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Abstract
Introduction Occupational rehabilitation often involves functional capacity evaluations (FCE) that use simulated work tasks 
to assess work ability. Currently, there exists no single, streamlined solution to simulate all or a large number of standard 
work tasks. Such a system would improve FCE and functional rehabilitation through simulating reaching maneuvers and 
more dexterous functional tasks that are typical of workplace activities. This paper reviews efforts to develop robotic FCE 
solutions that incorporate machine learning algorithms. Methods We reviewed the literature regarding rehabilitation robotics, 
with an emphasis on novel techniques incorporating robotics and machine learning into FCE. Results Rehabilitation robotics 
aims to improve the assessment and rehabilitation of injured workers by providing methods for easily simulating workplace 
tasks using intelligent robotic systems. Machine learning-based approaches combine the benefits of robotic systems with the 
expertise and experience of human therapists. These innovations have the potential to improve the quantification of function 
as well as learn the haptic interactions provided by therapists to assist patients during assessment and rehabilitation. This 
is done by allowing a robot to learn based on a therapist’s motions (“demonstrations”) what the desired workplace activity 
(“task”) is and how to recreate it for a worker with an injury (“patient”). Through Telerehabilitation and internet connectiv-
ity, these robotic assessment techniques can be used over a distance to reach rural and remote locations. Conclusions While 
the research is in the early stages, robotics with integrated machine learning algorithms have great potential for improving 
traditional FCE practice.
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Background

Musculoskeletal disorders and injury are leading causes of 
disability worldwide [1]. Workplace injury often leads to 
disability and substantial time loss from work. Improved 
assessment and rehabilitation strategies are needed to reduce 
the burden of work disability due to musculoskeletal condi-
tions. The standard practice in occupational rehabilitation is 
to first assess injured workers’ functional ability, often via 
Functional Capacity Evaluation (FCE) [2]. This is done by 

assessing a worker’s performance during a set of simulated 
work tasks. This often includes low-level lifting, a task that 
is an important predictor of recovery and return to work [3, 
4]. A variety of FCE protocols and systems are available, 
but most include functional tasks that require different sets 
of equipment that are specific to a single task. For example, 
lifting and carrying are often tested using a crate and free 
weights on adjustable shelving, pushing and pulling may be 
done with a weighted sled or wall-mounted strain gage, hand 
coordination is tested with some form of manual dexterity 
equipment, etc.

FCE is widely used to assess injured workers before, 
during and after rehabilitation. Several studies have been 
carried out to evaluate FCE validity for assessment of 
work ability. Peppers et al. showed that combining clini-
cal evaluation with FCE improves physicians’ assessments 
of the patient’s skills and work capacities [5]. FCE has 
been found to significantly predict return to work [4], and 
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functional assessment is an integral component of graded 
activity and functional rehabilitation programs [6–8]. 
However, Edelaar et al. concluded that further research is 
needed in FCE, especially on the incorporation of com-
puter technology (including robotics and digital sensors) 
[9].

Currently, there exists no single, streamlined solu-
tion to simulate all or a large number of standard work 
tasks. Also, assessment metrics for these tasks are lim-
ited by what a therapist can observe qualitatively. This 
means that assessments are based only on clinical metrics 
such as how much weight was lifted, the height it was 
lifted to, the completion time, judgments of the patient’s 
effort, etc. More complex and quantitative assessments 
are still unavailable, although wearable sensors and other 
technological measuring devices are rapidly developing 
[10, 11]. Moreover, injured workers residing in rural or 
remote areas may not be able to receive timely assessment 
or rehabilitation given a lack of resources or services in 
their areas. Creative solutions are needed to address these 
issues.

Innovative solutions may be found in the use of reha-
bilitation robotics, an area that has seen important devel-
opment over the last three decades. The ability of robots 
to provide repetitive, high-intensity interactions without 
fatiguing makes them a useful method for providing the 
repetitive tasks that are fundamental to FCE and occu-
pational rehabilitation, but that may be found tedious 
or fatiguing for human assessors [12]. Moreover, with 
the advent of robots with internet connectivity, there is 
potential for assessments and treatment to take place at a 
distance. Research in the rehabilitation robotics area has 
sought to improve the stability of these robots to make 
them patient-safe, as well as to provide them with the abil-
ity to adapt their behaviors based on feedback to assist or 
resist patient activity during assessment and exercise.

One goal of rehabilitation robotics research has been to 
improve the assessment of injured workers by providing 
methods for easily simulating workplace tasks using intel-
ligent robotic systems [13]. Such a system would provide 
a single, streamlined solution for both FCE and functional 
rehabilitation and be able to simulate reaching maneuvers 
as well as more dexterous functional tasks that are typical 
of workplace activities. Utilizing machine learning-based 
approaches, we have attempted to combine the benefits 
of robotic systems with the expertise and experience of 
human therapists by allowing a robot to learn based on a 
therapist’s motions (“demonstrations”) what the desired 
workplace activity (“task”) is and how to recreate it for a 
worker with injury (“patient”). This paper will provide a 
brief history of rehabilitation robotics and review efforts 
to incorporate machine learning algorithms into robotic 
solutions for FCE.

Robotics in Rehabilitation

Initially, most robots used in rehabilitation were for assis-
tive purposes [14]. These robots did not aim to help regain 
lost motor function or abilities of the patient, but rather 
they aimed to assist the patient in performing activities of 
daily living. These were commonly seen as robots attached 
to wheelchairs to assist with eating and drinking, grab-
bing objects, and power mobility [15]. It was not until the 
late 1980s that researchers pursued rehabilitation robot-
ics for use in therapy and neurological rehabilitation [16]. 
Research in rehabilitation robotics started to search for 
solutions that would produce more efficient and effective 
rehabilitation techniques.

In 1988, two double-link planar robots were coupled 
with a patient’s lower limb to provide continuous passive 
motion for rehabilitation [17]. This was soon followed 
by an upper-limb rehabilitation device in 1992, the MIT-
MANUS, which was used for planar shoulder-and-elbow 
therapy [18]. Upper limb rehabilitative devices were 
further developed after the advent of the MIT-MANUS. 
These include devices such as the Mirror-Image Movement 
Enabler (MIME) robotic device, which improved muscle 
movements through mirror-image training [19], and the 
Assisted Rehabilitation and Measurement (ARM) Guide, 
which functions both as an assessment and rehabilitation 
tool [20]. Robotic rehabilitation that targeted other areas 
of the body surfaced in the 2000s. These robotic devices 
allowed rehabilitation for the wrist [21], hand, and finger 
[22] in the upper limb, and gait and ankle training for the 
lower limb [23, 24]. Robots have also been developed for 
training patients to perform activities of daily living [25, 
26].

While the majority of research in rehabilitation robotics 
has been in neurological rehabilitation, there has recently 
been interest in robots for occupational rehabilitation [13]. 
Including robots in therapy to provide therapist-robot-patient 
interactions presents potential advantages over conventional 
therapist-patient interactions within occupational rehabilita-
tion. Current FCE practice is performed by using standard-
ized assessments of simulated work tasks in which therapists 
observe performance and make judgments about maximal 
effort and abilities. While specific assessments have some 
demonstrated evidence of validity and interrater reliability 
[4, 27, 28], there can never be complete certainty in the 
results they provide due to the idiosyncratic nature of human 
raters leading to limited precision and reliability of assess-
ment results. To overcome this problem, sensors in robotic 
systems can provide direct numerical measurements that can 
accurately describe a patient’s performance on a variety of 
metrics. This could be ideal for supplementing the typical 
rater judgments during FCE.
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The ability of robots to be automated is one of their most 
important strengths and provides important advantages over 
existing work simulator devices that are available on the 
market [29, 30]. The automation of rehabilitation robots 
provides an opportunity to streamline assessment and ther-
apy to make it more efficient. For example, the ability to 
time-share a single therapist across multiple patients using 
robot systems becomes possible. As mentioned, FCE is 
inherently restricted by distance when conducted in a tra-
ditional (i.e., face-to-face) manner. Patients must attend a 
clinic or rehabilitation center, or a therapist must visit the 
patient at their workplace or home. In cases where patients 
are situated in remote or otherwise difficult to access loca-
tions, providing services may be exceedingly challenging 
and cost-inefficient [31, 32]. Telerehabilitation with robotics 
is a potential solution [33] Telerehabilitation is the concept 
of providing rehabilitation support, assessment and inter-
vention over a distance using internet-based communica-
tion as a medium for therapist-patient interaction [34]. This 
can take the form of purely audio or video communication, 
audiovisual communication with patient-robot (unilateral) 
interaction with performance communicated over the inter-
net, or true telerobotic therapy involving haptic (bilateral) 
interaction between a therapist side robot and a patient-side 
robot [35–37]. Through telerehabilitation robotics, remote 
access to patients is a possibility and this opportunity has 
received significant focus in research [38]. Early indications 
from longitudinal studies have highlighted that telerehabili-
tation can lead to modest cost savings despite the up-front 
cost of necessary technology [39].

An important consideration is that the field of rehabilita-
tion robotics should focus on the use of robots as supplemen-
tary to conventional assessments and as enabling tools in the 
hands of therapists, instead of as replacements for them [40]. 
Providing semi-autonomy is one solution: semi-autonomy 
maintains the therapist in charge of the rehabilitation and 
assessment process while allowing them to save time and 
effort since the robot or automated system takes a share of 
the required tasks. Autonomy in robotics implies the exist-
ence of machine intelligence, which demands the domain of 
machine learning research.

Machine Learning in Rehabilitation Robotics

The incorporation of machine learning algorithms in reha-
bilitation (robotic or conventional) has increased in the past 
two decades. The vast majority of research focuses on the 
use of machine learning algorithms for classification, predic-
tion, and treatment planning, but not for learning the actions 
and interventions demonstrated by a therapist. The use of 
support vector machines and random forest algorithms 
for learning and recognizing general human activities was 
evaluated by Leightley et al.[41]. Li et al. also used support 

vector machines as well as K-nearest neighbors classifiers 
to recognize gestures for hand rehabilitation exercises [42]. 
The use of K-nearest neighbors, logistic regression, and 
decision trees for identifying upper body posture using a 
flexible sensor system integrated into the patient’s clothes 
was assessed by Giorgino et al. [43]. The use of logistic 
regression, naive Bayes classification, and a decision tree 
wave have been compared by McLeod et al. for discriminat-
ing between functional upper limb movements and those 
associated with walking [44].

The power of machine learning models is not limited to 
only classifying movements. They also have the potential to 
provide predictions of a patient’s work status, which may 
inform rehabilitation planning. Zhu et al. trained a support 
vector machine and K-nearest neighbors classifier to predict 
a patient’s rehabilitation potential, both of which provided 
better predictive abilities than an assessment protocol cur-
rently used in the field [45]. A support vector machine was 
also used by Yeh et al. to classify balance in able-bodied 
individuals and those with vestibular dysfunction [46]. Begg 
et al. also used a support vector machine to classify gait in 
younger, healthy participants as well as elderly participants 
[47]. Lastly, a support vector machine was implemented by 
LeMoyne et al. for classification of normal and hemiplegic 
ankle movement [48]. In the area of occupational rehabili-
tation, Gross et al. used Repeated Incremental Pruning to 
Produce Error Reduction techniques to develop an algorithm 
for selecting rehabilitation interventions for injured workers 
[49].

More recent applications of machine learning expand 
on these works classifying both a patient’s movements 
and their health condition and attempt to build intelligent 
rehabilitation systems that can adjust assessment tasks or 
provided interventions based on features of a patient. Bar-
zilay et al. trained a neural network to adjust an upper limb 
rehabilitation task’s difficulty based on upper limb kine-
matics and electromyography (EMG) signals [50]. The use 
of K-nearest neighbors, neural networks, and discriminant 
analysis techniques were evaluated by Shirzad et al. for 
adjusting task difficulty in relation to a patient’s motor per-
formance and physiological features, with neural networks 
providing the best predictive abilities with a success rate 
of 78% [51]. Badesa et al. performed a similar evaluation 
for perceptron learning algorithms, logistic regression, 
discriminant analysis, support vector machines, neural 
networks, K-nearest neighbors, and K-center classifiers in 
which support vector machines were able to best predict 
a user’s physiological state [52]. A fuzzy logic algorithm 
was used by Garate et al. to relate a patient’s joint kin-
ematics to the primitive motor outputs of a Central Pattern 
Generator, which effectively assists during gait through the 
control of an exoskeleton’s torques [53]. Gui et al. took a 
similar approach, using electromyographic measurements 
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as the input to a discriminant analysis algorithm that pro-
vides assistive exoskeleton trajectories through a Cen-
tral Pattern Generator [54]. It is important to note that 
in each of these projects, the adaptation learned by the 
algorithms was not learned from demonstrations. Rather, 
these interactions were generated from predetermined 
models relating patient performance to task difficulty or 
desired assistance.

Learning from Demonstration for Haptic Interaction

Learning from Demonstration (LfD) describes a family of 
machine learning techniques in which a robot observes task 
demonstration by a human operator (the “demonstration” 
phase) and learns rules to describe the desired task-oriented 
actions, which then may or may not be acted upon by the 
robot in a later “reproduction” phase [55]. The synonymous 
terms “programming by demonstration” or “imitation learn-
ing” refer to the same concept. The rules learned through 
LfD techniques is a central point to its innovation, and has 
seen implementation through mapping functions (classifica-
tion and regression) or through system models (reinforce-
ment learning) [56].

Using LfD techniques to program robots provides sev-
eral advantages. After the initial challenge of making the 
machine intelligent (i.e., teachable), programming the 
robot can easily be done by physically holding the robot 
and moving it through a desired trajectory. This is known 
as kinesthetic teaching and is advantageous since users do 
not require knowledge of computer programming. The capa-
bilities of the robot are completely dependent on the level 
of sophistication of the underlying learning algorithms and 
the number of sensors used to characterize a behavior. It 
is possible to teach robots more complex aspects of tasks 
(e.g., understanding a user’s intent) with highly sophisticated 
algorithms and sufficient sensors. LfD methodology requires 
a human user to be involved in the programming process, 
meaning the aspect of interacting with an actual human is 
preserved and conveyed by means of imitation. Importantly, 
like any other implementation of machine learning for robot-
ics, LfD allows for automation and can translate into time 
and cost savings.

The concept of semi-autonomous systems and LfD has 
seen extensive research in the past few decades. Application 
of LfD principles to human-robot interaction has naturally 
led to the exploration of cooperative tasks such as those 
required during work activity and assessment. Calinon et al. 
taught a robot to cooperatively lift a beam [57]. Gribovskaya 
et al. built upon the same work to ensure complete stability 
of the robot throughout its entire workspace [58]. A variant 
to learn motion and compliance during a highly dynamic 
cooperative sawing task was created by Peternel et al. [59].

Learning Haptic Interactions Provided 
by a Therapist

Our group has investigated LfD since 2015 as its advantages 
make it an ideal method for introducing semi-autonomy 
into the field of rehabilitation robotics. This stems from 
the ability of LfD to provide a plausible method for thera-
pists with minimum programming experience to custom-
ize assessment and rehabilitation regimes. Therapists can 
easily adjust not only the level of therapeutic assistance or 
resistance provided to a patient but also set up any number 
of different assessment or therapy tasks (See Fig. 1). This 
aspect of mutual adaptation, where users can explore and 
train robotic aides themselves, is an important step for reha-
bilitation robotics [60]. It is proposed as a viable method of 
making robotic-assisted assessment and therapy more cost-
effective and personalized.

Few groups have applied LfD-based machine learning 
techniques towards the practice of occupational rehabili-
tation, but some research has been conducted in physical 
therapy more generally. An adaptive logic network was 
used by Hansen et al. to learn a model relating eloctromyo-
graphic signals and the timing of a patient’s activation of 
an assistive Functional Electrical Stimulation device during 
gait, which was successfully applied in daily activity over 
the length of a year [61]. Kostov et al. performed a similar 
project comparing adaptive logic networks and inductive 
learning algorithms, but instead related foot pressure record-
ings with Functional Electrical Stimulation activation timing 
[62]. Adaptive logic networks were found to have marginally 
better gait recognition abilities, with the authors concluding 

Fig. 1   An example of Learning from Demonstration (LfD) for train-
ing a robot to imitate a therapist’s activities. In phases 1 and 2, the 
therapist provides haptic interaction for the patient when performing 
a simulated task (in this case opening a door) while the rehabilitation 
robot observes the intervention through kinesthetic teaching. The LfD 
algorithm is trained after phase 2. In phases 3 and 4, the robot will 
imitate the haptic interaction demonstrated by the therapist so as to 
allow the patient to practice in the absence of the therapist while still 
receiving haptic guidance. Reproduced with permission from Fong 
and Tavakoli [72]
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that the amount of training data provided matters more than 
the classification method used. Strazzulla et al. used ridge 
regression techniques to learn myoelectric prosthetic control 
during a user’s demonstrations, characterized by EMG sig-
nals, and showed that retraining the learned model during 
performance of a task is intuitive for experienced and naïve 
users alike [63].

Research that uses LfD to specifically learn and reproduce 
the haptic interaction provided by a therapist during assess-
ment or interventions represents one branch of the current 
state of the art in robotic rehabilitation. The merging of these 
two technologies exploits the hands-on nature of LfD-based 
robotic systems and addresses some of the shortcomings of 
robotic rehabilitation as mentioned earlier (i.e., the enabling 
of cost-savings and ease of programming). Lauretti et al. 
optimized a system built on dynamic motor primitives for 
learning therapist-demonstrated paths for activities of daily 
living, which successfully learned the time-sensitive nature 
of the tasks [64]. Atashzar et al. proposed a framework for 
both electomyographic and haptics-based LfD, where the 
learning of the therapeutic behaviors for an upper limb task 
was successfully facilitated with a neural network using a 
computational model of motor disability for a patient who 
had experienced a stroke [65].

Tao utilized a method based on linear least squares regres-
sion to provide a simple estimation of the impedance (i.e., 
stiffness, damping, and inertia) inherent to a therapist’s inter-
vention during the cooperative performance of upper limb 
activities of daily living with a patient [66]. Maaref et al. 
described the use of Gaussian Mixture Model-based LfD as 
the underlying mechanism for an assist-as-needed paradigm, 
evaluating the system for providing haptic interaction for 
assistance in various upper limb activities of daily living 
[67]. Assistance-as-needed describes the practice of provid-
ing patients with enough assistance to complete a task and 
maintain motivation, but not so much that an insignificant 
amount of effort is required on their part. Najafi et al. learned 
the ideal task trajectory and interaction impedance provided 
by an able-bodied user with a Gaussian Mixture Model and 
provided user experiment evaluations for an upper limb 
movement therapy task [68]. Martinez et al. extended the 
Stable Estimator of Dynamical Systems learning algorithm 
developed by Khansari-Zadeh and Billard [69]. to learn both 
motion and force-based therapist interventions [70].

Most recently, Fong et al. applied kinesthetic teaching 
principles to a robotic system in order to allow it to first 
learn and then imitate a therapist’s behavior when assisting a 
patient in a lower limb therapy task [71]. A therapist’s assis-
tance in lifting a patient during treadmill-based gait therapy 
was statistically encoded by the system using a Gaussian 
Mixture Model. Later, the therapist’s assistance was imitated 
by the robot, allowing the patient to continue practicing in 
the absence of the therapist. Preliminary experiments were 

performed by inexperienced users who took the role of an 
assisting therapist with healthy participants playing the role 
of a patient by wearing an elastic cord to simulate foot drop. 
The system provided sufficient lifting assistance, but high-
lighted the importance of learning haptic interactions in the 
form of the therapist’s impedance as opposed to only their 
movement trajectories.

We then applied a similar method of kinesthetic teaching 
for learning the impedance-based haptic interaction provided 
by a therapist during the intervention in an upper limb activ-
ity of daily living [72]. The kinesthetic teaching process 
proposed that during performance of the task, the interac-
tion forces exerted on the robot end-effector by each of the 
agents (task environment, patient, therapist) could be simpli-
fied as a set of spring forces, linearized about spatial points 
of the demonstration. An estimate of the impedance-based 
interaction provided by the therapist could then be obtained 
by measuring the “performance differential” (i.e., differ-
ences in forces along the trajectory), between the patient 
practicing the task when assisted by the therapist and when 
attempting the task alone. Experimental validation of the 
system showed that the interaction impedance was faithfully 
reproduced, although the resolution of the learnt interaction 
model briefly produced inaccurate haptic interaction. Simi-
lar procedures have also been used to simulate work-related 
tasks via robotic systems (See Fig. 2) [13].

The Gaussian Mixture Model-based LfD system was also 
applied to a bilateral telerobotic setup to enable telerobotic 
rehabilitation for home-based delivery [73]. A Gaussian 
Mixture Model and GMR-based approach to LfD was imple-
mented with the purpose of learning therapeutic interactions 
in a collaborative activity of daily living (which simulated 
lifting weighted crates), where the intervention was depend-
ent on the patient’s upper limb position and velocity. By 
training the Gaussian Mixture Model with patient perfor-
mance (represented by their limb velocity) as a model input, 
the LfD algorithm inherently learned the adaptive nature of 
the therapist’s intervention with respect to a patient’s level 
of ability.

Fig. 2   Robotic simulation of work-related tasks (painting)
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Lastly, we compared the single robot and telerobotic 
modalities previously implemented (referred to as Robot- 
and Telerobotic-Mediated Kinesthetic Teaching) for imple-
menting LfD in robotic rehabilitation (See Fig. 3) [74]. The 
study provided incentive for rehabilitation-oriented systems 
to pursue Robot-Mediated Kinesthetic Teaching designs, as 
the demonstrations provided through that modality were 
found to be more consistent.

Future Directions for LfD‑Enhanced Rehabilitation

Despite their advantages, integrating robotic rehabilita-
tion into FCE and occupational rehabilitation is in the early 
stages and faces several limitations. First and foremost is that 
analyses of the efficacy of robotic rehabilitation are largely 
inconclusive as to whether robotic rehabilitation will be as 
effective as “conventional” assessment processes. Research 
in this area is in its infancy and when put in context with the 
high initial costs of purchasing robots, acceptance of robotic 
assessment and rehabilitation remains relatively low in clini-
cal settings. The programming of rehabilitation robots has 
always been done such that the robots provide interactions 
associated with a specific set of tasks, with no easy method 
of changing these tasks. As a result, the kinds of interac-
tions a therapist can provide through the robotic medium 
are limited unless the therapist or a technician are familiar 
with computer programming principles and can change the 
task and/or task-oriented behavior of the robot. Low patient 
motivation remains an issue even with the addition of robot-
ics. As robots allow for reduced therapist interaction, the 
patients themselves may lose motivation due to the lack of 
encouragement, entertainment, and human interaction [75, 
76].

Despite these limitations, more research is needed to 
evaluate the use of machine learning and rehabilitation 
robotics in the area of FCE and occupational rehabilita-
tion. The incorporation of machine learning techniques is 
still relatively new in the field of rehabilitation robotics. A 
wide range of learning algorithms is present in the literature, 
but none of these are a definitive best option. A possible 
future direction would be to explore and compare LfD algo-
rithms so as to create guidelines that are optimal for FCE 

assessment tasks and the human-robot interaction learning 
for assessment. Algorithms that generate global models from 
demonstrations (i.e., that cover the entire task workspace) 
may represent a good starting point. In these models, desired 
haptic interactions would be defined for all patient behaviors, 
which is desirable for safety and ease of programming. This 
could be performed through simple methods such as surface 
fitting, but could also be extended to explore more advanced 
concepts such as fitting Riemannian manifolds [53], or the 
SEDS algorithm [70].

A common limitation of the majority of the technolo-
gies that have been presented in this paper is that they pre-
sent proof-of-concept systems or have not been validated 
for patient-safe interaction. It is crucial to validate the sys-
tems by conducting longitudinal studies on actual patients 
with work disability. Systems incorporating the proposed 
technologies should be compared with traditional FCE by 
analyzing the outcomes of patient satisfaction and return to 
work in order to determine their effectiveness against cur-
rent methods. Emphasis should also be placed on recruiting 
large sample sizes, as the majority of rehabilitation robotics 
studies to date have been done with relatively small samples.

Conclusions

The ultimate goal of this research area is to improve the 
assessment and rehabilitation of injured workers by provid-
ing methods for easily simulating workplace tasks using 
intelligent robotic systems. Such a system would provide 
a single, streamlined solution for both FCE assessment and 
rehabilitation. The system would be able to simulate reach-
ing maneuvers as well as more dexterous functional tasks 
that are typical of workplace activities. Utilizing machine 
learning approaches, the benefits of robotic systems could 
be combined with the expertise and experience of human 
therapists. While the research is in the early stages, it has 
great potential for overcoming several limitations of tradi-
tional FCE practice.

Funding  No funding was received in support of this research.

Fig. 3   Illustrations of the teler-
ehabilitation system with LfD 
proposed by our group. The 
demonstration phase is shown 
in a where the patient interacts 
with the therapist via a distant 
robot, and the reproduction 
phase in b where the patient 
interacts with a robot that emu-
lates the therapist’s behavior
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