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The population approach to estimating mixed effects model parameters of interest in pharmaco-
kinetic (PK) studies has been demonstrated to be an effective method in quantifying relevant
population drug properties. The information available for each individual is usually sparse. As
such, care should be taken to ensure that the information gained from each population experiment
is as efficient as possible by designing the experiment optimally, according to some criterion. The
classic approach to this problem is to design ‘‘good’’ sampling schedules, usually addressed by the
D-optimality criterion. This method has the drawback of requiring exact advanced knowledge
(expected values) of the parameters of interest. Often, this information is not available.
Additionally, if such prior knowledge about the parameters is misspecified, this approach yields
designs that may not be robust for parameter estimation. In order to incorporate uncertainty in the
prior parameter specification, a number of criteria have been suggested. We focus on ED-
optimality. This criterion leads to a difficult numerical problem, which is made tractable here by a
novel approximation of the expectation integral usually solved by stochastic integration techniques.
We present two case studies as evidence of the robustness of ED-optimal designs in the face
of misspecified prior information. Estimates from replicate simulated population data show that
such misspecified ED-optimal designs recover parameter estimates that are better than similarly
misspecified D-optimal designs, and approach estimates gained from D-optimal designs where the
parameters are correctly specified.
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INTRODUCTION

Pharmacokinetic (PK) studies are carried out to understand the
absorption, distribution, metabolism and excretion of compounds (either
endogenous or exogenous in nature) in a living system. Inferences about
the underlying behavior of the system studied are made by repeated mea-
surements in numerous individuals, with the goal of quantifying the over-
all (population) response to a compound. Population experiments are
often conducted in a very different manner than those carried out on a
small number of individuals where rich data sets can be collected, since
the resources required to execute an experiment that fully quantifies each
individual are prohibitive.

The sparsity of data collected from each individual is a main feature
of population studies, and represents a significant challenge in parameter
identification (the inverse problem). As a result, mixed-effects models are
often used when attempting to identify parameters from a population (1).
These models partition sources of variability through the use of hierarchi-
cal statistical models. A key feature of mixed-effects models is the segrega-
tion of residual, unexplained variability (RUV) (measurement error, assay
error and other Type-1 errors) and variability due to the differences be-
tween subjects in the study (2). This separation allows for a reduction in
variance of the estimated population characteristics. Moreover, mixed-
effects models alleviate the (often infeasible) need for the data to fully
identify each individual.

Accuracy of parameter estimates in any modeling effort is highly
dependent on experiment design. With the additional complication of
sparse and costly data, a poorly designed population PK experiment can
lead to inaccurate (biased) and unreliable (large variance) parameter esti-
mates. In large-scale phase II and phase III clinical drug trials, this can lead
to increased delay and cost in drug approval by the United States Food and
Drug Administration (FDA) (3). As a result, optimal experimental design
for population PK experiments, whose purpose is to maximize the informa-
tion content in the data, is an important and relevant area of research.

Existing optimal designs for population PK studies have been investi-
gated in the form of D-optimal design strategies by Duffull, Mallet,
Mentré, Merle, Roccisani, Retout, Tod, these authors and others (4–6).
However, very few software packages are available that implement these
methods, principally OSP-Fit by Tod and Roccisani, PFIM by Retout,
Mentré and Duffull, and PopED by Foracchia, Hooker, Vicini and Ruggeri
(7–9). D-optimality seeks to reduce the scalarized (D-optimal: determinant)
covariance of the estimated population parameters by selection of an
experimental design. The invocation of the Cramer-Rao inequality provides

34 Dodds, Hooker, and Vicini



an asymptotic (lower) bound on the covariance of the parameter estimates
as the inverse of the Fisher information matrix (FIM) (10). The FIM can
be calculated given the model, prior information on the parameter values
and a particular design. One criticism that has been leveled at this approach
is that the requirement of exact prior information for the parameter values
flies in the face of the very reason these experiments are being carried out.
However, it has been demonstrated that D-optimal design quality is rea-
sonably insensitive to minor (20–30%) prior misspecification (11,12).

D-optimality assumes nominal values for the parameters, usually
gained from previous studies. If these values are subject to uncertainty, as
is usually the case, or are misspecified, this design may not be optimal.
Parameter values gained from studying small cohorts, such as in phase-I
clinical trials, will almost certainly provide little reliable information
about variability between individuals. Sequential approaches have been
suggested, where small trials are carried out to further refine parameter
estimates. More recently, the established D-optimality approach has been
extended to incorporate uncertainty in the parameters of interest. The
ED, EID and API criteria attempt to represent this uncertainty by assum-
ing prior distributions for the PK parameters, rather than restricting them
to a fixed value (7,13,14). These criteria are very appealing, but are not
widely used due to, in part, the difficulties associated with optimizing the
corresponding objective functions, which are generally posed as expected
values of some functional of the FIM. Two packages are available,
PopED and OSP-Fit, that treat this expection integral. However, they
choose to treat the expectation integral via stochastic integration. We will
choose a deterministic approximation in this approach.

The goal of this work is to alleviate the need for accurate prior infor-
mation for the population PK parameters of interest. In clinical drug
trials, parameter estimates from previous studies that provide these priors
may be inappropriate (e.g. those gained from animal studies, or those
gained from adult human studies when moving to pediatric therapies) or
inaccurate (e.g. between-subject variability, BSV estimates gained from
early trials where the number of subjects are small) but not irrelevant
(15). Rather than discard this useful information, it would be advanta-
geous to instead include the precision of that prior information as part of
the design of future experiments. Here, we provide this ability by specify-
ing the prior information on the parameters as distributions, rather than
point-values, by employing the ED-optimality design criteria (ED-
optimal: expectation of the determinant) (16,13). This adds a level of
complexity to the problem, as evaluation of the expectation integral is
generally intractable. However, we present a tractable approximation to
the ED-optimal design criterion to address this issue.
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BACKGROUND

Population Pharmacokinetic Modeling

We begin by developing a model for the i-th individual as part of an
experiment performed on m individuals which is designed to recover a
vector of p parameters (e.g. rate constants, volumes of distributions), bi,
for an underlying model, f(xi, bi), thought to describe the measurement
(e.g. concentration of a drug in serum), yi, at n specified experimental
variables (e.g. time) for that individual, xi (17):

yi ¼ fðxi; biÞ þ �i i ¼ 1 . . .m

�i � Nð0;Rðxi; biÞÞ

xi ¼ ðxi;1; . . . ; xi;nÞT

bi ¼ ðbi;1; . . . ; bi;pÞT

ð1Þ

where the RUV, �i, is assumed independent and identically distributed,
with mean zero and variance, R, and may be heteroscedastic and depen-
dent on the model parameters:

Rðxi; biÞ ¼
r1ðxi;1; biÞ 0

. .
.

0 rnðxi;n; biÞ

2
64

3
75 ð2Þ

At this stage, the model is limited to a single level of statistical uncer-
tainty, that of the RUV, and assumes that the parameter vector, bi, is
unique for each individual. This is an appropriate modeling framework
for early PK experiments, where the number of individuals is small and
the number of samples, n, that are taken from each individual is relatively
high. While the parameter values are specific to each subject, no definitive
information is available for the population at large. Averaging of the
parameter estimates (two-stage analysis) is possible, but the assessment of
variability in the population could be overestimated (18).

Later in drug development, investigators wish to identify both the
average and the variation of each parameter across a large population. To
accomplish this, we turn to mixed-effects models as a way to model indi-
viduals as samples from a larger population, thereby adding an additional
statistical model level. We then extend Eqs. 1 and 2 for the i-th individual
in the population by assuming that the individual parameter vector, bi, is
a function, g(Æ), of the population averages (fixed effects), bpop, individual-
specific anthropometric parameters (covariates), ai, and parameters that
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describe the difference between this individual and the population at large
(random effects), bi (18):

bi ¼ gðbpop; ai; biÞ; bi � Nð0;DÞ
bpop ¼ ðbpop

1 ; . . . ; bpop
p Þ

T; bi ¼ ðbi;1; . . . ; bi;qÞT
ð3Þ

where the q individual random-effects, bi, are assumed independent of the
RUV and are independently and identically distributed, with mean zero
and variance, D, that describes the spread of the parameter values across
the population, or BSV:

D ¼
d1 . . . 0

..

. . .
. ..

.

0 . . . dq

2
64

3
75 ð4Þ

Our population model thus includes two sources of variability, each
appearing at different stages of the statistical model. Previously, specific
parameter estimates were obtained for each subject. Now, each individual is
considered to be a realization of the population at large. Most commonly, the
so-called ‘‘mixed-effect model’’, g(...), combines the population fixed-effects
with the individual-specific random-effects in an additive or exponential man-
ner. In the additive case, this gives rise to a normal distribution for the indi-
vidual parameters, and in the exponential case, a lognormal distribution.

The task, then, is to design an experiment to estimate the parameters
that do not change over the population (fixed-effects), bpop (which describe
the average model parameters over the entire population) and D (which
describes the variance of the model parameters over the entire population):

a ¼ ðbpop
1 ; . . . ; bpop

p ; d1; . . . ; dqÞT ð5Þ

Additionally, the RUV, R, could be included in the vector of fixed- effects.
This, in essence, would optimize the design in such a way as to reduce the
subsequent estimate variance for this parameter. Since the RUV is a confound-
ing factor in estimating the BSV, this may be desirable in some instances (19).

Model Fitting

Parameter estimation (the inverse problem) by fitting the model to
the data can be accomplished by numerous methods, many of which are
based on the maximum likelihood (ML) estimator (18,20). We use p(yi| a,
bi) to denote the probability of observing yi for the i-th individual given
that the fixed-effect vector is a and the random effect vector is bi. The
probability of yi given a is the marginal:
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pðyijaÞ ¼
Z

pðyija; biÞdbi ð6Þ

When M independent individuals are considered, the ML estimate, a�, is
the value that maximizes the joint log-likelihood function L(a):

LðaÞ ¼
XM
i¼1

log pðyijaÞ

a� ¼ argmaxa½LðaÞ�
ð7Þ

where argmax[Æ] indicates a maximization procedure that is performed on
the argument, usually in the form of a gradient-based iterative optimiza-
tion algorithm. It is important to note that we are only attempting to esti-
mate the population characteristics, a, from the data and we also assume
that the functional form of the model, yi, and RUV, R, are known and
dependent only on the design variables and population parameters.

Once a ML estimator for a is obtained, the covariance of the estimated
parameters can be evaluated. The Cramer-Rao inequality places an asymp-
totic (lower) bound on the covariance matrix through the FIM (10):

Cov½a� � Fða; xÞ�1

Fða; xÞ ¼ Ey
@

@a
Lða; xÞT

� �
@

@a
Lða; xÞ

� �� �
ð8Þ

where Cov[Æ] indicates the covariance matrix of the argument, Ey[Æ] indi-
cates the expectation of the argument with respect to the experimental
observations, yi, and ‘‘‡’’ indicates an inequality, in a matrix sense (21).

The computationally burdensome ML estimator must be simplified
when, as in our case, the underlying model is nonlinear and complex. We
assume that yi given a and bi is normally distributed and the second par-
tial derivative of p(yi| a, bi) with respect to bi is zero. With this assump-
tion, the ML estimator is equivalent to the extended least squares (ELS)
estimator (18,20,22,23):

Lða; xÞELS ¼
XM
i¼1

1

2
log det½2pVða; xÞ�½ � þ 1

2
yi � hða; xÞ½ �TVða; xÞ yi � hða; xÞ½ �

� �

hða; xÞ ¼ Ey yi½ � ð9Þ
Vða; xÞ ¼ Cov yi½ �

where det[Æ] and log[Æ] indicate the determinant and natural logarithm,
respectively, of the argument.
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To ensure the ELS estimator assumptions are met, we linearize the
model using a 1st-order Taylor series around the between-subject random-
effects (20,24):

yi � f xi; gi bpop; ai; bið Þjbi¼0
� �

þ B xi; b
pop; aið Þ � bi þ �i

B xi;b
pop; aið Þ ¼ @

@bi
f xi; gi bpop; ai; bið Þð Þ

� �T

jbi¼0
ð10Þ

which then assures us that the population model is independently (in e
and b) and identically distributed (normal), with mean and variance:

hða; xÞ ¼ Ey yi½ � � f xi; gi bpop; ai; bið Þjbi¼0
� �

þ B xi; b
pop; aið Þ � bi

Vða; xÞ ¼ Cov yi½ � � R xi; gi bpop; ai; bið Þjbi¼0
� �

þ B xi; b
pop; aið Þ �Dðd1; . . . ; dqÞ � B xi; b

pop; aið ÞT
ð11Þ

Under these assumptions, the FIM becomes (25):

F a; xð Þ ¼ 1

2

@

@a
Vða; xÞ

� �T
½V�1ða; xÞ � V�1ða; xÞ� @

@a
Vða; xÞ � � �

þ @

@a
hða; xÞ

� �T
V�1ða; xÞ @

@a
hða; xÞ

ð12Þ

where ‘‘�’’ indicates the Kronecker product. This formulation differs only
slightly from that proposed by Mentré and Duffull, in that the variance
term, V, retains dependencies on the fixed-effects that appear in the model
(bpop), through R retaining dependence on these variables and individual
covariates (8, 9). Merlé and Tod studied the effects of assuming a con-
stant variance term, V, and noted only small discrepancies between the
approximated FIM and a reference FIM in the between-subject parame-
ters (26). However, they did note differences between the approximated
FIM and the reference FIM when comparing between designs.

Optimal Experimental Design

D-optimality

The most widely used criterion is D-optimality, which consists of
minimizing the determinant of the inverse FIM (3,24,27). This criterion
has three features that make it appealing: computational feasibility, sound
theoretical backing, and a geometric interpretation of minimizing the
volume of the joint asymptotic confidence region for the parameters of
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interest. Moreover, for our purposes, it will serve as a good benchmark in
developing ED-optimality (13,28).

A design, xD, is said to be D-optimal when it minimizes the negative
determinant of the FIM for a given set of parameter values, a (21):

jDðxÞ ¼ det Fða; xÞ½ �
xD ¼ argminx �jDðxÞ

� � ð13Þ

ED-optimality

The ED-optimality criterion attempts to search for an experimental
design that is best in the weighted average sense (16). That is, the parame-
ters of interest are assigned a prior distribution, and an expectation is per-
formed on the determinant of the FIM with respect to the joint
probability of the prior. A design, xED, is said to be ED-optimal if it min-
imizes the negative expected (Ea) determinant of the FIM with respect to
the parameter priors, a (21):

jEDðxÞ ¼ Ea det½Fða; xÞ�½ �

¼
Z þ1
�1

pðaÞ � det½Fða; xÞ�da

xED ¼ argminx �jEDðxÞ
� �

ð14Þ

where Ea[Æ] represents the expectation of the argument which results in a
multidimensional integral and p(a) is the probability density function that
describes the prior information on the parameters.

This leads to a multidimensional integral to evaluate the expectation.
The expectation will need to be evaluated many times, as the design vari-
ables are optimized. Numerical techniques can be used to make this eval-
uation, but the amount of computation required at each step is large, and
grows with the dimension of a. Direct solution of the original integral can
approximated by numerical integration (Gaussian quadrature) or,
as recently proposed, Monte Carlo techniques (29). Neither of these tech-
niques are suitable, at the current level of technology, for use in optimiza-
tion. As such, an approximation to the expectation which may lead to
more expedient calculations is desirable.

METHODS

Laplace’s Approximation to Exponential Integrals

We borrow heavily from Bayesian methods to arrive at an accurate
approximation of the expectation in our objective through application of
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Laplace’s Method. Originally published in 1774 by Laplace, and more
recently applied to Bayesian posterior moments and marginal densities by
Tierney and Kadane, this method replaces the expectation integral with an
optimization step (30,31). Recently, this approximation has been described
for marginal likelihood estimation for mixed effects models by Beal and
Sheiner, which has been discussed in this context by Vonesh, Bell and oth-
ers (25,22,32). This approximation potentially represents a large reduction
in computational burden, especially as the dimension of a grows. Laplace’s
method for approximating exponential integrals can be written:

Z þ1
�1

e�kða;xÞda � det @2ak am; xð Þ=ð2pÞ
� ��1=2�e�kðam;xÞ

am ¼ argmina kða; xÞ½ �
ð15Þ

where am minimizes k(a,x) (equivalent to maximizing the negative func-
tion, as in the original formulation) with respect to a given x. This
approximation is exact when the Hessian term @2akðam; xÞ is positive defi-
nite, which is the case when k(a,x) is a strongly convex quadratic function
of a. This approximation of our criterion (Eq. (14)) requires the calcula-
tion of the second derivatives of the transformed integrand, in contrast
with other methods requiring computation of third- and perhaps higher-
order terms (29).

We now recast Eq. (14) in these terms to arrive at an approximate
optimality objective:

jEDðxÞ ¼ Ea det½Fða; xÞ�½ �
xED ¼ argminx �jEDðxÞ

� �

¼ argminx �
Z þ1
�1

pðaÞ � det Fða; xÞ½ �da
� �

¼ argminx �
Z þ1
�1

e�kða;xÞda

� �

kða; xÞ 	 � log pðaÞ � det½Fða; xÞ�½ �

xED � argminx � det½@2akðam; xÞ � ð2pÞ
�1��1=2 � e�kðam;xÞ

h i

am ¼ argmina kða; xÞ½ �

ð16Þ

where p(a) is the prior information on the parameters of interest. The
expectation integral has been replaced by a nested optimization problem
in a, which generally can be expected to have a much lower dimension
than the design variables (xED).
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It is worthwhile to pause and consider the posed problem at a con-
ceptual level. At each design set (the ‘‘outer’’ optimization problem) itera-
tion, a vector of am is selected, again iteratively (the ‘‘inner’’ optimization
problem), that maximizes the product of the prior information and scalar-
ized FIM. So, the selection of am is based on both the information in the
experiment and the prior.

We replace the second derivative, @2akðam; xÞ, with a finite difference
approximation, which is consistent with the requirement of Laplace’s
approximation that k(a,x) be a strongly convex quadratic function of a
(25).

Models

To test the robustness of our designs, we develop a simulation strat-
egy for the designed experiments, then carry out parameter estimation on
the simulated data and compare the estimates with the known values that
drove the simulations. D-optimality is used as a baseline comparison, as
this method is established in the literature, and reflects the current state-
of-the-art in optimal experiment design

Population Model 1

Our first model is of the form commonly referred to as a ‘‘two-expo-
nential’’ model, where the disappearance of a drug from blood plasma
follows a bi-phasic exponential decay. The prior information we begin
with when selecting an optimal design is loosely based on a previous
work, which indicates a two-exponential model accurately captures the
appearance and clearance of low-density lipoprotein (LDL) in blood plas-
ma (33). We applied an additive mixed-effect model to the model parame-
ters, resulting in four population average parameters (bpop

1 ; . . . ; bpop
4 Þ and

four subject-specific random-effect (b1, . . . , b4) parameters. The between-
subject parameters were modeled as samples from the overall population,
mean zero and variance described by four BSV parameters (d1,…, d4), as
described in the Background of this work. The values of the BSV parame-
ters were chosen arbitrarily. A log-transformation was applied to the BSV
parameters. The RUV was constant throughout the study. Forty simu-
lated subjects (i=1,…,40) were considered for each experiment, from
which two samples (xi) could be extracted. The time course of the study
was from 0–14 days, thus providing bounds on the feasible sampling
times for each individual (xi). The parameters of interest in this study
were the four central tendencies for the parameters and the related
between-subject variance parameters, for a total of eight fixed effects
parameters overall (a).
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Mathematically, this experiment can be represented as:

yiðbi; xiÞ ¼ bi;1 � e�bi;2�xi þ bi;3 � e�bi;4�xi þ ei

bi ¼ ðb
pop
1 þ bi;1; . . . ; bpop

4 þ bi;4Þ
bi � Nð0;DÞ
ei � Nð0;RÞ

D ¼

ed1 � � � 0

ed2

..

.
ed3

0 � � � ed4

2
666664

3
777775

R ¼

250000 0

. .
.

0 250000

2
664

3
775

a ¼ ½bpop
1 ; . . . ; bpop

4 ; logðd1Þ; . . . ; logðd4Þ�

ð17Þ

Population Model 2

Our second PK model comes from another commonly encountered
PK model: the one-compartment, linear absorption model. Here, the
model describes the delayed appearance of a drug in the plasma, often an
oral dose, followed by a mono-phasic elimination from the plasma. The
prior information we use is somewhat informed by a previous analysis of
an anti-asthmatic drug, theophylline (22). We applied a exponential
mixed-effect model to capture the three (j=1,…,3) population average
parameters (bpop

j ) and three subject-specific random-effects (bi). The
between-subject parameters were modeled as samples from overall popu-
lation, mean zero and variance described by three BSV parameters
(d1,…, d3). The BSV parameter values were chosen arbitrarily. A log-
transformation was applied to both the population average and between-
subject variance parameter. The RUV was proportional to the model
output by a known amount. Thirty-six subjects (n=36) were considered
for each experiment, from each of which two samples (yi) could be
extracted. Each individual is additionally characterized by a covariate,
dose over body weight (ai). Covariates for 12 individuals were used (under
the assumption of normality) to generate 24 additional synthetic covari-
ates, bringing the number of subject in the simulated trial to 36. The time
course of the study was from 0 to 24 hr, thus placing bounds on the
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feasible sampling times for each individual (xi). The parameters of interest
in this study were the three population parameters and the related BSV
parameters, totaling six parameters overall (a).

Mathematically, this experiment can be represented as:

yiðbi; xiÞ ¼ fiðbi; xiÞ þ ei

fiðbi; xiÞ ¼
a � bi;1 � bi;2

bi;3 � ðbi;1 � bi;2Þ
ðe�bi;2�xi � e�bi;1�xiÞ

a¼
4:02; 4:44; 4:53; 4:4; 5:86; 4:0; 4:95; 4:53; 3:1; 5:5; 4:92; 5:3; 5:1; 4:18; . . .

5:04; 3:8; 4:69; 3:13; 4:26; 4:97; 4:39; 5:55; 4:15; 2:89; 3:71; 5:41; 4:54; . . .

4:91; 5:33; 3:04; 4:14; 4:1; 3:87; 4:49; 5:76; 4:6

2
4

3
5

bi ¼ ðebpop
1 � ebi;1 ; . . . ; ebpop

3 � ebi;3Þ
bi � Nð0;DÞ
ei � Nð0;RÞ

D ¼
ed1 � � � 0
..
.
ed2 ..

.

0 � � � ed3

2
64

3
75

R ¼
ð0:05 f1Þ2 0

. .
.

0 ð0:05 fnÞ2

2
664

3
775

a ¼ ½logðbpop
1 Þ; . . . ; logðbpop

3 Þ; logðd1Þ; . . . ; logðd3Þ� ð18Þ

Optimal Designs

To demonstrate the utility of our ED-optimality design approach,
three optimal designs were established for each model. Two D-optimal
designs were created, one at the ‘‘true’’ values of the parameters (Dt) and
one with severe misspecification of the parameters (Dm). Here, we mean
‘‘true’’ in the sense that these values will be used to simulate population
experiments for all design cases. An experiment conducted using the Dt
design should then be optimal by construction, since is assumes knowl-
edge of the true parameter values. Conversely, an experiment conducted
using the Dm design should perform very poorly when estimating the
parameters. These two experimental designs should then provide the high
and low benchmark, respectively, when examining the performance of
ED-optimal designs.
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To construct the priors for the misspecified D-optimal design (Dm),
we applied a positive percent increase to the Dt priors in normal-space.
Tables I and II describe the exact values used for Model 1 and 2, respec-
tively. D-optimal design has been noted to be insensitive to minor misspe-
cification, and so this approach creates D-optimal designs (Dm) that
should be poor. Transitioning from phase-I to phase-II trials, where the
between-subject prior information underestimates the variability in the
overall population, may create such misspecifications. Priors taken from
animal studies and used to design phase-I trials may be likewise quite
misspecified. It is, however, unlikely that every parameter in the system is

Table I. Model 1 Case Study Prior Summary

Parameter True value

Dt priors Dm priors ED priors

Mis % l Mis % l Mis % l SD

bpop
1

31000 0% 31000 150% 46500 150% 46500 7750

bpop
2

0.61 0% 0.61 200% 1.22 200% 1.22 0.305

bpop
3

14000 0% 14000 300% 42000 300% 42000 14000

bpop
4

0.13 0% 0.13 400% 0.52 400% 0.52 0.195

log(d1) 18.28 0% 18.28 150% 18.68 150% 18.68 0.2027

log(d2) )3.396 0% )3.396 200% )2.703 200% )2.703 0.3466

log(d3) 16.69 0% 16.69 250% 17.6 250% 17.6 0.4581

log(d4) )6.49 0% )6.49 300% )5.39 300% )5.39 0.5493

The Dt priors (l) were, by definition, assigned from the values used to simulate all data sets. The

Dt priors, in normal space, were positively increased by the specified percentage (Mis %) to yield

new parameter priors for the Dm case. The ED priors were defined as normal, mean equal to the

Dm point-values, and standard-deviations (SD) equal to half of the difference between the Dt

and Dm priors.

Table II. Model 2 Case Study Prior Summary

Parameter True value

Dt priors Dm priors ED priors

Mis % l Mis % l Mis % l SD

log(bpop
1 ) 0.3038 0% 0.3038 150% 0.7093 150% 0.7093 0.4055

log(bpop
2 ) )2.573 0% )2.573 200% )1.880 200% )1.880 0.6931

log(bpop
3 ) )3.289 0% )3.289 125% )3.066 125% )3.066 0.2231

log(d1) )0.9352 0% )0.9352 200% )0.2421 200% )0.2421 0.6931

log(d2) )3.990 0% )3.990 250% )3.074 250% )3.074 0.9163

log(d3) )3.154 0% )3.154 300% )2.055 300% )2.055 1.099

The Dt priors (l) were, by definition, assigned from the values used to simulate all data sets. The

Dt priors, in normal space, were positively increased by the specified percentage (Mis %) to yield

new parameter priors for the Dm case. The ED priors were defined as normal, mean equal to the

Dm point-values, and standard-deviations (SD) equal to the difference between the Dt and Dm

priors.

45Robust Population Pharmacokinetic Experiment Design



so misspecified. However, here, we wish to create D-optimal designs that
should ‘‘fail’’, but will nonetheless serve as low benchmark.

ED-optimal designs were created (ED), each assuming a normal dis-
tribution for the parameters with means equal to the values used in the
Dm design. These priors should be interpreted as reflecting uncertainty, not
population distribution. In the case of Model 1, the BSV parameters were
log-transformed, so the distribution is lognormal. In the case of Model 2,
every parameter was log-transformed so as to be distributed lognormally.
During the search of the integrand within Laplace’s approximation, am

minimizes k(a, x), care was necessary to assure that negative realizations
of the parameters, particularly the variance parameters, were not allowed
by the priors. Standard deviations for the priors were chosen so as to
include the true values of the parameters within their distributions (in log-
space), but with differing probability. The priors used in Model 1 included
the true values at two standard deviation. The priors used in Model 2
included the true values at one standard deviations. In this manner, the
ED design has no advantage over the misspecified Dm design, except by
defining our prior knowledge as a distribution instead of a point-value.

D-Optimal Designs

The algorithm for finding D-optimal design values (xD) is as follows.
Initial values for the design points were selected to be balanced and even-
ly spaced across the admissible design domain. Point-values for the popu-
lation parameters (a) were given as either the true values (Dt) or the
misspecified values (Dm). The FIM was evaluated at this initial design. A
combined trust-region/interior point method for optimization subroutine
(Bell and Burke, unpublished results) was passed this design, objective
information (model and derivatives required to evaluate the FIM), and
convergence criterion (relative difference between each design value
between iterations less than 10)3). Upon termination, the design values
were inspected to ensure that the design points fell into m clusters, where
m is equal to the number of population average parameters (bi

pop). This is
a well known property of individual D-optimal designs where the model
response is expected to be the same for each individual (no covariates)
(34). However, this rule has only been demonstrated for exponential mod-
els in the context of optimizing individual experiments. If some design
points fell outside the clusters, a quantitative comparison of the contribu-
tion to the FIM for the design points for those individuals was made
against the FIM for individuals with design points within the clusters. In
every circumstance, local minima were always the cause for this problem.
If the design points were revealed to be sub-optimal, the design points
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were replaced with points within the clusters. The interior point routine
was reinitialized with the new design set, which then produced another
design that was again inspected. Generally, only two of these inspections
were required to produce designs that assigned design points from the m
clusters to all individuals.’

ED-Optimal Designs

The algorithm for finding the ED-optimal design values (xED) is as
follows. Initial values for the design points were selected to be equal to
the design points found for the misspecified D-optimal design (Dm). Any
change from the Dm design can be directly attributable to the specifica-
tion of the prior as a density, rather than the point-values used in the
D-optimal design. A combined trust-region/interior point method for
optimization subroutine was passed this initial design, objective informa-
tion (model, derivatives required to evaluate k(a,x) and convergence crite-
rion). Within this outer optimization problem (xED), an inner
optimization problem was solved (am that minimizes k(a,x) with respect to
a given our current xED). Other investigators in this area have noted that
as the prior distributions become broader, there appears to be less cluster-
ing of design points (28). If this design set, xDm, is ‘‘far’’ from the final
design, xED, conditional on these priors, the optimization may fail
because of numerical problems. Essentially, the inner optimization prob-
lem may select a value from the priors that leads to an ill-conditioned
FIM (Laplace’s approximation relies on a stable second derivative of the
FIM). The solution here is to start with much narrower priors that more
closely resemble the point-value priors used in the Dm case and change
them incrementally until the target prior is achieved. Procedurally, we
reduce the prior breadth by one-half until the problem stabilizes and a
new design is found for the narrower priors. From here, the priors are
broadened slightly in an iterative fashion until the target priors are
achieved. This methodology is in alignment with the actual procedure an
investigator would use when generating ED-optimal designs: first, create a
D-optimal design using point-values for priors, then increase the prior
breadth until they match the relevant uncertainty.

Design Quality Assessment

Experiment Simulation

For the purposes of our simulations, the true value for each parame-
ter (a) was used. Samples were drawn for each between-subject random
effect (bi) and within-subject random-effect (�i), whose distributions were
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defined as normal, mean zero, and variance given by D and R, respec-
tively. The seed value used to initialize the random sampling algorithm
was fixed so as to provide the same individual’s random effect across the
three designs. Five hundred studies were simulated for each design, so as
to compare the performance of each design in recovering the true value of
the parameters. Data were censored to exclude realizations of parameters
outside of physiological significance (negative bi) for Model 1 and nega-
tive data realizations (yi). In this case, the entire simulated population
dataset was re-sampled.

Parameter Estimation

Estimation was performed using the first order approximation to the
ML function within NONMEM V (UCSF and GloboMax) (22). Initial
parameter values for the optimization were selected to be exactly the prior
values used in each design case. For the Dt designs, these were the true
values of the parameters. For the Dm and ED designs, the misspecified
point-value priors and central tendencies of the priors were selected,
respectively. In practice, an estimation step performed after a trial will
likely use these values as initial guesses. By choosing the misspecified val-
ues for the initial guesses, the estimation step can only recover the true val-
ues of the parameter by virtue of the quality of the data gained by the
design. Parameter estimates from each of the 500 studies for each of the
three designs were obtained with no failures in estimation. However, in
some cases, estimate precisions were not available. Most often, this was
caused by a non-invertible Hessian of the likelihood. The frequency of
this failure can be interpreted as the rate at which any one experiment
using this design will provide unreliable estimates. For those estimates for
which parameter precisions were available, we visualized the estimates and
estimate coefficients of variation (%CV) for each design.

RESULTS

Computational Considerations

All of the designs, simulations and back-estimation problems were
computed on a modern desktop computer (AMD Athlon XP, 2.2 Ghz).
The D-optimal designs were delivered in on the order of tens of minutes.
The ED-optimal designs were delivered in on the order of hours. This
inflation is principally due to the difficult numerical problem that requires
an additional two levels of partial derivatives to be computed. The simu-
lated data sets were relatively trivial to compute, and were delivered in on
the order of minutes. The parameter estimation step, as it involved
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hundreds of population PK problems, was quite time-consuming, each
taking approximately 2 min to complete. Each design for each problem
required on the order of 12 hr of computing time. While this may seem a
quite lengthly process, when it is considered in the overall context of clini-
cal trials, the time required to carry out these simulation methods is rela-
tively negligible.

Population Model 1

The parameters used in our Dt design and data simulation were
bpop=[3.1·104, 0.61, 1.4·104, 0.13]T and log(d)=[18.28, )3.396, 16.69,
)6.49 ]T. To construct the priors for the misspecified D-optimal design
(Dm), we applied a positive percent increase to the Dt priors, resulting in
a vector of priors whose values were bpop=[4.65·104, 1.22, 4.2·104, 0.52]T

and log(d)=[18.68, )2.703, 17.6, )5.39 ]T. The ED-optimal design priors
had the Dm values as means, and standard deviations defined relative to
the degree of misspecification of the parameters (Table I). Figure 1
summarizes the prior values for each of the three design for each of the
eight parameters in this case study.

D-optimal design for this model at the true values of the parameters
(Dt) yields samples at 5·10)6, 0.667, 6.17 and 14 days. A balanced design
was selected, where half of the subjects are sampled at 5·10)6 and
0.667 days and the other at 6.17 and 14 days. Figure 2 shows an example
set of a simulated data superimposed on the ‘‘typical’’ population predic-
tion. The low value of 5·10)6 days here is an artifact of the numerical
method used to solve this problem, as selection of zero for a sampling
time yields an unstable objective due to central differencing, and should
be interpreted as a directive to sample as early as possible. The high value
selected is at the maximum allowable time point. These time points repre-
sent the optimal sampling times for this experiment, and will allow for the
greatest possible precision in estimating the parameters, given the number
of subject, available number of samples, and sampling time constraints.
D-optimal design at the misspecified priors (Dm) yields sample times of
5·10)6, 0.330, 2.30 and 4.92 days. This is to be expected, as the priors
used for Dm indicate a more rapid decay of the exponential terms.

ED-optimal design for this model, centered at the misspecified values
yield sampling times of 5·10)6, 0.234, 7.07 and 14.0 days. Again, we note
a sampling time at the allowed minimum for this experiment. The inter-
mediate sampling times are one smaller (0.234 vs. 0.667) and the other
larger (7.07 vs. 6.17) than the Dt design. The central tendency of the
priors indicate faster-decaying exponentials, but the potential for slower
decay rates is allowed by the priors. Recall that ED-optimality selects a

49Robust Population Pharmacokinetic Experiment Design



Fig. 1. Histogram of the parameter priors used in the Model 1 case study. The population
average parameter priors appear in the left column, and the between-subject variance param-
eters appear in the right column. The true parameters are used as priors in the Dt case (solid
vertical line), and a positive increase was applied to these values to create the Dm priors
(dotted vertical line). The ED priors (histogram) have as their central tendencies the Dm
priors, and are broad enough to include the true values of the parameters within two stan-
dard deviations of the central tendencies.
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Fig. 2. Model 1 case study designs for (top panel to bottom panel) D-optimal designs (Dt
and Dm) and ED-optimal design (ED). ‘‘Typical’’ population model responses (solid line) are
plotted against time. Additionally, one of the 500 simulated population data sets used for
parameter estimation are shown, to get a sense of the variability in the data (dots).
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design that is best for the weighted average of the parameter priors. Thus,
sampling at earlier times in the experiments is indicated because of the
central tendencies of the priors, but some accounting for outliers in the
priors must be made. The second time point is sooner than even the Dm
design indicates, but the third time point is later than the Dt design would
indicate.

Estimates for each of the eight parameters (bpop and d) were avail-
able from the 500 replicates of each of the three experiments. The Dt, Dm
and ED designs generated 495 (99%), 486 (97%) and 494 (99%) experi-
ments, respectively, where estimate precisions could be calculated. Param-
eter estimates, Fig. 3, and%CV’s, Fig. 4, are shown as box plots for those
experiments where parameter precisions could be calculated. The parame-
ter estimates (Figure 3) appear to be reasonably similar when comparing
the Dt and ED designs. In contrast, the estimates derived from the Dm
design appear markedly different. The amplitude term estimates (bpop

1 and
bpop
3 Þ are asymmetrically distributed and negatively correlated (one higher,

one lower than their true values). The slower of the two exponential de-
cay rates (bpop

4 Þ is systematically underestimated. The%CV’s (Fig. 4) show
that the Dm design provides much less accurate estimates than either the
Dt or ED design. Recall that the objective of D- and ED-optimal design
is to reduce variance in our final parameter estimates.

Population Model 2

Design creation methodology parallels that used in the previous two-
exponential case study. The Dt design priors correspond to the values
used in the original publication, and were log(bpop)=[0.3038, )2.573,
)3.289]T and log(d)=[ )0.9352, )3.990, )3.154]T. To construct the priors
for the Dm design, we applied positive percent increases to the Dt priors,
whose values were log(bpop)=[0.7093, )1.880, )3.066]T and log(d)=[
)0.2421, )3.074, )2.055 ]T. The ED-optimal prior distributions had the
Dm values as their means, and standard deviations defined relative to
each parameter’s degree of misspecification (Table II). Figure 5 summa-
rizes the prior information for each of the designs.

The inclusion of a covariate for each individual (dose/weight), would
typically generate designs that are ‘‘tailored’’ to each individual. However,
the measurement error model in this case is proportional to the model
output. As the covariate appears as an amplitude term, and the model
error (and therefore information available from sampling each individual)
is proportional to the amplitude, these factors cancel out, yielding designs
that are the same for every individual.
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Fig. 3. Parameter estimate results for the subset of the 500 simulated experiments for the
Model 1 case study for which estimate precisions were available. Population average parame-
ters are arranged in the left column, between-subject variance in the right. The true parame-
ter values are denoted as a dashed line, and the designs are ordered (left to right) Dt, Dm,
and ED, with the number of estimates (out of 500) included in these (abscissa) figures. These
box plots show the median of the estimates (notch), interquartile range (box extent), 1.5
times the 25% and 75% quartiles (whiskers), and any outlier estimates beyond 1.5 times the
interquartile range (pluses).
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Fig. 4. Parameter estimate coefficients of variation (%CVs) for the subset of the 500 simu-
lated experiments for the Model 1 case study for which estimate precisions were available.
Population average parameter %CVs are arranged in the left column, between-subject vari-
ance %CVs in the right. The designs are ordered (left to right) Dt, Dm, and ED, with the
number of estimates (out of 500) included in these (abscissa) figures. These box plots show
the median of the estimates (notch), interquartile range (box extent), 1.5 times the 25% and
75% quartiles (whiskers), and any outlier estimates beyond 1.5 times the interquartile range
(pluses).
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Fig. 5. Histogram of the parameter priors used in the Model 2 case study. The population
average parameter priors appear in the left column, and the between-subject variance param-
eters appear in the right column. The true parameters are used as priors in the Dt case (solid
vertical line), and a positive increase was applied to these values to create the Dm priors
(dotted vertical line). The ED priors (histogram) have as their central tendencies the Dm
priors, and are broad enough to include the true values of the parameters within one
standard deviations of the central tendencies.

55Robust Population Pharmacokinetic Experiment Design



D-optimal design for this model at the true values of the parameters
(Dt) yields samples at 5 · 10)6, 1.187 and 22.42 hr. Figure 6 shows an
example simulated set of data superimposed on the ‘‘typical’’ population
prediction. The low value of 5 · 10)6 hr here is an artifact of the

Fig. 6. Model 2 case study designs for (top panel to bottom panel) D-optimal designs (Dt
and Dm) and ED-optimal design (ED). ‘‘Typical’’ population model responses (solid line) are
plotted against time. Additionally, one of the 500 simulated population data sets used for
parameter estimation are shown, to get a sense of the variability in the data (dots).
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numerical method used to solve this problem, as selection of zero for a
sampling time yields an unstable objective due to central differencing. The
high value selected is close to the maximum allowable time point. These
time points represent the optimal sampling times for this experiment, and
will allow for the greatest possible accuracy in estimating the parameters.
D-optimal design at the misspecified priors (Dm) yields sample times of
5 · 10)6, 0.817 and 7.07 hr.

ED-optimal design for this model, centered at the misspecified values
yield sampling times of 5 · 10)6, 0.769 and 24.0 hr. The intermediate
sampling times are smaller (0.769 vs. 1.187) and larger (24.0 vs. 22.42)
than the Dt design.

Estimates for each of the six parameters (bpop and d) were available
from the 500 replicates of each of the three experiments. The Dt, Dm and
ED designs generated 500 (100%) experiments, where estimate precisions
could be calculated. Parameter estimates, Fig. 7, and %CV’s, Fig. 8, are
shown as box plots for those experiments where parameter precisions
could be calculated. The parameter estimates (Fig. 7) appear to be very
similar when comparing the Dt and ED designs, but markedly different
when examining the Dm design. The elimination rate constant and clear-
ance estimates (bpop

2 ,bpop
3 Þ for the Dm case appear to have a larger spread,

as do the estimates for the related BSV parameters. The %CV’s (Fig. 8)
follow a similar pattern. Precise estimates for all parameters appear more
difficult in the Dm case, except for the BSV parameter related to the
absorption rate (d1), where the estimates bias (Fig. 7) is quite high.

DISCUSSION

The failure rate of the Dm designs was only slightly higher compared
to the Dt designs, 3% vs. 1% for Model 1, and 0% vs. 0% for Model 2,
respectively. However, the ED designs had a failure rate of 1% and 0%
for Models 1 and 2, which is a good result. Figures 3 and 7 show larger
spreads for the Dm design estimates. Figure 3 reveals a potential problem
for the Dm design in obtaining unbiased estimates for the amplitude
terms in Model 1. Figure 7 reveals a potential problem for the Dm design
in obtaining unbiased estimate for the clearance term in Model 2. The
parameter estimate precisions are also strong evidence for establishing
that the ED designs perform better than the Dm designs. For Model 1
(Fig. 4), the precisions are significantly poorer for the Dm design than
either the ED or Dt designs. For Model 2 (Fig. 8), same pattern is
repeated. The Dm designs provide estimates that are more biased, have
larger spreads and are less precise than either the ED or Dt designs. The
ED designs, by comparison, compare quite well to the Dt design, being
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Fig. 7. Parameter estimate results for the subset of the 500 simulated experiments for the
Model 2 case study for which estimate precisions were available. Population average parame-
ters are arranged in the left column, between-subject variance in the right. The true parame-
ter values are denoted as a dashed line, and the designs are ordered (left to right) Dt, Dm,
and ED, with the number of estimates (out of 500) included in this (abscissa) figure. These
box plots show the median of the estimates (notch), interquartile range (box extent), 1.5
times the 25% and 75% quartiles (whiskers), and any outlier estimates beyond 1.5 times the
interquartile range (pluses).
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Fig. 8. Parameter estimate coefficients of variation (%CVs) for the subset of the 500 simu-
lated experiments for the Model 2 case study for which estimate precisions were available.
Population average parameter %CVs are arranged in the left column, between-subject vari-
ance %CVs in the right. The designs are ordered (left to right) Dt, Dm, and ED, with the
number of estimates (out of 500) included in this (abscissa) figure. These box plots show the
median of the estimates (notch), interquartile range (box extent), 1.5 times the 25% and 75%
quartiles (whiskers), and any outlier estimates beyond 1.5 times the interquartile range
(pluses).
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only slightly more biased, diffuse and imprecise than the Dt design. Recall
that the Dm and ED estimation steps were initialized from the misspeci-
fied prior values. Therefore, these metrics describe how the quality of the
data collected from these designs is sufficient to shift the estimates from the
misspecified values towards the true values of the parameters.

Comparing the designs graphically (Figs. 2 and 6) provides insight
into these behaviors. The ED designs are only slightly different than the
Dt, and so we can expect only slight differences in results derived from
these experiments. The Dm designs for both models, differ substantially
from the Dt designs. The ED design, whose prior central tendencies are
informed by the Dm priors, demonstrates that the averaging process does
adjust the design values substantially.

Insight Into the ED-optimal Sampling Choices

At our ED-optimal design, the method has selected a set of sampling
times (x) that maximize the expectation of the product of the prior proba-
bility density function and the Fisher information. Additionally, this re-
sult relies upon the selection of a set of parameters (am) at the optimal
design that maximize the product of the prior probability density function
and the Fisher information. Recall that the iterative, nested procedure is:

• Find the design (xED) that minimizes our approximation of the objec-
tive, conditional on the parameters (am).

• Find the parameters (am) that minimizes the product of the priors and
determinant of the FIM, conditional on the current design (xED).

A radical departure of am from the central tendencies of the priors
will result in a ED design that is significantly different from the Dm
design. Recall, the ED priors have as their central tendencies the Dm
priors. It may also be telling to examine the am’s relative to the Dt and
Dm designs, as this may explain why the ED designs perform better than
the Dm designs.

For Model 1, these values were am=[ 48422, 1.147, 47819.3, 0.078,
18.66, )2.72, 17.16, )5.19]. The true values for the parameters, used in
the Dt design, were aDt=[ 31000, 0.61, 14000, 0.13, 18.28, )3.40, 16.69,
)6.49]. The misspecified values, used in the Dm design and as central ten-
dencies for the ED design, were aDm=[ 46500, 1.22, 42000, 0.52, 18.68,
)2.70, 17.60, )5.39]. The key difference between the ED and the Dm
designs can be explained by examining the ED selection of the exponen-
tial decay rates, the first being 93% of the Dm prior and 171% of the Dt
prior, and the second being 64% of the Dm prior and 95% of the Dt
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prior. The design is selected, in a sense, for the case where the exponential
decay rates are slower than the Dm prior would indicate. In fact, the ED
design considers the possibility that the second decay rate may be even
slower than the Dt prior. Slower exponential decay indicates later sam-
pling may be required. Hence, we find a sampling time even later than the
Dt design (7.06 vs. 6.17 days). Here, we can see how the averaging
process is making a substantial impact on the design choices, and the
choice of the parameter values that maximize the expectation integrand
explains this difference.

For Model 2 these values were am=[ 0.676, )1.712, )3.066, 0.254,
)3.894, )3.56]. The true values for the parameters, used in the Dt design,
were aDt=[ 0.3038, )2.573, )3.289, )0.9352, )3.990, )3.154]. The mis-
specified values, used in the Dm design and as central tendencies for the
ED design, were aDm=[0.7093, )1.880, )3.066, )0.2421, )3.074, )2.055].
This model has a proportional error structure, so there is a preference for
later sampling times as these data will have less error associated with
them. When compared to the D-optimal priors, the first three ED param-
eter choices are 97%, 118% and 100% of the Dm priors. One interesting
feature of the ED parameter choices is that the BSV related to the oral
absorption rate is 164% of the Dm prior and 328% of the Dt prior. With
a very large BSV for the oral absorption rate, the absorption rate for a
specific individual could fall between 32% and 311% of the typical popu-
lation value (one standard deviation of the BSV). This may explain why
the middle sampling time is sooner than even the Dm design would indi-
cate: this amounts to a recommendation to sample earlier to get a precise
estimate for those individuals with a very fast absorption. As there is a
benefit to sampling late where there is little error, we see a sampling time
selected as late as allowed, possibly to estimate the elimination rate in the
case where an individual’s absorption rate is very slow compared to the
overall population.

Summary

The two case-studies examined preliminarily demonstrate the feasibil-
ity and utility of ED-optimal design in settings where parameter prior
information available for optimal design is misspecified. In both cases the
performance, in terms of reduced estimate bias and reduced estimate coef-
ficients of variation, of ED-optimal designs approaches that of D-optimal
designs whose priors are exactly the parameters used to simulate the data,
despite the fact that the central tendencies of the ED-optimal designs were
severely misspecified (50–400%). Certainly, the ED-optimal designs are
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superior to the misspecified D-optimal designs in the context of prior mis-
specification.

Two approaches have previously been suggested to overcome the
additional complications of the ED-optimality criterion. Pronzato and
Walter initially suggested stochastic approximation techniques, and
D’Argenio later suggested an approach relying on adaptive random
search suitable for discrete priors (13,35). Both of these methods have
been applied in the available packages, OSP-Fit and PopED. In this
work, we present an additional option for approximating the expectation
integral with our specific objective, ED-optimality. However, the same
methodology could in principle be applied to EID- and API-optimality.

It is our opinion that three major obstacles prevent widespread
acceptance of optimal experimental design in the population clinical trial
context: the lack of available software tools, the limitation of point-valued
priors, and the computational burden of models with sufficient complexity
to answer today’s problems. ED-optimality, while alleviating the second
limitation, presents a difficult numerical problem, which we have made
tractable by replacing the expectation integral with a nested optimization
problem.

ACKNOWLEDGMENTS

This work was funded by NIH grants RR-12609, EB-001975
‘‘Resource Facility for Population Kinetics’’ and GM-60021. The authors
would like to thank an anonymous reviewer and Dr. Lewis Sheiner for
their helpful comments, and Dr. Bradley Bell for useful discussions.

REFERENCES

1. Center for Drug Evaluation and Research (CDER). Guidance for Industry: Population
Pharmacokinetics (1999).

2. N. H. Holford, H. C. Kimko, J. P. Monteleone, and C. C. Peck. Simulation of clinical
trials. Annu. Rev. Pharmacol. Toxicol. 40:209–234 (2000).

3. D. Z. D’Argenio. Optimal sampling times for pharmacokinetic experiments. J. Pharma-
cokinet. Biopharm. 9:739–756 (1981).

4. A. C. Hooker, M. Foracchia, M. G. Dodds, and P. Vicini. An evaluation of population
D-optimal designs via pharmacokinetic simulations. Ann. Biomed. Eng. 31:98–111 (2003).
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