,R0
Real*8 mp,pi,Taui,HCt0,HCtP,HCtT
Integer N,i
Smax=P(1)
SC50=P(2)
Tp=P(3)
m=P(4)
sigma=P(5)
kin=P(6)
N=100
Tlast=350.0
dtau=Tlast/N
pi=4.0d0*dATAN(1.0d0)
sum=0.0
Do i=1,N
mp=(i-0.5)*dtau
alpha(i)=1/(sigma*mp*(2*pi)**0.5)*exp(-(log(mp)-m)**
2/(2*sigma**2))
sum=sum+alpha(i)*dtau
Enddo
Tmean=0.0
Do i=1,N
Tmean=Tmean+0.5*alpha(i)/sum*(i**2-(i-1)**2)*dtau**2
Enddo
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
HCtP=1+Smax*Cepo(T-Tp)/(SC50+Cepo(T-Tp))
ss=0.0
Do i=1,N
ss=ss+alpha(i)/sum*(X(i+1)-X(i)+kin*HCt0*dtau)
Enddo
Do i=1,N+1
Taui=(i-1)*dtau
HCtT=1+Smax*Cepo(t-Tp-Taui)/(SC50+Cepo(t-Tp-Taui))
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XP(i)=kin*HCtP-kin*HCtT
Enddo
XP(N+2)=kin*HCtP - ss
Return
End

Subroutine OUTPUT(Y,T,X)
Implicit None
Include ‘globals.inc’
Include ‘model.inc’
Real*8 Y(MaxNOE),T,X(MaxNDE)
Real*8 Tlast,dtau,sum,alpha(100),ss,Tp,Smax,Sigma,
Real*8 SC50,m,Tmean,Cepo,kin,R0
Real*8 mp,pi,Taui,HCt0,HCtP,HCtT
Integer N,i
Smax=P(1)
SC50=P(2)
Tp=P(3)
m=P(4)
sigma=P(5)
kin=P(6)
N=100
Tlast=350.0
dtau=Tlast/N
pi=4.0d0*dATAN(1.0d0)
sum=0.0
Do i=1,N
mp=(i-0.5)*dtau
alpha(i)=1/(sigma*mp*(2*pi)**0.5)*exp(-(log(mp)-m)

**2/(2*sigma**2))
sum=sum+alpha(i)*dtau
Enddo
Tmean=0.0
Do i=1,N
Tmean=Tmean+0.5*alpha(i)/sum*(i**2-(i-1)**2)*dtau**2
Enddo
HCt0=1+Smax*Cepo(0.0)/(SC50+Cepo(0.0))
R0=Tmean*kin*HCt0
Y(1)=X(N+2)+R0
Return
End
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GLOSSARY
α1, . . . , αn values of the lognormal p.d.f. at the his-

togram bin midpoints
a1, . . . , an heights of histogram p.d.f. bars
a, b variance parameters
C, C(t) drug concentration in plasma
CEPO(t) rHuEPO serum concentration
C0, C1, C2 coefficients in equation for CEPO(t)
Cdel(t) CEPO(t) delayed by TP

�τ lifespan increment; width of a bin in the
lifespan histogram

�t time increment
δ(t − TP ) Dirac delta function.
Emax maximum effect
EC50 drug concentration eliciting 50% of max-

imum effect
kin(t) cell (response) production rate
kout(t) cell (response) elimination rate
kin ∗ �(t) convolution of kin(t) with �(τ)

kin0, kinR cell (response) production rate in the
absence of drug

k1, k2 coefficients in equation for CEPO(t)
kel first-order elimination rate constant of

drug from plasma
�, �(τ ) probability density function for lifespan

distribution
λ first-order random destruction constant
LIDR lifespan based indirect response
M number of cells in the precursor pool
M0 baseline cell number in the precursor

pool
MPE mean prediction percent error
m parameter in the lognormal distribution
N number of cells in the central pool
N0 baseline cell number in the central pool
PK/PD pharmacokinetic/pharmacodynamic
P(τ ≤ t) probability of τ ≤ t
p.d.f. probability density function
R response variable
R0 baseline response
RMSPE root mean squared prediction percent

error
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RBC red blood cells
rHuEPO recombinant human erythropoietin
σ parameter in the lognormal distribution
Smax maximum stimulatory effect
SC50 drug concentration eliciting 50% of max-

imum stimulatory effect
SD standard deviation
SDRET SD for reticulocyte lifespan
θ(t) Heaviside jump function
τ lifespan
τ0 transient time in the gamma p.d.f.
τ1, . . . , τn bin limits in the histogram p.d.f.
TR senescence lifespan in the Dornhorst

p.d.f.
TRET mean reticulocyte lifespan
T mean lifespan
t time
tlag time lag for CEPO(t)
V plasma compartment volume
Vc volume of the central cell pool
V ar(Y ) variance of variable Y
X1, . . . , Xn dummy variables used to calculate the

convolution integral
Y model prediction variable
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