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Lumping in Pharmacokinetics
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Pharmacokinetic (PK) models simplify biological complexity by dividing the body into inter-
connected compartments. The time course of the chemical′s amount (or concentration) in
each compartment is then expressed as a system of ordinary differential equations. The com-
plexity of the resulting system of equations can rapidly increase if a precise description of
the organism is needed. However, difficulties arise when the PK model contains more variables
and parameters than comfortable for mathematical and computational treatment. To overcome
such difficulties, mathematical lumping methods are new and powerful tools. Such methods
aim at reducing a differential system by aggregating several variables into one. Typically, the
lumped model is still a differential equation system, whose variables are interpretable in terms
of variables of the original system. In practice, the reduced model is usually required to sat-
isfy some constraints. For example, it may be necessary to keep state variables of interest
for prediction unlumped. To accommodate such constraints, constrained lumping methods have
are also available. After presenting the theory, we study, here, through practical examples,
the potential of such methods in toxico/pharmacokinetics. As a tutorial, we first simplify a
2-compartment pharmacokinetic model by symbolic lumping. We then explore the reduction of
a 6-compartment physiologically based pharmacokinetic model for 1,3-butadiene with numer-
ical constrained lumping. The lumping methods presented here can be easily automated, and
are applicable to first-order ordinary differential equation systems.

KEY WORDS: pharmacokinetics; physiologically-based pharmacokinetic model; uncon-
strained lumping; constrained lumping; 1,3-butadiene.

INTRODUCTION

Two kinds of pharmacokinetic (PK) models, or toxicokinetic (TK) mod-
els (for toxic compounds), are typically used to describe the absorption, dis-
tribution, metabolism, and elimination of chemicals as a function of time:
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data-based PK models (also referred as empirical PK models) and physio-
logically-based pharmacokinetic (PBPK) models (1). They simplify biological
complexity by dividing the body into interconnected compartments. The time
evolution of the chemical′s amount (or concentration) in each compartment
is described by a system of ordinary differential equations. The dimension of
such systems depends on model complexity. Typically, the finer the description
of the biodistribution process, the higher the system dimension. Due to their
pretense at describing anatomical and physiological structure, PBPK models
have typically higher complexity and dimensionality than empirical PK mod-
els. However, difficulties arise when the PK model contains more variables and
parameters than comfortable for mathematical and computational treatment.
Indeed, parameter estimation, dosage design, and optimization are not easily
handled with high-dimensional models.

Lumping techniques aim at reducing model dimensionality and com-
plexity by aggregating several variables into one. The aggregation may
concern different chemical species (sometimes unknown as in a combus-
tion process) in the case of concomitant exposure to several agents for
example (2,3). At first sight, one needs n PK models to describe the
behavior of n substances. To simplify modeling and calculations, agents
exhibiting the same physico–chemical and biodistribution properties can
be lumped in a single “virtual species”. Only one PK model is needed
to model the kinetics of this new species. Another lumping approach, the
one of interest in this paper, deals with the model’s compartmental struc-
ture. In that case, several compartments are grouped into one. Usually, the
lumped model is still an ordinary differential equations system with new
variables, interpretable in terms of variables of the original system. So far,
in PK, to that aim only semi-empirical methods have been proposed (4,5).
Such procedures are applicable to PBPK models, but only compartments
with nearly identical specifications and occupying equivalent positions in
the system structure can be lumped together. For example, lumped tissues
should have similar or close values for time constants, or should equil-
ibrate very rapidly with each other. Hence, semi-empirical lumping pro-
cesses always depend on parameter values, and should be re-evaluated for
each (class of) substance(s).

Alternatively, several mathematical (exact or approximate) lumping
methods have been proposed (6,7). These methods are only based on
structure of differential equations systems, and are applicable to linear
or nonlinear systems (6,8,9). Depending on its complexity, the system of
interest can be treated either numerically or symbolically. Such methods
have been originally developed in the fields of atmospheric or petroleum
chemistry and combustion (10–12). They can provide effective solutions
(demonstrated through past applications) to the need for a computational
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approximation of a chemical mechanism (11,13,14). In practice, the reduced
model is usually required to satisfy some restrictions. For example, it can
be necessary to keep unlumped some state variables which have been exper-
imentally measured (such as blood concentration), or which are of inter-
est for prediction (for example, the quantity metabolized). To accommodate
such restrictions, constrained lumping methods have also been developed
(11,15,16). Overall, the choice of a lumping method depends essentially on
the objectives of the study and on the model structure.

In this paper, we focus on linear PK models, i.e. corresponding to lin-
ear differential equation systems. We present mathematical lumping meth-
ods applicable to such models, together with examples. First, we briefly
introduce the fundamentals of unconstrained and constrained lumping for
linear differential equations systems (as a special case of general differen-
tial equations systems). Then, symbolic lumping is applied to a general
2-compartment model. Finally, a PBPK model for 1,3-butadiene (BD) bio-
distribution is treated by numerical constrained lumping.

METHODS

In this section, we present the constrained and unconstrained lumping
methods for linear systems of first-order differential equations. For sim-
plicity, some standard mathematical assumptions are omitted. More details
can be found in Li and Rabitz (6,16).

PK Models and the Lumping Process Theory

A general definition of a PK model (of dimension n) can be given by

dy (t)

dt
= Ky (t) + u (t) (1)

where y is the vector containing the n state variables (usually the amount
or concentration of the chemical in a compartment), u the inflow vec-
tor (such as through inhalation) and K the matrix of coefficients (of
dimension n×n). For empirical compartmental PK models, elements of K
are usually the transfer rate constants (or linear combinations of them)
between the compartments. For PK models, some restrictions on the
elements of K occur (17):

Ki j ≥ 0 i �= j; j = 1 . . . n

Kii ≤ −
n∑

j=1
j �=i

K ji i = 1 . . . n (2)
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To lump the system (Eq. 1) into a n̂-dimensional system (n̂ ≤ n), we
introduce some notation. Let ŷ be the n̂-dimensional vector containing the
state variables of the new lumped system, and û the new inflow vector.
These two vectors are obtained by

ŷ (t) = My (t) and û (t) = Mu (t) (3)

where M is a constant matrix (of dimension n̂ × n), called “lumping
matrix”. The system (Eq. 1) is considered to be lumpable if there exists
a matrix K̂ (dimension n̂ × n̂) such that

dŷ (t)

dt
= K̂ŷ (t) + û (t) (4)

Li and Rabitz (6) proved that such a matrix K̂ can be obtained as:

K̂ = MKM (5)

where M is a generalized inverse of M (i.e., their matrix multiplication
gives the identity matrix of dimension n̂ × n̂).

The task is now to construct the lumping matrices M. In the follow-
ing paragraphs, the construction of such lumping matrices is presented in
the unconstrained and constrained cases.

Construction of the Lumping Matrix M

In the case of linear systems, the construction of the lumping matrix
M is relatively straightforward (6). When the aggregation is exact, the sub-
space spanned by the rows of M should be JT(y)-invariant, with JT(y)
the transpose of the Jacobian matrix of Ky. This latter can be expanded
according to

JT (y) =
m∑

k=1

ak (y)Ak (6)

where m is less than n2, and the constant matrices Ak are viewed as a set
of basis matrices of JT(y). For a unimolecular reaction system and in par-
ticular for linear PK systems, the Jacobian matrix is K,

JT (y) = KT (7)

Therefore, we have to find spaces of dimension n̂ that are invariant to KT

in order to determine M.
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Unconstrained Lumping

Therefore, the rows of a n̂-dimensional matrix M are composed by
any of the n̂ eigenvectors of the transpose of K. Several lumping matri-
ces can be defined for the same system dimension. Indeed, n!/(n̂!(n−n̂)!)
n̂-dimensional lumping matrices can be constructed for a n-dimensional
system with distinct eigenvalues. It is also possible to multiply (from
the left) such lumping matrices by a nonsingular square matrix without
changing their lumping property.

Theoretically, any first-order linear differential equations systems can
be treated symbolically with this unconstraint lumping procedure. How-
ever, in practice, the calculation of eigenvalues and eigenvectors is not
symbolically feasible for large dimensional matrices/models. In such cases,
only numerical lumping can be performed.

Constrained Lumping

To accommodate restrictions required when dealing with practical
examples, the lumping can be constrained by a priori specification of a part
of the lumping matrix M. This latter is composed by two sub-matrices,

M =
(

MG
MD

)

MG given by the constraints and MD to be determined. Under these con-
straints, exact lumping scheme may not exist. Therefore, the determina-
tion of constrained approximate lumping schemes is necessary. Li and
Rabitz (15,16) have proposed the direct constrained approximate lump-
ing (DCAL) method to determine the matrix M. This method consists in
determining the base matrices Ak numerically (Eq. 6) by using values of y
in a region of the n-dimensional composition space of interest. The meth-
odology is exposed in Appendix A.

Since the base matrices Ak are determined numerically, this lumping
method can only be applied when the model is fully described, i.e. model
parameter values are known.

APPLICATIONS OF MATHEMATICAL LUMPING IN THE PK FIELD

In this section, we apply lumping methods to some PK models. First,
a general 2-compartment model is simplified by symbolic unconstrained
lumping. A 6-compartment PBPK model for 1,3-butadiene (BD) is then
presented and simplified with numerical constrained lumping. The Math-
ematica software was used for all calculations.
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Symbolic Lumping of a General Two-Compartment Model

Let us consider a general two-compartment model (Fig. 1),

dy1 (t)

dt
= − (k12 + k10) y1 (t) + k21 y2 (t) + k01 (t)

dy2 (t)

dt
= k12 y1 (t) − (k21 + k20) y2 (t) + k02 (t)

(8)

All the rate coefficients are nonnegative real constants. The matrix K and
the vector u are then given by

K =
(− (k12 + k10) k21

k12 − (k21 + k20)

)
u (t) =

(
k01 (t)
k02 (t)

)
(9)

All the rate coefficients are nonnegative real constants with the natural
constraint that a is positive (this does not in fact restrict generality). This
system is of the form of the Eq. 1, and the matrix K and the vector u were
given in “Applications of Mathematical lumping in the PK field” section.
λ1 and λ2, the two eigenvalues of KT, are

λ1 = 1
2

(
−k12 − k21 − k10 − k20

+
√

(k12 + k21 + k10 + k20)
2 − 4 (k21k10 + k12k20 + k10k20)

)

λ2 = 1
2

(
−k12 − k21 − k10 − k20

−
√

(k12 + k21 + k10 + k20)
2 − 4 (k21k10 + k12k20 + k10k20)

)
(10)

k12

k21

k02(t)k01(t)

k20k10

Compartment 1 Compartment 2

Fig. 1. Representation of the general 2-compartment model used. Arrows describe the
exchange of material.
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Following the unconstrained lumping method described in “Applications
of Mathematical lumping in the PK field” section, the lumping matrix M
is composed by the two eigenvectors of KT:

s1 =
(

−k12 + k21 − k10 + k20 +
√

(−k12 + k21 − k10 + k20)
2 + 4k12k21

2k21

)

s2 =
(

−k12 + k21 − k10 + k20 −
√

(−k12 + k21 − k10 + k20)
2 + 4k12k21

2k21

)

(11)

Two one-dimensional lumping systems are therefore possible:

dŷ (t)

dt
= −λ1ŷ (t) + s1u (t)

dŷ (t)

dt
= −λ2ŷ (t) + s2u (t)

(12)

The new variable is therefore a combination of the two original variables,
as defined by Eq. 3,

ŷ (t) = sT
i y (t) (13)

where i is equal to 1 or 2, according to the selected lumping scheme. Let’s
take an example. Consider a 2-compartment model in which exchanges
between the two compartments are equal, i.e. k12 = k21, and rates going
out of the compartments are also equal, i.e. k10 = k20. Dividing each ele-
ment by 2 k12, the eigenvector s1 of KT is (1; 1). We then obtain the new
lumped system

dŷ (t)

dt
= −λ1ŷ (t) + k01 (t) + k02 (t) (14)

with

ŷ (t) = y1 (t) + y2 (t) (15)

We have therefore reduced the 2-compartment model into a 1-compart-
ment one, for which the new state variable is the sum of the two original
ones.
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Numerical Constrained Lumping of a Whole-Body PBPK Model
for 1,3-Butadiene

In this section, we propose to simplify a 7-compartment whole-body
PBPK model for BD. The BD is a chemical compound largely used in the
production of plastics and synthetic rubber. Studies in rats and mice have
demonstrated that its metabolites can cause cancer. Human BD exposure
data are available and have been analyzed using population pharmacoki-
netic tools (18,19). Yet the computations required are heavy and would ben-
efit from a simpler model with similar performance. For actual applications,
we should make sure that the new lumped model is still able to answer the
question(s) of interest. For this, we can apply constrained lumping methods.
One constraint arise in our example: to evaluate BD toxicity, the total quan-
tity of BD metabolized after a given exposure should still be quantified by
the new model, and therefore should not be lumped. First, the full PBPK
model is presented, lumped models are derived and effects of lumping on
the results of metabolism predictions are studied.

PBPK Model for 1,3-Butadiene

The BD kinetics in the human body can be well described by
a whole-body PBPK model, including seven compartments (blood, fat,
liver, lungs, slowly perfused tissues—referred here to as “muscle”—, other
rapidly perfused tissues—“viscera”, and metabolism) and three sites of
metabolism (liver, lungs and viscera) (20). The BD can enter the body by
inhalation. We linearized Kohn and Melnick’s model (20) by using first
order metabolism terms, rather than Michaelis–Menten terms. The model
is still relevant for the usually found low concentrations exposures (21).
The model we used is therefore given by the following system of differen-
tial equations (of dimension 7):

d Q B (t)

dt
= −FC ×

(
Q B (t)

VB
− QLu (t)

VLu × PCLu

)
−

∑

i∈I

Fi ×
(

Q B (t)

VB
− Qi (t)

Vi × PCi

)

d QF (t)

dt
= FF ×

(
Q B (t)

VB
− QF (t)

VF × PCF

)

d QM (t)

dt
= FM ×

(
Q B (t)

VB
− QM (t)

VM × PCM

)

d QLi (t)

dt
= FLi ×

(
Q B (t)

VB
− QLi (t)

VLi × PCLi

)
− KLi × QLi (t) (16)

d QLu (t)

dt
= FC ×

(
Q B (t)

VB
− QLu (t)

VLu × PCLu

)

+KV ent ×
(

CI nh (t) − QLu (t)

VLu × PCAir

)
− KLu × QLu (t)
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d QV (t)

dt
= FV ×

(
Q B (t)

VB
− QV (t)

VV × PCV

)
− KV × QV (t)

d QMet (t)

dt
= KLi × QLi (t) + KLu × QLu (t) + KV × QV (t)

The indices B, F, M, Li, Lu, V, and Met stand, respectively, for blood,
fat, muscle, liver, lungs, viscera, and metabolites. The symbol I used in the
first equation represents the set {F, M, Li, V}. For each compartment i,
Qi , Vi , and PCi are, respectively, the BD quantity, the volume, and the tis-
sue over blood partition coefficient. Fi is the blood flow entering i and Ki

the metabolic constant. PCAir is the blood over air partition coefficient,
KV ent the ventilation pulmonary rate and Cinh the inhaled BD concentra-
tion. The exhaled BD concentration is given by the following relationship,

Cexh (t) = 1
3

× Cinh (t) + 2
3

× QLu (t)

PCLu × VLu
(17)

The experimental conditions simulated (an inhalation exposure of 5 ppm
during 2 hr) were defined on the basis of actual experiments (18).

A Constrained Lumping Scheme

To apply numerical constrained lumping to the differential equation
system (Eq. 15), parameters were set to the physiological values referred
in (20). Given these values, the matrix of the system coefficients, K, is

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−244.90 0.02 1.16 10.99 160.20 30.11 0
4.41 −0.02 0 0 0 0 0

44.20 0 −1.16 0 0 0 0
19.59 0 0 −210.72 0 0 0

122.45 0 0 0 −610.60 0 0
54.24 0 0 0 0 −43.61 0

0 0 0 199.73 13.50 13.50 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

To construct the lumping matrix M, we first need to define the sub-
matrix MG containing the constraints. Suppose the state variables are
sorted in the same order as in the system (Eq. 16). Given the constraint
defined above (quantity metabolized left unlumped), MG is

MG = (
0 0 0 0 0 0 1

)
(19)

To determine M, we apply the DCAL method presented in Appendix A.
Equation 7 states that the Jacobian matrix of the system is K. Therefore
A0 is equal to the transpose of K. In order to force MG to be located on
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the first rows of M, we multiply MG (in Eq. 24, Appendix A) by 1000 (see
Appendix A). We then obtain the matrix Y,

Y=

⎛

⎜⎜⎜⎜⎜⎝

0.342 −1.19 × 10−5 −6.93 × 10−4 −0.560 −0.793 −2.18 × 10−2 0
−1.19 × 10−5 0 0 1.56 × 10−5 2.83 × 10−5 0 0
−6.93 × 10−4 0 0 9.09 × 10−4 1.65 × 10−3 4.28 × 10−5 0

−0.560 1.56 × 10−5 9.09 × 10−4 2.725 1.131 0.106 0
−0.793 2.83 × 10−5 1.65 × 10−3 1.131 1.926 5.41 × 10−2 0

−2.18 × 10−2 0 4.28 × 10−5 0.106 5.41 × 10−2 5.94 × 10−3 0
0 0 0 0 0 0 1 × 106

⎞

⎟⎟⎟⎟⎟⎠

(20)

Its eigenvalues are (1×106, 3.78, 1.21, 0.011, 3.07×10−4, 0, 0), and the
corresponding eigenvectors

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1.00
−0.260 0 4.87 × 10−4 0.769 0.583 3.16 × 10−2 0
0.253 −1.13 × 10−5 −6.56 × 10−4 0.637 −0.728 1.90 × 10−2 0
0.870 −1.85 × 10−5 −1.07 × 10−3 2.58 × 10−2 0.335 0.361 0

−0.334 2.46 × 10−4 1.43 × 10−2 −4.91 × 10−2 −0.135 0.931 0
6.01 × 10−3 1.75 × 10−2 1.00 7.74 × 10−4 1.53 × 10−3 −1.30 × 10−2 0

0 −1.00 1.75 × 10−2 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠

(21)

Values whose magnitude was less than 10−5 were set to zero. Two eigen-
values of Y are zero. This implies that aggregation is exact for lumped sys-
tems of dimension 6. The lumping matrix of dimension m is constructed
with the first m eigenvectors.

Effect of Increased Lumping on the Prediction of the Quantity of BD
Metabolized

Dimensions 2–6 were tested for the lumped model. Figure 2 shows
the results of constrained lumping of the BD model. The predicted BD
quantity metabolized is represented for systems with dimensions 2–6 (100
time-points were used to produce the graph). Predicted quantity of BD
metabolized versus time curves can be split into two parts: during expo-
sure, the quantity metabolized increases, and then comes close to an upper
bound at the end of inhalation. As expected, the lower the model dimen-
sion, the higher the error. Yet, the sign of errors can also change abruptly.
About 8 hr after exposure, the solution of the system with dimension 6
does not differ by more than 0.3% from the one of the initial system. For
a system of dimension 5, the maximum relative error is 20%. Error goes
up to 93% for dimension 3, and to 138% for dimension 2.
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Fig. 2. Time evolution of the quantity of BD metabolized, after an exposure to 5 ppm BD
for 2 hr, predicted with the original system (solid curve, n = 7) and lumped systems with
dimension n = 2 − 6. 100 time-points were used to produce these graphs. Lumped sys-
tems were defined under the constraint that the total quantity of BD metabolized should be
left unlumped. The solid curve with the “X” corresponds to the prediction for the system of
dimension 6 (which overlays the solution of the original model).

The above results were obtained by using only one set of parameter
values. To confirm that dimension reduction is robust to uncertainty in
parameter values, different parameter sets were obtained by Monte Car-
lo simulations. These sets were sampled from normal distribution centered
on the value used initially with a coefficient of variation of 10%. For
20 random parameter vectors, the relative error between the initial sys-
tem and the lumped system was then calculated as a function of time.
For the lumped system of dimension 6, the maximum error is 0.5% 8 hr
after exposure (t = 10). Figure 3 shows the time evolution of the relative
error between the prediction of QMet with original system and the predic-
tion of the lumped system of dimension 5, for 20 parameter vectors. The
maximum error lies between 14 and 22%, at t = 10 (i.e., the end of the
simulations).

Increasing the Constraints to Be Able to Fit the Model

Other constraints can be applied. For example, TK models are often
developed to be fitted to experimental data, even PBPK models, as dem-
onstrated by Gelman et al. (22). If needed, the lumped model may retain
the possibility to be fitted to data. This implies that the model vari-
ables for which experimental data are available should not be lumped with
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Fig. 3. Time evolution of the relative error (between the prediction of the original system of
dimension 7 and the prediction of the lumped system of dimension 5) for the quantity of BD
metabolized, after an exposure to 5 ppm for 2 hr. About 20 parameter vectors are shown.

others. In the study conducted by Bois et al. (18) (reference for our expo-
sure scenario), exhaled air measurements were performed for each human
volunteer. Given Eq. (17), we hence impose that the state variable stand-
ing for the BD quantity in lungs, QLu , is left unlumped, in addition to
the BD quantity metabolized (QMet ). The sub-matrix MG containing the
constraints is therefore defined by

MG =
(

0 0 0 0 1 0 0
0 0 0 0 0 0 1

)
(22)

Similar calculations as above were performed. For the lumped system
of dimension 6, the predicted quantity metabolized does not differ by more
than 0.5% (at t = 10) from the prediction of the original system. The devi-
ations of the predicted BD concentration in exhaled air from the original
solution are presented in Fig. 4. The relative error increases rapidly with
observation time. About 4 hr after the beginning of exposure (t = 4), this
error is less than 4%. It increases to 10% 1 hr later (t = 5), and reaches
90% at t = 10. Given these results, how to conclude on the utility of the
lumped system of dimension 6? The increase in relative error for Cexh is
linked to the fact that the concentration of BD in exhaled air decreases rap-
idly. At the end of exposure (t = 2), Cexh is equal to 4.6 ppm, at t = 4 Cexh
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Fig. 4. Time evolution of the relative error (between the prediction of the original system
and the prediction of the lumped system of dimension 6) of the concentration of BD in
exhaled air, after an exposure to 5 ppm for 2 hr. The total quantity of butadiene metabolized
and the quantity in lungs were left unlumped. Twenty parameter vectors are shown.

is 0.023 ppm, at t = 5 Cexh is 0.010 ppm, and at t = 10 Cexh is 0.0008 ppm.
At t = 6, Cexh is already under the limit of quantitation, i.e. 0.006 ppm (21).
In this example, Cexh was left unlumped in order to fit the lumped model.
Since experimental data could not be obtained 6 hr after the beginning of
exposure, performance of the lumped model after that time is irrelevant. We
can then define a criterion which accepts the lumped model if the relative
error of its predictions at the limit of quantitation does not exceed a 10th
(for example) of the relative error of measurements at the same limit (which
is about 200%). At t = 5, the relative error induced by the lumped system
is 10%, which fulfils the criterion. The lumped model of dimension 6 can
therefore be used for our application, and the loss of information (compared
to the original system) is negligible.

For the lumped system of dimension 5, we obtained a maximum rela-
tive error for QMet equivalent to the one of the first lumping scheme, that
is around 20%, which might be deemed acceptable. However, the predic-
tion of Cexh is not at all satisfying according to the above criterion. Dur-
ing exposure (t between 0 and 2), the error is less than 5%. But at t =5,
Cexh predicted by the lumped system tends rapidly to zero, and the max-
imum relative error is equal to 100%, which is not acceptable.
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DISCUSSION

In this work, we have presented mathematical lumping methods
and applied them to TK/PK models. That approach has been initially
presented by Wei and Kuo (10), and improved later by Li and Rabitz
(6,7,11,15,23,24). These authors proposed a formal method to reduce first-
order ordinary differential equation systems, based on a mathematical
analysis of the entire system. Such lumping methods are easily automated,
and can be used systematically in the search for an optimal lumping. For
PK modelers, such an approach to lumping might seem not very intuitive,
unlike the one developed by Nestorov et al. (4) which takes into account
the biochemical properties of the substance (i.e., on the values taken by
the model parameters, the matrix K). A formal approach can nevertheless
be used to support the modeler’s intuition. A really convincing result is
obtained if the formal procedure points to a lumping scheme similar to
an “intuitive” approach. On the other hand, a really interesting result is
obtained if the methods disagree strongly (but in that case an understand-
ing of the reason why would be worth seeking). Moreover, it is not always
possible to use intuitive methods in case of very large systems, or when
we want to find the smallest system dimension needed to describe the PK
of a substance in a particular compartment. In such cases, our approach
has the potential to reveal similarities in variables that may not be appar-
ent in an analysis solely based on considerations of their attributes (14). In
practice, we often need the lumped system to meet predefined (and precise)
goals. To that aim, some state variables (e.g. concentrations) should not be
lumped with others. Constraints can also follow from the modeler’s intu-
ition. For example, one can choose to lump two compartments in which
the substance exhibits similar PK profiles. Usually, with such constraints,
the system can only be approximately lumped. Constraints should then be
used with parsimony, since the accuracy of the lumped model predictions
decreases as the number of constraints increases.

In our examples, we have first treated a 2-compartment model by sym-
bolic lumping. Reduced systems obtained by symbolic lumping are valid for
all possible parameter values satisfying conditions specified in Eq. (2). Numer-
ical lumping follows the same rules but works with a fully specified original
model (including numerical values of the parameter matrix K). Calculations
can then be done numerically, but the lumped systems obtained are specific
to the parameter values used. Obviously, symbolic lumping is more general
and flexible than numerical lumping. However the calculation of eigenvalues
and eigenvectors cannot usually be performed symbolically for large dimen-
sional matrices/models. Typically, low dimensional models (such as empirical
PK models) can be treated symbolically as well as numerically, whereas high
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dimensional models (such as PBPK ones) are best treated numerically. How-
ever, large systems having special symmetries may be lumped symbolically. A
compromise between these two approaches is to set some parameters and lump
(if possible) the system with a few symbolic parameters.

Lumping can be appropriate to overcome statistical identifiability
problems in parameter estimation. Such problems arise, for example, when
model parameters are highly correlated or have multiple peak posteriors
distributions (or likelihood functions). In such cases, parameter estimation
requires a long time to explore the space of possible parameter values.
Work with a system of reduced dimension is therefore be beneficial for
such problems. However, in cases of structural identifiability problems (i.e.
parameters are not mathematically identifiable), lumping approaches are
not appropriate tools.

We also treated the reduction of a 7-compartment PBPK model for 1,3-
butadiene (BD) with numerical constrained lumping. For that example, we
imposed two constraints on the state variables of the new lumped system:
the quantity of BD metabolized (QMet ), and the concentration in exhaled
air (Cexh) should be left unlumped. Only QMet was unlumped in Scenario I,
and both were unlumped in Scenario II. In these cases, model reduction led
to a set of approximate models. The lumped models were tested to check
if they gave appropriate answers to actual TK questions. To insure that a
lumped model is appropriate, it is necessary to define a quantitative criterion
for each value of interest. In the BD example, our objective was to quantify
the amount of BD metabolized by humans after exposure. For Scenarios I
and II, we show that the original system of dimension 7 can be successfully
reduced into a 6-dimensional system (less than 1% of information for QMet

is lost). The reduction into a 5-dimensional system is not really satisfying for
both scenarios. We can therefore conclude that all but one compartments in
the original system are necessary to correctly describe BD biodistribution,
and to quantify reliably its fraction metabolized.

Physiological PK models and other in silico tools for fast through-
put screening will certainly undergo a development and increase in com-
plexity in the future. While adding complexity to a model is a relatively
easy heuristic task, simplifying a complex model is typically more diffi-
cult, since that is in itself a complicated problem. Formal lumping tech-
niques, such as the one presented here, have the potential to automatically
reduce models and tailor them to specific needs (statistical validation ver-
sus predictions, etc.). The process could be made transparent to the user
and information gained from the reduced model could be transferred back
to the full model via Bayesian updating, for example.
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APPENDIX A

The DCAL method (14–16) determines the base matrices Ak numer-
ically by using values of y in a region of the n-dimensional composition
space of interest. It can be shown that the lumping matrix M can be deter-
mined from

XTMT = 0 (23)

where X is “most nearly” orthogonal to

Z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

MG
MGAT

1
. . .

MG
(
AT

1

)s1−1

. . .

MG
MGAT

m
. . .

MG
(
AT

m
)sm−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

where sk is the rank of Ak . Briefly, the subsequent steps to determine M
are:

– Transform the matrix product MG(AT
k )i (i from 0 to sk − 1) into an

orthogonal matrix Q(G)T
ki by Gram-Schmidt orthogonalization (25),

– Construct the symmetric matrix Y defined by:

Y =
m∑

k=1

sk−1∑

i=0

Q (G)T
ki

.Q (G)ki
(25)

– Determine the eigenvalues and eigenvectors of Y.



Lumping in Pharmacokinetics 735

The matrix X is constructed with the eigenvectors corresponding to the
smallest n − n̂ eigenvalues of Y. The eigenvectors corresponding to the
largest n̂ eigenvalues of Y comprise the matrix M. To force MG to cor-
respond to the eigenvectors of Y with the largest eigenvalues, MG in Z is
multiplied by a large constant (15). This ensures that the unlumped spe-
cies specified by MG are part of the lumped system. The obtained matrix
M corresponds to the best constrained approximate lumping matrix with
dimension n̂, according to the DCAL method. If m eigenvalues of Y are
equal to zero, the first n–m eigenvectors of Y compose an exact lumping
matrix MT.
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