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Pharmacokinetic/pharmacodynamic (PK/PD) models for hematological drug effects exist that
assume that cells are produced by a zero- or first-order process, survive for a specific duration (cell
lifespan), and then are lost. Due to the fact that delay differential equations (DDE) are needed
for cell lifespan models, their software implementation is not straightforward. Our objective is to
demonstrate methods to implement three different cell lifespan models for dealing with hematolog-
ical drug effects and to evaluate the performance of NONMEM to estimate the model parameters.
For the basic lifespan indirect response (LIDR) model, cells are produced by a zero-order process
and removed due to senescence. The modified LIDR model adds a precursor pool. The LIDR
model of cytotoxicity assumes a three-pool indirect model to account for the cell proliferation
with capacity-limited cytotoxicity followed by maturation, and removal from the circulation. A
numerical method (method of steps) implementing DDE in NONMEM was introduced. Simula-
tion followed by estimation was used to evaluate NONMEM performance and the impact of the
minimization algorithm (first-order method vs. first-order conditional estimation method) and the
model for residual variability on the estimates of the population parameters. The FOCE method
combined with log-transformation of data was found to be superior. This report provides method-
ology that will assist in application of population methods for assessing hematological responses
to various types of drugs.
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tological effects; cytotoxicity.
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INTRODUCTION

Numerous mathematical models of hematopoiesis have been devel-
oped (1,2). Each major hematopoietic process including erythropoiesis (3),
granulopoiesis (4), and thrombopoiesis (5) has been modeled and the life-
span concept has been used to control the numbers of cells at various
stages. A compartmental approach has been commonly used for a life-
span model where the number of compartments varies. The regulatory role
of hematopoietic growth factors was expressed by parameters describing
proliferation, differentiation and maturation of progenitor and precursor
cells in various stages. These multicompartmental models are of physio-
logical nature where different inputs to the same model can account for
a variety of changes in a normal steady-state. However, they require a
number of parameters that are not often available while analyzing clinical
data.

Maturation of cells is a major reason for prolonged delays between
the occurrence of drug action on precursor cells and observed response
in the subsequent cell populations. In the absence of any intervention, a
lag time in the response vs. time profile corresponds to the maturation
time for precursor pools. For hematopoietic cells, the maturation time in
bone marrow varies from 2 to 7 days. A common technique to incorpo-
rate this maturation time is to apply a series of transit compartments con-
nected via first-order processes with the same rate constant 1/τ , where τ is
the mean transit time through each compartment (6,7). Another approach
to model the delay is simply by introducing the delay time as a model
parameter, which can be interpreted as the general lifespan of a specific
cell population, that is the time between its entry to and exit from the
population.

Mitotic creation of new cells can be accounted for in a model by
increasing the number of cells that have the same properties that are char-
acteristic for the cell population. Likewise, cell death can be modeled as
a loss of such properties. In addition, the idea of applying aging veloc-
ities to cell transport between compartments was introduced previously
(8). Basic pharmacodynamic models implementing the cell lifespan as a
delay parameter have been previously reported (9, 10), and these have been
applied to quantitation of effects of erythropoietin on reticulocytes and
red blood cells (RBC) (11–13).

This manuscript describes how to apply the concept of lifespan-driven
cell turnover (10,14) to the case where proliferation or chemotherapy-
induced degradation rate is stimulated by agents. In the lifespan based
indirect response (LIDR) models, the cells corresponding to a certain cell
population are eliminated from a compartment not by a first-order process
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but by the end of their lifespan, probably due to senescence. Therefore,
the cell loss rate is the rate of cell production delayed by the cell lifespan.
Consequently, if the production rate is perturbed by an intervention that
depends on model variables (e.g. drug effects), then the model is no longer
a system of ordinary differential equations (ODE) but a system of delay
differential equations (DDE) (15). Additional complexity of LIDR mod-
els is in dependence of the cell senescence rate on other cell elimination
pathways. For example, if the cells are killed by a cytotoxic drug, the
senescence rate has to be corrected by the fraction of cells that survived
(14).

NONMEM is a widely used program for pharmacokinetic (PK) and
pharmacodynamic (PD) population analysis (16). Like most available pro-
grams for PK/PD data analysis this program is not equipped with a DDE
solver, but has a robust ODE solver. However, a numerical technique is
available to transform any system of DDE to a system of ODE by a step-
wise procedure called method of steps (17). The biggest limitation of this
method is that, in general, the number of ODE depends on the ratio of
the smallest delay time to the overall time range of the data to be solved.
With a catenary structure, this limitation does not apply for a DDE sys-
tem. Therefore, these types of models are naturally used to represent the
development of hematopoietic cells.

Our objective is to demonstrate methods to implement the LIDR
models of hematopoietic cell populations using the step-wise method to
transform the DDE system into an ODE system that can be solved by
NONMEM. We analyzed basic LIDR models for drugs that stimulate the
production of cells (10), LIDR models with a precursor pool, and LIDR
models for cytotoxic effects of anticancer agents (14). We assessed the
NONMEM performance for each of these models and provided control
streams and example data.

METHODS

Method of Steps

The method of steps allows one to solve virtually any DDE system
by transforming it to an ODE system. We demonstrate the application of
this method for a system of DDE with one delay time T1 and a constant
initial condition for the time, −T1 ≤ t < 0:

dx

dt
= f (t, x(t), x(t − T1)) for t > 0 (1)
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and

x(t) = x0 for − T1 ≤ t < 0 (2)

where x = (x1, . . ., xN), x0 = (x01, . . ., x0N), and f = ( f1, . . ., fN) are vec-
tors. One can apply the method of steps to transform Eqs. (1) and (2) into
a system of ODE (15, 17). This method is based on solving the following
equations successively:
for the interval 0 < t ≤ T1,

dx

dt
= f (t, x(t), x0) (3)

for the interval 0 < t ≤ 2T1,

dx1

dt
= f (t, x1(t), x2(t)) (4)

dx2

dt
= f (t − T1, x2(t), x0) (5)

for the interval 0 < t ≤ 3T1,

dx1

dt
= f (t, x1(t), x2(t)) (6)

dx2

dt
= f (t − T1, x2(t), x3(t)) (7)

dx3

dt
= f (t − 2T1, x3(t), x0) (8)

and so on. The number of differential equations depends on the time
interval. For 0 < t ≤ tmax, where tmax is the maximum time up to which
the solution is sought, it is possible to set up a system of ODE such
that one of its solutions also solves Eqs. (1) and (2) by introducing new
variables

yi (t) =
{

x(t − iT1), if iT1 < t ≤ tmax
x0, if t ≤ iT1

(9)

One can calculate the maximum number of vector variables necessary
to generate the solution of the DDE system Eq. (1) over the time interval
0 ≤ t ≤ tmax as M = INT(tmax/T1) + 1, where INT (z) denotes the integer
part of the real number z. If x satisfies Eq. (1) for 0 < t ≤ tmax and Eq.
(2) for −T1 < t ≤ 0, then y0, y1, . . ., yM−1 in the interval 0 < t ≤ tmax
satisfy the following system of ODE:
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dy0

dt
= f̄ (t, y0, y1) (10)

dy1

dt
= f̄ (t − T1, y1, y2) (11)

. . .

dyM−1

dt
= f̄ (t − (I − 1)T1, yM−1, x0) (12)

with the initial conditions

yi (0) = x0, for i = 0, 1, . . ., M − 1 (13)

The notation, f , for the right hand sides of Eqs. (10)–(12) has
been introduced to accommodate negative times in the right-hand side of
Eq. (1),

f̄ (t, x, y) =
{

f (t, x, y), if 0 ≤ t
0, if t < 0

(14)

To avoid writing the NONMEM model equations for negative times,
one can assign the lag time to each entry of the vector yi as:

ALAGk = i · T1 (15)

where the index k corresponds to the jth entry of the vector yi . Examples
of NONMEM control streams are given in the subsequent sections. Con-
sequently, the solution for the DDE system Eqs. (1) and (2) is represented
by a part of the solution of the ODE system Eqs. (10)–(13)

x(t) = y0(t) (16)

The solution y1 is the delayed solution for x(t − T1), y2 is the delayed
solution for x(t − 2T1), etc. Although the DDE system shown in Eq. (1)
contains one delay time, this method is applicable to a DDE system with
many delay times T1, . . ., and Tq. The complexity is resolved in the proper
indexing of the vector variables yi where the index i should account for
multiple delays T1, T2, etc.

The method of steps can yield a solution of the DDE system for any
t > 0 and not just 0 ≤ t ≤ tmax. This is possible with special “catenary-
like” DDE systems:

dx1

dt
= f1(t, x1) (17)
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dx2

dt
= f2(t, x1, x2, x1(t − T1), . . . , x1(t − Tq)) (18)

dx3

dt
= f3(t, x1, x2, x3, x1(t − T1), . . . , x1(t − Tq), x2(t − T1), . . . , (19)

x2(t − Tq)). . .

dxN

dt
= fN (t, x1, . . . , xN , x1(t − T1), . . . , x1(t − Tq), . . . , xN−1(t − T1),

. . . , xN−1(t − Tq)) (20)

with the initial conditions in Eq. (2). The basic property of Eqs. (17)–
(20) is that the right-hand side of each DDE for xi depends only on
t , the unknown variables proceeding xi and xi itself, and the delay
unknown variables that proceed xi . Consequently, starting with x1 one
can solve Eq. (17) and substitute it into Eq. (18). Then Eq. (18) is an
ODE for x2 that can be solved and inserted into Eq. (19). Continuing
in this fashion one can gradually reach the equation for xN and solve
it in the same manner. The LIDR models presented below have this
catenary-like DDE system property and the method of steps yields the
solutions.

Basic LIDR Model

In the basic LIDR model, a population of cell R is controlled by two
processes: cell production (kin(t)) and cell loss (kout(t)). The loss process
is assumed to be a consequence of natural senescence or conversion to
another type of cell. Each cell lives for the same period of time TR and
then disappears. This lifespan determines the cell elimination rate. There-
fore, the rate of cell loss is the rate of cell production delayed by the time
TR (10):

kout(t) = kin(t − TR) (21)

Consequently, the change in the cell number can be described by

d R

dt
= kin(t) − kin(t − TR) (22)
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If the cells are produced at the zero-order rate k0, and the drug stim-
ulates the production, then (18):

kin(t) = k0 ·
(

1 + SmaxC(t)γ

SCγ

50 + C(t)γ

)
(23)

where C(t) is the drug concentration in the cell compartment, Smax is the
maximum stimulation, SC50 denotes the drug concentration eliciting 50%
of the maximum stimulation, and γ is the Hill coefficient.

The one-compartment pharmacokinetic model with first-order elimi-
nation was considered to describe C(t):

d A

dt
= −kel · A and A(0) = Dose (24)

where A stands for amount of a drug (which was implemented with vol-
ume of distribution of 1, so that C(t) = A(t)). Equation (24) has been
used for the purposes of this study; however, this method is not limited
to monoexponential kinetics as it can easily be accommodated for vari-
ous pharmacokinetic driving models. Consequently, Eq. (22) describing the
basic model becomes

d R

dt
= k0 · S(t) − k0 · S(t − TR) (25)

where S(t) is the abbreviation for the sigmoidal maximum effect model
function in Eq. (23). The schematic of the basic LIDR model is presented
in Fig. 1a. The baseline equation is (10):

R0 = k0 · TR (26)

Appendix A shows the NONMEM code implementing the method
of steps for the system of DDE Eqs. (24) and (25). Therefore, the sys-
tem of Eqs. (10)–(12) is described by 3 ODE in Appendix A; the first DE
(DADT(1)) describes the time course of the drug-amount, A(t); the sec-
ond DE (DADT(3)) is for the delayed time course of the drug amount,
A(t − TR); and the third DE (DADT(2)) represents the time course of
number of cells, R(t). ALAG3 in the NONMEM code was set as TR,

because it corresponds to the delay duration. This parameter implements
the DDE system to the ODE system to calculate A(t − TR). The baseline
value R0 given by Eq. (26) was used as the initial condition for R(t) and
was implemented by setting F2 to R0. Also, the corresponding AMT at
t = 0 was set to 1 in the data file. The CALLFL was set to –2 to call
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Fig. 1. Diagrams epresenting three lifespan-based models: (a) The basic LIDR model. The
cell count response R is produced at a time dependent rate. The cell loss rate is determined
by the cell production rate delayed by the cell lifespan TR. The drug stimulates the pro-
duction rate (open box). (b) The modified LIDR model with precursor. The precursor cells
P are produced at the zero-order rate k0 and are eliminated at the first-order rate k1. The
cells at the central pool R are eliminated at the rate k1 · P delayed by their lifespan TR.
Drug stimulates the production rate k0. (c) The LIDR model of cytotoxic effects of antican-
cer agents. The precursor cells P and M represent proliferating and maturating cells in bone
marrow. Drug irreversibly removes the proliferating cells at a rate that depends on the anti-
cancer agent plasma concentration ( f (C)). The precursor cells P are produced at the zero-
order rate k0 and those which survive the cytotoxic effect are transformed to the maturating
cells after time TP. The maturation lasts for the time TM after which the cells are released to
the circulation. The lifespan of the cells in the circulation is TR.

the subroutine PK with every event record and with additional and lagged
doses.

Modified LIDR Model with a Precursor Pool

The modified LIDR model that includes a precursor compartment (Fig.
1b) assumes that the population of cells in the central pool R is produced as
a consequence of conversion of cells from another population P . The pre-
cursor cells, P , are assumed to be produced at the zero-order rate k0, and
transformed to the cells R at the first-order rate k1. The cells in the central
pool are lost after time TR. The drug is assumed to stimulate the precursor
cell production via the Hill function given in Eq. (23). Consequently, the
precursor pool is described by the basic IDR model equations (18). The
differential equations determining the cell populations P and R are
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d P

dt
= k0 · S(t) − k1 · P (27)

d R

dt
= k1 · P − k1 · P(t − TR) (28)

The baseline values of P and R can be determined similarly to those
for the basic IDR and LIDR models model

P0 = k0/k1 and R0 = k0 · TR (29a,b)

Appendix B presents the NONMEM code implementing the method of
steps for the system of DDE, Eqs.(24), (27), and (28). The cells in the pool R are
delayed by TR following the cell lifespan model, whereas the cells in the
pool P are delayed following the indirect response model. The system of
Eqs. (10)–(12) is described by 5 ODE: the first describes A(t), the second
P(t), the third A(t −TR), the fourth P(t −TR), and the fifth R(t). ALAG3
and ALAG4 were set as TR. This implements Eq. (14) to the ODE for
A(t − TR), but because the initial condition for P(t − TR) was nonzero,
Eq. (14) was written in its original conditional form where P(t −TR) = P0
for t < TR. The baseline values P0 and R0 given by Eq. (29a,b) were used
as the initial condition for P, P(t − TR), and R(t) and were implemented
by setting F2, and F4 to P0 and F5 to R0 and the corresponding AMT
values at t = 0 as 1 in the data file.

LIDR Models of Cytotoxic Effects of Anticancer Agents

The LIDR model of cytotoxic effect of anticancer agents (Fig. 1c)
consists of a blood compartment (R) and two precursor compartments (P
and M). The hematologic effect R can represent any natural cells including
platelet, leukocyte or neutrophil counts. These cells are released to the cir-
culation from the bone marrow in the last stage of their development. The
cells that are sensitive to toxic effects of an anticancer agent form the pool
P . This compartment contains myeloid progenitor cells in their mitotic
phases and possibly other progenitor cells. The cells from the mitotic pool
P enter the maturation storage pool M . The cells in P are produced at
the zero-order rate (k0) from the stem cells.

There are two loss processes from the mitotic compartment P : kill-
ing by the anticancer agent and the conversion to another cell type (M)
after survival in the compartment P . The surviving cells live for the dura-
tion of TP. The killing rate at time t is proportional to the cell number
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in the pool P , following the control function, f (C) (19,20), which is non-
negative and increases with the plasma concentration, C , of the anticancer
drug. If the killing process is saturable (nonlinear), f (C) can be described
by a sigmoidal maximum effect model:

f (C) = KmaxCγ

K Cγ

50 + Cγ
(30)

where Kmax is the maximum rate of the killing, K C50 denotes the drug
concentration eliciting 50% of Kmax, and γ is the Hill coefficient. The
fraction of the cells in the mitotic pool that survived the cytotoxic effect
of anticancer agent and is converted to the maturating cells is (14):

SF(t) = exp
(

−
∫ t

t−TP

f (C(z))dz

)
(31)

The number of cells in pool R is determined by:

d R

dt
= k0 · SF(t − TM) − k0 · SF(t − TM − TR) (32)

The equations for cells in pools P and M are not necessary to calculate
the number of cells in the central pool R. The baseline condition for R is

R0 = k0 · TR (33)

The numerical complexity is in calculating the integral in the conver-
sion rate Eq. (31) with the limits of integration, which depends on the cell
lifespans. This can be achieved by introducing a “dummy” variable Int(t)
representing the integral in Eq. (31) such that:

SF(t) = exp(−(Int(t) − Int(t − TP))) (34)

This variable satisfies the following ODE:

d Int
dt

= f (C(t)) (35)

with the zero initial condition,

Int(0) = 0 (36)

Because of the presence of delays in Eqs. (32) and (34), Eqs. (32) and
(35) form a system of DDE that can be solved using the method of steps.
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In Appendix C we present the NONMEM code implementing the method
of steps for this system. The delay times are TM, TP + TM, TM + TR and
TP + TM + TR and only the Int(t) variable is delayed. Therefore the sys-
tem of Eqs. (10)–(12) consists of 9 ODE: the first (DADT(2)) describes
A(t-TM-TP), the second (DADT(6)) Int A(t-TM-TP), the third (DADT(3))
describes A(t-TM), the fourth (DADT(7)) Int (t-TM), the fifth (DADT(4))
describes A(t-TR-TM-TP), the sixth (DADT(8)) Int(t-TR-TM-TP), the sev-
enth (DADT(5)) describes A(t-TR-TM), the eighth (DADT(9)) Int(t-TR-
TM), and the ninth (DADT(1)) R(t). ALAG2, ALAG3, ALAG4, ALAG5
were set as TM+ TP, TM, TR + TM + TP, TR+TM, respectively. This
implements Eq. (14) to the ODE for all delayed variables, Int. The base-
line value R0 given by Eq. (33) was used as the initial condition for R(t)
and was implemented by setting F1 to R0. The corresponding AMT value
at t = 0 was set as 1 in the data file.

Evaluation of Performance

For each model a dataset was built to explore the performance. The
dataset consisted of 5 cohorts of 25 subjects receiving escalating doses
(0.1, 1, 10, 100 and 1000 unit) of a stimulating agent or a cytotoxic
drug. In order to minimize the impact of the PK on the PD parameters,
it was assumed that the PK parameters were known and the same for
all subjects. Therefore, only PD measurements at specific sampling times
were simulated according to the model parameters presented in Tables I–
III. The sampling times were densely selected to cover all responses. For
the basic LIDR model they ranged from 0 to 72 hr (43 time points). For
the modified basic LIDR model with precursor the last sampling time
was 96 hr (25 time points), and for the LIDR models describing cytotoxic
effects the last sampling time was 72 hr (63 time points).

For each model, 250 datasets consisting of individual PD responses
for 125 subjects were generated and fitted to the same model that previ-
ously was used to generate the data. The Hill coefficient was fixed to 1
and, therefore, it was not evaluated in this study. The magnitude of the
inter-individual variability in a certain model parameter was assumed to
be independent and modeled according to an exponential model. How-
ever, due to the low estimability, the random parameters associated with
drug-related parameters for all models (ωSmax, ωSC50, ωKmax, ωC50) as well
as the random system parameters for the model of cytotoxic effects
(ωTP, ωTR) were set to 0 both in simulations and subsequent estimation
procedures. The simulated cell numbers and model predictions were trans-
formed into natural logarithms, and the residual variability was modeled
using an additive error model (transform-both-sides approach—TBS).
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This process was repeated to account for the impact of the two
different methods of estimation: first-order (FO) and first-order condi-
tional (FOCE). In addition, an exponential error model was used to
account for the residual variability and the results were compared to those
obtained by using the FO+TBS and FOCE+TBS. The estimated param-
eters were recorded from the runs that successfully converged and were
used to evaluate performance using bias and precision (21). The mean pre-
diction error was used as a measure of bias for parameter P estimation

MEP = 100 · 1
N

N∑
i=1

Pest,i − Psim,i

Psim,i
(37)

where N denotes the number of successful minimizations. The root mean
squared prediction error was used as a measure of precision:

RMSEP = 100 ·
√√√√ 1

N

N∑
i=1

[
Pest,i − Psim,i

Psim,i

]2

(38)

where N denotes the number of successful minimizations. The Student
t-test was performed to determine if the bias were significantly different
than 0.

RESULTS

Basic LIDR Model

The typical time course of the number of cells in the pool, R, is pre-
sented in Fig. 2 as a function of dose. The total of 250 replicates were
fitted by three methods FO, FO+TBS, and FOCE+TBS. The number of
successful minimizations was 53 (21%), 113 (45%), 182 (73%), respectively.
The population means of θSmax, θSC50, θk0, θTR, as well as the standard
deviations of ωk0, ωTR for inter-individual variability and σ for residual
variability were estimated and compared to the true values. The bias and
precision of parameter estimates are presented in Table I.

All fixed effect parameter estimates except θk0, and random effect
parameter estimates except ωTR were significantly biased for the FO
method (p < 0.05). No estimate was significantly biased or imprecise
for the FOCE+TBS method. Bias decreased and precision increased in
the order of FO, FO+TBS, FOCE+TBS. Compared to the true value,
the most precisely estimated fixed effect parameters obtained by the
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Fig. 2. Response vs. time profiles for three LIDR models. The responses were simulated
using the fixed effect models for the indicated dose levels. Panels represent (a) the basic
LIDR model, (b) modified basic LIDR model with precursor, and (c) the LIDR for cytotoxic
effects of an anticancer agent. The values of the model parameters used for simulations are
presented in Tables I–III, respectively.
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FOCE+TBS method was θSmax and the least was θk0. The random param-
eter estimates had similar relative biases and precisions, with slight supe-
riority of σ . The frequency distribution of the parameter estimates by
the FO method were skewed and none was centered at the true value.
Both skewness and bias of the parameter distribution decreased for the
FO+TBS method (distributions not shown). The FOCE+TBS method
yielded medians for θSmax, qSC50, θk0, θTR, ωk0, and ωTR estimates close to
true values, and the distributions were symmetrical (see Fig. 3).

Modified LIDR Model with a Precursor Pool

The typical time course of the number of cells in the pool, R, is
presented in Fig. 2. as a function of dose. The replicates of 250 such
data sets were simulated and each was analyzed using FO, FO+TBS, and
FOCE+TBS methods. The numbers of successful minimizations were 236
(94.4%), 250 (100%), and 250 (100%), respectively. The population means
of θSmax, θSC50, θk0, θk1, θTR, as well as the standard deviations of ωk1, ωTR
and σ were estimated and compared to the true values. The bias and
precision of parameter estimates are presented in Table II.

The FO method yielded significant bias in estimating θSC50 and σ ,
whereas FO+TBS showed significant bias in estimating θSmax and θk0. The
FOCE+TBS method did not result in a significant bias for any of the
parameters. Bias decreased and precision increased in the order of FO,
FO+TBS, FOCE+TBS. Compared to the true value, the most precise esti-
mate for the fixed effect parameters obtained by the FOCE+TBS method
was θk0 and the least was θSC50. The random parameter estimates had sim-
ilar relative biases and precisions, with significant superiority of σ . For the
FOCE+TBS method, none of the frequency distributions of the param-
eter estimates was skewed and all were centered at the true values (see
Fig. 4). The distribution of θTR estimates for the FO method was skewed
to the right whereas histograms for remaining parameters were symmet-
rical. However, for this method, none of the distributions was centered
at the true value. The FO+TBS lowered the magnitude of bias, and the
distributions were centered at true values only for θk1, θSC50, and ωTR
(distributions not shown).

LIDR Models of Cytotoxic Effects of Anticancer Agents

The typical time course of the number of cells in the pool, R,
is presented in Fig. 2 as a function of dose. The replicates of 250
data sets were simulated and each was analyzed using FOCE+TBS, FO+TBS,



784 Perez-Ruixo et al.

F
ig

.
3.

H
is

to
gr

am
an

d
pr

ob
ab

ili
ty

di
st

ri
bu

ti
on

fu
nc

ti
on

of
th

e
es

ti
m

at
es

fo
r

fix
ed

an
d

ra
nd

om
P

D
pa

ra
m

et
er

s
fo

r
th

e
ba

si
c

L
ID

R
m

od
el

ob
ta

in
ed

by
th

e
F

O
C

E
+

T
B

S
m

et
ho

d.
T

he
so

lid
ve

rt
ic

al
lin

e
re

pr
es

en
ts

th
e

tr
ue

va
lu

e.
B

ro
ke

n
ve

rt
ic

al
lin

es
re

fle
ct

th
e

95
%

co
nfi

de
nc

e
in

te
rv

al
s.



Cell Lifespan Models in NONMEM 785

   

 
 

  

 

Fig. 4. Histogram and probability distribution function of the estimates for fixed and ran-
dom PD parameters for the modified basic LIDR model with precursor obtained by the
FOCE+TBS method. Vertical lines are defined in Fig. 3.

and FO methods. The numbers of successful minimizations were 249
(99.6%), 245 (98%), and 94 (37.6%), respectively. The population means
of θKmax, θC50, θBSL, θTP, θTM, θTR, as well as the standard deviations of
ωBSL, ωTR and σ were estimated and compared to the true values. The
bias and precision of parameter estimates are presented in Table III.

The FO method yielded significant bias in estimating θKmax, θTP, θTR,
and σ , whereas FO+TBS showed significant bias in estimating θKmax, θTP,

θTM, and σ . The FOCE+TBS method did not result in a significant
bias for any of the parameters. Bias decreased and precision increased
in the order FO, FO+TBS, FOCE+TBS. Relative to the true value, the
most precise estimate for the fixed effect parameters obtained by the
FOCE+TBS method was for θTp and the least for θBSL. The random
parameter estimates had similar relative biases and precisions, with signifi-
cant superiority of σ . For the FOCE+TBS method, none of the frequency
distributions of the parameter estimates was skewed and all were centered
at the true values (see Fig. 5). The distribution of θTP and θKmax estimates
for the FO+TBS method was skewed to the right whereas histograms for
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Fig. 5. Histogram and probability distribution function of the estimates for fixed and ran-
dom PD parameters for the LIDR model of cytotoxic effects of anticancer agents obtained
by the FOCE+TBS method. Vertical lines are defined in Fig. 3.

the remaining parameters were symmetrical. However, for the FO method,
none of the distributions was centered at the true value (distributions not
shown).

DISCUSSION

We present the method of steps in its general form with which any
system of DDE can be transformed to a system of ODE. The models
are described by Eqs. (17)–(20). For such equations, the number of ODE
does not depend on the last observation time unlike for models with feed-
back mechanisms that are delayed. The number of ODE obtained by the
method of steps for models with delayed feedback is a multiple of the
original DDE system, and determined by the last observation time and
the minimal delay time. An example of a pharmacodynamic model with
a delayed feedback can be found elsewhere (12).
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If the number of ODE generated by the method of steps exceeds
the maximum number allowed by NONMEM, then the method of steps
cannot be applied. The basic LIDR model had two DDE that yielded
three ODE using the method of steps. The modified basic LIDR with
a precursor consisted of three DDE, which required five ODE in the
NONMEM code. No numerical instability was reported by the NON-
MEM ODE solver during the minimization procedure. Therefore, we can
conclude that for the types of models described in this manuscript, the
method of steps was successfully implemented in NONMEM.

The PK, which is the driving force for the cell lifespan model, was
not estimated and no PK variability was introduced in order to min-
imize the influence of PK variability on estimability of pharmacody-
namic parameters. We sampled PD intensively and several single dose
regimens were used to increase estimability of fixed effect model param-
eters. The levels of inter-individual and residual variability were set pur-
posely to moderate values in order not to obscure our objectives but
still preserve realistic meaning. For model evaluation, we limited our
analysis to precision and bias of fixed and random parameter esti-
mates, leaving out discussion of goodness of fit or parameter correlation
issues.

The log transformation of data and model predictions (TBS) has been
reported to reduce the bias in the parameter estimates obtained by FO
and FOCE methods (22). With this transformation the weighted resid-
ual error distribution becomes closer to the normal distribution. For our
simulated data with the exponential residual error model (i.e., additive
error model in log domain) and TBS, FOCE significantly reduced the bias
in nearly all fixed and random parameter estimates for all the models.
Therefore, the minimization method FOCE without TBS was not tested
in anticipation of a similar improvement after including TBS. As long as
the skewness of the residual error distribution following FO or FOCE
estimation is observed, TBS is recommended. One might also consider
the more general Box–Cox transformation of data and model predictions.
However, special care should be taken when selecting the LIDR model
to avoid compensating model misspecification by a sophisticated residual
error model (22).

From three tested methods of minimization, FOCE+TBS proved to
be superior. It was most stable with the lowest number of minimization
failures. Both the imprecision and bias of the parameter estimates were
smallest. However, the running time necessary to complete minimization
was longest of all methods. To ensure the best NONMEM performance,
it is recommended to use FOCE+TBS when feasible. The lowest number
of successful minimizations for all methods was observed for the basic
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LIDR model. Since this model structure was simplest of all discussed
cases and the experimental designs similar, one might conclude that mini-
mization failures were caused by random effects. Only two parameters for
each model were allowed to vary from subject-to-subject. One can hypoth-
esize that if the model predictions at given time points are sensitive to a
parameter with noticeable (CV of 20%) inter-subject variability, then the
probability of minimization failure increases. However, more in depth sen-
sitivity analysis is warranted to provide a definite answer for the cause
of decreased frequency of successful minimizations for the basic LIDR
model.

The modified LIDR model with a precursor differs from the previously
introduced model with the cell transport process from the precursor
to the blood pool (10). In our model the delay occurs in the precur-
sor cell pool and the system is more complex, presenting more prob-
lems with coding the model equations and challenging the NONMEM
performance to a greater extent. In a recent paper (13), the modified
LIDR with two precursor pools was used for describing reticulocyte
tolerance due to precursor depletion. The IDR model with precursor
pool catenary linked to compartments where the lifespan concept deter-
mine their kinetics gives additional flexibility to the cell lifespan models
and has been proven to be a useful strategy to deal with the tolerance
phenomena and the cell lifespan concept. A mixture of basic LIDR
and modified LIDR models with a precursor was tested in the LIDR
model for cytotoxic effects of anticancer agents. All analyzed models
had a catenary structure well suitable for application of the methods of
steps. For models with the feedback processes (8,12) NONMEM per-
formance can be different and the results presented here might not be
valid.

In summary, mixed-effect models implementing cell lifespan concepts
can be used to deal with the dynamics of natural cells when hematopoietic
growth factors and/or anticancer drugs are administered. LIDR models
combined with other PK/PD models add more flexibility to modeling drug
responses. The NONMEM performance with the LIDR models is simi-
lar to that observed with other PKPD models. The FOCE+TBS method
should be used when feasible.
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APPENDIX A: NONMEM code and data file for basic LIDR model
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APPENDIX B: NONMEM code and data file for modified LIDR model
with a precursor
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APPENDIX C: NONMEM code and data file for LIDR model for
cytotoxic effects
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