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Abstract
The present study explores the influence of Cobalt oxide nanoparticles(Co3O4 NPs) on the physicochemical characteristics 
of Poly(vinylalcohol)/ Chitosan (PVA/Cs) blend. Using a variety of techniques, the pure blend and the nanocomposites’ 
composition, structure, optical, thermal, and mechanical properties, and antibacterial activity were characterized. The  Co3O4 
NPs were produced by precipitation method utilizing cobalt salt as the raw material. The crystalline nature of the nanopar-
ticles and semi-crystalline behavior of the PVA/Cs are demonstrated by the XRD data. Adding nanoparticles to the pure 
blend reduced the intensity of the semi-crystalline. The rise in absorption intensity observed in UV-visible spectra upon the 
incorporation of  Co3O4 NPs into the PVA/Cs blend indicates an improved dispersion of the nanoparticles within the blend. 
When  Co3O4 NPs are added, the energy band-gap Egdir and Egind of PVA/Cs–Co3O4 samples greatly decrease. According to 
TGA data, the thermal stability of nanocomposites was significantly higher than that of the PVA/Cs blend, and it rose as the 
concentration of nanoparticles increased. When compared to neat PVA/Cs film, mechanical property investigation of PVA/
Cs–Co3O4 nanocomposites films revealed enhanced features. The effectiveness of the PVA/Cs–Co3O4 nanocomposite films 
in inhibiting the growth of microorganisms was assessed by evaluating their antimicrobial activity (ANMAC) against a range 
of bacteria and fungi. The inclusion of  Co3O4 NPs led to an increase in activity against Gram-positive Staphylococcus aureus 
(S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria as well as fungi Candida albicans and Aspergillus niger (C. 
albicans and A. niger). The addition of  Co3O4 NPs to the PVA/Cs blend effectively improved the material’s optical, thermal, 
mechanical, and antibacterial properties. This remarkable improvement stems from the  Co3O4 NPs, which were introduced 
into the PVA/Cs blend in different amounts, leading to the development of novel nanocomposites. The outstanding proper-
ties of  Co3O4/PVA/Cs nanocomposite films suggest their potential for applications in optoelectronics and food packaging.
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Introduction

The creation and processing of nanocomposite materials 
with a polymer matrix that possesses bio-safe attributes 
like biocompatibility and biodegradability may be of rel-
evance in the current contaminated surroundings. Polymer 
nanocomposites (PNCs) have gained prominence in vari-
ous scientific disciplines, including biology, electronics, and 
mechanics, due to their exceptional mechanical, biologi-
cal, and physical properties [1]. Polymer nanocomposites 
(PNCs) offer significant advantages over polymers doped 
with micron-sized nanofillers, including enhanced thermo-
mechanical properties such as degradation resistance and 
dielectric strength. The incorporation of suitable fillers can 
effectively tailor the mechanical, optical, thermal properties, 
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and antimicrobial activity (ANMAC) of polymers to meet 
specific requirements [2, 3]. One of the earth’s most preva-
lent naturally occurring alkaline polysaccharides is chitosan 
(Cs) biopolymer [4]. The pursuit of innovative polymer 
electrolytes, biopolymers, or polysaccharides such as Cs, 
carboxymethyl cellulose, and cellulose, holds promise as 
host polymer networks [5, 6]. One of the many benefits of 
biopolymers, particularly Cs, is that they are inexpensive, 
readily available, and environmentally benign [7]. Addition-
ally, they contain β (1–4)-linked D-glucosamine de-acety-
lated linear polysaccharide [8, 9]. Two atoms, O and N, in 
Cs, have a lone pair of electrons [8]. The backbone of Cs 
contains ether (C–O–C), O–H group, and amine  (NH2) that 
enable potential interactions between the cations of filler 
and other polymers like PVA, PVP, etc. in terms of polymer 
blending [10, 11]. PVA possesses a wealth of O-H group 
with its side chains, imparting excellent water solubility and 
tunable optical and electrical properties upon doping. Their 
properties make them a good choice for blending with Cs. 
PVA, a non-toxic, biocompatible, water-soluble, and biode-
gradable synthetic polymer, stands as a versatile host poly-
mer for preparing polymer blends with biopolymers [12]. . 
The O–H groups along the side chains of polyvinyl alcohol 
facilitate interactions with other polymers and biopolymers 
containing functional groups like those in chitosan, enabling 
the formation of miscible polymer blends [8]. It’s possible 
that using a single biopolymer won’t provide good chemical, 
optical, or mechanical flexibility. Polymer blending emerges 
as a promising strategy to improve the mechanical flexibil-
ity, optical properties, and ionic conductivity, of electrolytes 
[13]. Nano-composite films based on Cs/PVA-ZnO exhibit 
antimicrobial activity [14]. The polymer network’s semi-
crystalline phase shows constrained segmental motion of 
the polymer chains as well as limited free space between 
and polymer chains the along. The physical properties of 
polymers are influenced by the nature of chemical of the 
nanofiller and its interactions with the polymer blend. The 
properties of polymer matrices can be significantly enhanced 
by incorporating various nanofillers, such as carbon nano-
tubes, metal oxides, and rare earth doped ions. The effective-
ness of these nanofillers depends on their interaction and 
dispersion within the polymeric matrices [15]. Due to their 
special adjustable optical characteristics, bimetallic nanopar-
ticles are utilized extensively [16]. In addition to the need for 
novel materials in optical and optoelectronic applications, 
the introduction of novel medications is critically needed 
because of infections spread by various bacteria [17]. The 
 Co3O4, a versatile inorganic material, has found widespread 
applications in both bulk and nano forms across various 
fields, including electrochemical systems, electrochromic 
devices, water electrolysis processes, high-temperature 
solar selective absorbers, and rechargeable lithium-ion bat-
teries [18, 19]. The potential formulation of a novel class of 

bactericidal materials may be made possible by the  Co3O4 
nanoparticles. Despite the growing interest in cobalt oxide 
nanoparticles, there is a dearth of research investigating their 
antibacterial potential. A limited number of recent investiga-
tions have demonstrated that  Co3O4 NPs exhibit synergistic 
antibacterial effects and can combat both gram-negative and 
gram-positive bacteria [19, 20]. V. Gupta et al. [21] explored 
the antibacterial activity of  Co3O4 NPs across a range of 
concentrations and compared their efficacy to established 
antibiotics tetracycline and gentamicin. The antibacterial 
efficacy of these nanoparticles demonstrated their potential 
to reduce the environmental burden of pathogenic bacteria 
and combat antibacterial resistance and could be applied 
in different areas like food packages, water disinfection, 
medical sciences, etc. This study focuses on the fabrication 
of  Co3O4 NPs as nanofiller to investigate their impact on 
the physical and chemical properties of PVA/Cs blend. A 
comprehensive characterization of PVA/Cs blend has been 
conducted using various techniques to evaluate its structural, 
optical, thermal, mechanical, and antifungal properties. This 
extensive investigation will contribute to the development of 
novel nanocomposites with potential applications in antimi-
crobial packaging and optoelectronic devices.

Materials and methods

Materials

Polyvinyl alcohol (PVA)  (C2H4O)n, 99% purity, and 
M.W = 14,000 g/mol purched from E-Merck, Germany. 
Chitosan powder (Cs) has a medium molecular weight, vis-
cosity: 200–800 cP, and 75–85% deacetylated from Sigma-
Aldrich. Deionized water (DW) was used as solvent.

Synthesis of  Co3O4 Nanoparticles

Co3O4 NPs were prepared via the precipitation of cobalt 
salt in an alkaline medium [21]. In brief, a 3 M sodium 
hydroxide solution was used to raise the pH of an aqueous 
 CoCl2 solution (0.6 M) to 10.5 after it had been heated to 
80 °C. After two hours of stirring the solution at 80 °C, the 
precipitates-green cobalt hydroxide were centrifuged and 
then washed with distilled water and ethanol until the pH 
became 7. After that, the precipitate was dried for 12 h and 
finally was annealed for three hours at 150 °C to produce 
powdered  Co3O4 NPs.

Synthesis of PVA/Cs‑  Co3O4 Nanocomposite Films

To commence the process, 0.2 g powder of PVA was dis-
solved in 20 ml of DW by heating at 80 °C for four hours, 
followed by stirring until a transparent solution was 
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obtained. Concurrently, 0.8 g Cs powder was dissolved in 
a mixture of acetic acid and DW (2:8) by heating and stir-
ring at 50 °C for four hours. Subsequently, both solutions 
were combined and stirred at RT for eight hours. To prepare 
the  Co3O4 solution,  Co3O4 nanoparticles were dispersed in 
10 ml of DW using ultrasonication at room temperature for 
one hour. Subsequently, the desired amount of  Co3O4 was 
added dropwise to the polymer mixture solution and stirred 
for approximately 12 h to achieve a homogeneous dispersion 
of  Co3O4 nanoparticles in the PVA/Cs (20/80 wt%) matrix. 
Finally, the uniformly dispersed solution was poured into a 
glass Petri dish and cast at 50 °C for five days. The resulting 
smooth and flexible blend and blend/  Co3O4 nanocomposites 
films were carefully peeled off and stored at room tempera-
ture for further characterization.

Antibacterial and Antifungal Activities Assay

Gram-negative bacteria (Escherichia coli) and Gram-posi-
tive bacteria (Staphylococcus aureus) were used to assess the 
produced compounds’ antimicrobial properties. Two fungi 
were used to assess the compounds’ anti-fungal properties 
(Aspergillus niger, Candida albicans). After dissolving each 
chemical in DMSO, a separate solution with a concentration 
of 1 mg/ml was created. Whatman filter paper discs in the 
typical size of 5 cm were manufactured, cut, and autoclave-
sanitized. The petri plates containing nutrient agar media 
(agar 20 g + beef extract 3 g + peptone 5 g) seeded with S. 
aureus, E. coli, C. albicans, and A. niger were aseptically 
filled with paper discs soaked in the necessary concentration 
of the complex solution. After 24 h of incubation at 36 °C, 
the inhibition zones in the petri dishes were measured. The 
test agent’s antibacterial activity was assessed by measuring 
the zone of inhibition’s diameter, which was expressed in 
millimeters (mm). Each treatment was replicated three times, 
and the average reading was reported [22]. Using the same 
protocol as previously described, the antifungal Colitrima-
zole and the common standard antibiotic ampicillin were 
also tested for antibacterial activity at the same concentra-
tions and solvent combinations.

Characterization Techniques

Using Copper Kα radiation, X-ray diffraction (XRD) analy-
sis was carried out using the Pan analytical X’ Pert PRO 
XRD system at a wavelength of λ = 1.540 A°. Transmission 
electron microscopy (JEOL 1200 EX) was utilized to specify 
the shape and particle size distribution of  Co3O4. The pre-
pared films were analyzed at room temperature using FT-IR 
spectroscopy (Nicolet iS10, USA) in the 4000–500  cm−1 
range to identify the functional groups. Using a JASCO 630 
Japan ultraviolet–visible (UV–vis) spectrophotometer in 
the 190–800 nm wavelength range, optical properties were 

measured at room temperature. Thermogravimetric analy-
sis (TGA) was carried out utilizing an STD-Q600 thermal 
analyzer (USA) at a heating rate of 10 °C  min−1 in  N2. To 
examine the mechanical characteristics of the nanocompos-
ite films, the AMETEK LLOYD (LLOYD-5 KN, London, 
UK) Universal Testing Machine (UTM) was utilized.

Results and Discussion

XRD

To explore the structural modifications induced by the incor-
poration of  Co3O4 nanoparticles into the PVA/Cs polymer 
blend, X-ray diffraction (XRD) measurements were con-
ducted. Figure 1a reveals the crystalline structure of the 
synthesized  Co3O4 nanoparticles, as evidenced by the sharp 
peaks in the XRD pattern. The absence of any additional 
peaks confirms the purity of the nanoparticles, indicat-
ing the successful synthesis of  Co3O4 nanoparticles with-
out any impurities. The XRD pattern exhibits a prominent 
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peak at 37.65°, corresponding to the (311) plane of cobalt 
oxide crystals. Additional well-defined diffraction peaks are 
observed at 19.0°, 31.91°, 37.65°, 38.68°, 44.89°, 55.72°, 
59.61° and 65.82° corresponding to the (111), (220), (311), 
(222), (400), (422), (511) and (440) planes, respectively 
with lattice constants for the  Co3O4 phase of = 0.521 nm 
and = 0.324 nm, respectively (JPCDS File No. 36–1451) 
[23]. The formation of crystalline  Co3O4 nanoparticles is 
confirmed by XRD. The Scherrer equation (D = 0.9λ/β cosθ) 
was used to determine the crystal sizes of  Co3O4, the crys-
tallite size is 12.5 nm [24]. The dislocation density is deter-
mined using the following equation [25]:

Through this equation, it is observed that the dislocation 
density value of the pure  Co3O4 is 6.4 ×  10−3  m−2. Micro 
strain (ε) value of  Co3O4 NPs can be calculated using the 
formula [26]:

where, β is the full width at half maximum (FWHM). It 
was observed that the value of the Micro strain (ε) for pure 
 Co3O4 using this equation was 1.62 × 10−3.

Figure 1b illustrates the XRD patterns of PVA/Cs-based 
polymer blend samples incorporated with varying contents 
of  Co3O4 NPs. The broad peak observed at 2θ = 20.21° for 
the pure polymer blend film is attributed to its semi-crystal-
line nature, arising from intramolecular and intermolecu-
lar interactions between polymer chains through hydrogen 
bonding. The XRD peak exhibits broadening and a decrease 
in intensity upon the introduction of  Co3O4 nanoparticles, 
implying a reduction in the crystallinity of the polymer 
nanocomposite films [27, 28]. The 1.5%Co3O4/PVA/Cs 

(1)� = 1∕D2

(2)� = b∕4tan�

and 0.5%Co3O4/PVA/Cs samples do not exhibit any peaks 
in intensity for  Co3O4 NPs, as can be seen from the XRD 
diffractogram, which suggests that the added nanoparticles 
have dissociated. The broadening of XRD peaks, indicative 
of increased amorphicity, likely contributes to the higher 
ionic density and enhanced ionic conductivity observed in 
this sample [29]. The incorporation of  Co3O4 nanoparticles 
induced slight shifts in the XRD peaks compared to the pure 
polymer blend, suggesting effective interactions between 
the nanofiller and the polymer matrix. Notably, the 2.5% 
PVA/Cs and 3.5% PVA/Cs samples exhibit sharp crystal-
line peaks at diffraction angles of 31.91°, 37.65°, 38.68°, 
44.89°, 55.72°, 59.61° and 65.82°, which can be ascribed 
to the recrystallization of  Co3O4 nanoparticles on the film 
surface due to ion recombination at higher  Co3O4 NPs con-
centrations and may be due to agglomeration/aggregation 
of  Co3O4NPs in blend [30]. The distinct diffraction peaks 
observed in samples with higher  Co3O4 nanoparticle con-
centrations are in good agreement with the XRD data of the 
 Co3O4 NPs.

Morphology Analysis by TEM

Transmission electron microscopy (TEM) was used to 
investigate the structural characteristics of the synthesized 
 Co3O4 NPs as shown if Fig. 2. The TEM image presented 
in Fig. 2a revealed that the synthesized product exhibits a 
uniform morphology characterized by approximately spheri-
cal nanoparticles with a narrow size distribution. The small 
dimensions and high surface energy of these nanoparticles 
lead to a tendency for aggregation, as observed in Fig. 2a. 
The particle size histogram derived from the TEM image 
using the using SmartTiff software, shown in Fig. 2b, further 

Fig. 2  a TEM image of the  Co3O4 NPs and b Histogram showing the distribution of the  Co3O4 nanoparticles size
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confirms the narrow size distribution of the  Co3O4 nano-
particles, with diameters predominantly ranging from 5 to 
45 nm. The average particle size, determined to be 15.5 nm 
and a standard deviation of 5.23, is in close agreement with 
the value calculated using the Scherer equation based on the 
half-width of the diffraction peaks.

FTIR Spectra

Figure 3 presents the FTIR absorbance spectra of Pure 
 Co3O4 NPs, pure Cs, pure PVA, pristine blend and blend/
x(wt%)  Co3O4 nanocomposites samples within the wave-
number range of 500 to 4000   cm−1. The  Co3O4’s FTIR 
transmittance spectra were captured within a range of 
4000  cm−1–500  cm−1 as shown in Fig. 3a. The intensity 
of absorption linked to O–H groups and free water in the 
range of 3350  cm−1 to 3650  cm−1 is directly correlated with 
the moisture content of  Co3O4. The bands ranging from 
1370  cm−1 to 1596  cm−1 are indicative of carbonyls (C=O) 
and a strong three-bond alkyne group (C–C). The peaks 
860  cm−1, 696  cm−1, and 620  cm−1 in the fingerprint region 
show that the sample contains a significant amount of ethers, 
esters, and carboxylic acids (C–C and C–O bonds) [31]. Fig-
ure 3b displays the infrared spectrum of pure Cs. For Cs, the 
axial stretching of the overlapped O–H and N–H bands is 
represented by the wide band in the 3100–3600  cm–1 range. 
Small bands at 2930  cm−1 and 2855  cm−1 are attributed to 
C–H in both –CH2 and –CH3 bonding, respectively. The 
typical absorption bands at 1654  cm−1 (amide I), 1588  cm−1 
(amide II), and 1422, 1380  cm−1 (–CH, –CH2 bending) [32] 
are visible in the chitosan spectrum Fig. 3b. The asymmet-
ric vibrations stretching C–O in oxygen are responsible for 
the band at 1170  cm−1, while the C–O of the ring COH 
and COC bonds are related to the bands at 1090  cm−1 [33]. 
The peaks at 3445  cm−1 and 1360  cm−1 for pure PVA were 
attributed to the PVA film’s OH stretching and bending 
vibrations. At 2930  cm−1, the peak corresponding to the 
asymmetric stretching vibration of the  CH2 was observed 
[34]. The unhydrolyzed ester functional group on the PVA 
backbone had a C=O, which was represented by the peak 
at 1670  cm−1. The C–O–C asymmetric stretching vibra-
tion of the ester group could be responsible for the peak at 
1270  cm−1 [35]. With a few exceptions to the PVA/Cs blend 
film’s distinctive form and absorption band shifts brought 
about by hydrogen bonding between functional groups, the 
PVA/Cs blend film’s spectra generally showed the same 
peaks as those seen in the Cs and PVA films. Therefore, 
in the studied blend, both intramolecular and intermolecu-
lar interactions are possible [36]. The FTIR spectrum of 
PVA/Cs blend exhibits characteristic bands at 3354  cm−1 
and 3293  cm−1, corresponding to the OH and N–H groups 
stretching vibrations, respectively. C–H symmetric and 

asymmetric stretching vibrations are attributed to the 
bands at 3304  cm−1, 2921  cm−1, and 2854  cm−1, respec-
tively. Additionally, peaks assigned to O=C–NHR stretch-
ing vibrations of the C=O and vibrations associated with 
amino group (N–H) appear at 1645  cm−1and 1560  cm−1, 
respectively. Bands at 1430  cm−1and 1374  cm−1are attrib-
uted to C–H bending and C–H wagging vibrations. The C–H 
wagging vibration band of the acetate residue is observed 
at 1243  cm−1, and C–O stretching vibration bands are evi-
dent at 1088  cm−1 and 1021  cm−1 [14]. The FTIR spectra of 
blend/Co3O4 nanocomposites with varying  Co3O4 nanopar-
ticle loadings reveal characteristic peaks similar to those of 
the pure blend, as shown in Fig. 3c. The O–H bands and C–H 
symmetric and asymmetric bands shift towards lower wave-
numbers upon  Co3O4 nanoparticle incorporation. The peaks 
corresponding to O=C–NHR stretching and N–H bonding 
shift to lower wavenumbers, and the peaks at 1645  cm−1and 
1560  cm−1 become more intense with increasing nanopar-
ticles loading [37, 38]. Similarly, the peak associated with 
C–N bending vibrations of Cs and C–OH stretching of PVA 
shifts to a lower wavenumber at 1090  cm−1, while its inten-
sity decreases significantly, indicating a reduction in the 
crystallinity of the pure blend [39]. The peak corresponding 
to the PVA skeletal vibration and the Cs saccharide structure 
exhibited a shift towards a lower wavenumber and a decrease 
in intensity upon nanofiller loading, indicating complexa-
tion between the functional groups of the nanofiller and the 
polymer blend (Scheme 1). This demonstrates that  Co3O4 
NPs and the polymeric chains are compatible.

UV–Vis Absorption

Ultraviolet-visible (UV–Vis) spectroscopy is a valuable tool 
for optical characterization. Figure 4 presents the absorption 
spectra of the pure PVA, Cs, pure blend and the blend doped 
with  Co3O4 nanoparticles. A prominent shoulder band at 
240 nm is monitored, which can be ascribed to the semi-
crystalline nature of the pure blend and the presence of a 
C=O-containing structure associated with the polymer blend 
[40, 41]. These bands are ascribed to electronic transitions 
within the polymer backbone π–π* [14, 42]. The intensity 
of the absorption band increases with growing  Co3O4 wt% 
in blend. These findings indicate an interaction between 
blend and nanofiller. Notably, none of the examined samples 
exhibited absorption bands in the visible region, confirm-
ing their transparency. This figure shows that, for all films, 
the absorption is roughly unchanged in the spectral range 
from 400 to 800 nm, but there is a significant change in 
the ultraviolet from 200 to 400 nm, where the fundamental 
absorption edge of the blend sample shifts towards a longer 
wavelength (red shift) in the blend-x wt.%Co3O4 ions nano-
composite samples and this shift increase by growing  Co3O4 
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ions content in the blend demonstrates the complexation 
between blend and  Co3O4 NPs which leads to in crystal-
linity change [43]. The absence of a well-defined optical 
absorption edge suggests a low degree of crystallinity in 
the films. Moreover, the absorbance edge is a defining char-
acteristic of the charge transfer complex (CTC) formation 
between polymer blend chains and dispersed  Co3O4 NPs [44, 
45]. This result validates the highly wavelength-controllable 
absorbance behavior of this PNCs material, suggesting that 
it might be a good option for developing flexible devices that 
use spectral shorting in the future.

Determination of Optical band gap(OBG)

The OBG is a crucial method for defining the optical transi-
tion in prepared samples, as illustrated by Tauc’s plot [46, 
47].

where A is a constant and the value n indicates the type of 
optical transformation; n = 2 and 1/2, respectively. Consist-
ent with the findings of Hezma et al. [14], Fig. 5; Table 1 
reveal an energy gap (direct and indirect) of 5.52 and 
5.07 eV for PVA/Cs film. Nevertheless, the direct energy gap 
was reduced from 5.52 to 4.01 eV and the indirect energy 
gap was reduced from 5.07 to 3.56 eV by  Co3O4 doping with 
a concentration ratio of 0.0wt.% and 2.5wt.% of PVA/Cs. 
This reduce in the optical bandgap can be explained by the 

(3)(�hn)n = A (h� − Eg)

formation of  Co3O4 in the electronic structure of the PVA/
Cs matrix, which is in charge of creating localized states 
between the band valence and conduction. Soliman et al. 
observed a decrease in the OBG as the  BaTiO3 concentration 
in the PVA matrix increased. This reduction is attributed to 
the introduction of defects that disrupt the orderliness of 
the polymer matrix [48]. Table 1 show that the  Edir and  Eind 
values gradually increase with the addition of only 3.5 wt% 
of  Co3O4 to the PVA/Cs bend. The increase in polymer back-
bone conjugation and electron-donor nature, along with the 
addition of  Co3O4, which splits the valence and conduction 
bands, are the reasons for this increase in the optical energy 
gap [49]. For the  Co3O4NPs, there are two optical band gaps 
as shown in Fig. 5c, indicating direct allowed transitions. 
According to the figure, ΔEg = 0.27 eV separates the first 
band gap  (Eg1), which is 1.52 eV, and the second band gap 
 (Eg2), which is 1.79 eV. Additionally, very similar results 
for thin films and  Co3O4NPs were found [50]. While Eg1 is 
linked to the beginning of O - 2

→ Co + 3  excitations,  Eg2 
is attributed to the interband transition and is considered the 
basic or genuine band gap energy. The measured  Eg1 and Eg2 
are less than the bulk values of 2.85 eV and 1.70 eV, respec-
tively. The quantum confinement effects in the nanomaterials 
could be the cause of this [51].

Scheme 1  The possible mecha-
nism for interaction between 
PVA/Cs and PVA/Cs/Co3O4 
NPs.
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Thermal Analysis by TGA 

TGA was utilized to examine the thermal stability of pure 
blend and  Co3O4 NPs combined with PVA/Cs. TGA ther-
mograms of pure blend and  Co3O4NPs combined with PVA/
Cs thin films are displayed in Fig. 6. Thermal degradation is 
observed in two steps in the TGA of pure blend and  Co3O4/
PVA/Cs PNCs. The first weight loss occurred between 25 °C 
and 113 °C, which is when the water and moisture that had 
been adsorbed evaporated. The main chain of the PVA/Cs 
matrix’s breakdown, chemical stability, and intermolecular 
and intramolecular bonding are all related to the significant 
weight loss that was seen between 275 and 700 °C [52]. 
The two weight-loss stages of the pure blend are 113 °C and 
275 °C. When  Co3O4NPs are added to the PVA/Cs matrix, 
the weight loss of the nanocomposite films reduced. In the 
nanocomposits, the weight loss drops from 81% for the pure 
blend to 38% with the addition of 3.5%Co3O4 NPs. This 
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phenomenon may be explained by the polymer matrix’s 
increased physicochemical bonding density. It depicts the 
physical binding density, which describes the quantity of 
non-electronic-sharing interactions between atoms, such 
as per unit volume, ionic-based interactions, as well as the 
chemical bonding density, which is the number of bonds, 

such as covalent and the weaker interactions involving 
electron-sharing, among the atoms of the PVA/Cs-Co3O4 
nanocomposite per unit volume [53]. At 700 ◦C, no more 
weight loss was seen. As can be seen from the trend below, 
the PVA/Cs blend exhibits improved thermal stability as the 
concentration of  Co3O4NPs increases while the percentage 
weight loss decreases. Furthermore, the TGA curves of the 
 Co3O4/PVA/Cs nanocomposites shift toward higher tem-
peratures as a result of the interaction between the blend 
and  Co3O4NPs [54].

Mechanical Properties

The mechanical behavior of pristine blend and PVA/Cs-
Co3O4 PNCs films was analyzed employing a Universal 
Testing Machine (UTM). Figure 7 illustrates the stress-strain 
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curves for pristine blend and its corresponding PVA/Cs-
Co3O4 PNCs. The curves reveal that the pure PVA/Cs film 
exhibits a lower stress-bearing capacity compared to the 
PVA/Cs-Co3O4 PNCs. The slope of the linear region of the 
stress-strain curves in Fig. 7 represents the Young’s modu-
lus of the respective samples. The mechanical properties 
of PVA/Cs-Co3O4 nanocomposites are exhibited in Table 1. 
Analysis of Young’s modulus, tensile strength, and elonga-
tion% are essential to evaluate the suitability of material for 
food packaging applications. As seen from Table 1, tensile 
strength, Young’s modulus, and elongation% of all PVA/
Cs-Co3O4 nanocomposite films significantly surpass those of 
the pure blend. The PVA/Cs blend with 2.5 weight%  Co3O4 
exhibits the highest tensile strength of the composite. Strong 
interfacial adhesion between the blend chains and  Co3O4 
nanoparticles accounts for the enhanced tensile strength of 
the PVA/Cs-Co3O4 nanocomposite [55]. The composite’s 
tensile strength also increases as the concentration of  Co3O4 
nanofiller increases up to 2.5 weight%. This suggests that the 
 Co3O4 nanofiller has been dispersed more uniformly, creat-
ing a larger interfacial area and improving the blend’s and 
 Co3O4 interfacial adhesion [56]. The Young’s modulus and 

tensile strength decrease when the concentration of  Co3O4 
NPs surpasses 2.5wt% because of the inadequate reinforc-
ing effect of filler particles as a result of their aggregation. 
Poor polymer-filler interaction results from heterogeneous 
dispersion of aggregated NPs in the blend at higher load-
ings of  Co3O4 nanoparticles [57]. The incorporation of 3.5% 
 Co3O4-PVA/Cs resulted in a decrease in the toughness of the 
blend, which could be attributed to the increased rigidity and 
restricted molecular mobility caused by the strong interac-
tion between  Co3O4 nanofiller and blend [58]. Strong  Co3O4 
NP–PVA/Cs matrix interactions improve the material’s 
Young’s modulus and tensile strength, making it appropri-
ate for food packaging [59].

Antimicrobial Properties

The antimicrobial efficacy of the pristine blend and 
 Co3O4-PVA/Cs PNCs was assessed employing the disc dif-
fusion method against a range of Gram-positive (S. aureus) 
and Gram-negative (E. coli) bacteria, as well as fungi (C. 
albicans and A. niger) as shown in Fig. 8. The effective-
ness of the samples against microorganisms was assessed by 
measuring the inhibition zone diameters. The antibacterial 
activity of a commonly used standard antibiotic, ampicillin, 
and the antifungal drug, clotrimazole, was also evaluated. 
The tested PVA showed very little activity against micro-
bial strains compared to chitosan, while chitosan showed 
properties slightly lower than those shown by pure blend. 
The Fig. 8 demonstrates that the PVA/Cs blend without 
 Co3O4 nanoparticles exhibited limited antibacterial activ-
ity against both Gram-negative and Gram-positive bacterial 
strains. The addition of  Co3O4 to the PVA/Cs blend demon-
strated exceptional antibacterial efficacy against all bacteria 
tested. Additionally, the diameter of the clear zone grew with 
the increasing amount of  Co3O4 in the polymer blend. For 
instance, the antibacterial activity against S. aureus, assessed 
by the inhibition zone diameter, demonstrated a positive cor-
relation with the increasing content of  Co3O4 NPs in the 
polymer blend. Similarly, a positive correlation between 
clear zone diameters and  Co3O4 NPs content was observed 
for other tested bacteria. The polymer blend’s antibacterial 
activity against S. aureus, E. coli, C. albicans, and A. niger 
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Table 1  The OBG (direct and 
indirect) values and mechanical 
properties for pure blend and 
 Co3O4 doped PVA/Cs.

Samples Eg indirect Eg direct Tensile 
Strength 
(MPa)

Toughness
(MJ/m3)

Young’s 
Modulus 
(MPa)

Elongation at 
Fracture%

PVA/Cs Blend 5.07 5.52 57.14 1.24 6.34 11.16
Blend/0.5%Co3O4 4.67 5.22 70.92 1.96 9.45 12.98
Blend/1.5%  Co3O4 4.03 4.51 77.57 2.32 14.81 9.78
Blend/2.5%  Co3O4 3.56 4.01 79.17 5.67 18.45 19.95
Blend/3.5%  Co3O4 4.31 5.03 76.12 4.95 15.34 15.63
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increases when  Co3O4 NPs are added. 3.5%  Co3O4-PVA/
Cs nanocomposite film exhibited the highest antibacterial 
activity against A. niger, with a zone of inhibition 31 mm. It 
is evident that when the concentration of  Co3O4NPs rises, 
so does the zone of inhibition. The increased composition 
of  Co3O4NPs in the 3.5%  Co3O4-PVA/Cs nanocomposite 
may be the cause of the enhancement in its activity. Gram-
positive S. aureus bacteria were more strongly inhibited by 
the  Co3O4-PVA/Cs nanocomposite films than E. coli bacte-
ria. This difference in the composition and structure of the 
bacteria’s cell walls may be the cause of this. The microor-
ganisms growth was effectively inhibited by the increase 
in weight of  Co3O4NPs, the similar results were reported 

by Akhavan et al. [60]. There are potential differences in 
the observations that are reported, because the bacterial cell 
wall structure varies [1]. The  Co3O4-PVA/Cs nanocompos-
ites may specifically target the thick peptidoglycan layer of 
E. coli, increasing their antibacterial potential [61]. Several 
methods have been proposed to explain PVA/Cs-Co3O4’s 
antibacterial activity, as illustrated in Fig. 9: (i) The polymer 
absorbs onto the target bacteria due to electrostatic attrac-
tions between its positively-charged chains and the nega-
tively-charged bacterial cell walls, disrupting the cell wall 
[62]. (ii) Reactive oxygen species (ROS) production [63, 
64]. (iii) One possible explanation for the inhibitory activity 
of nanoparticles could be their ability to enter microbes and 

Fig. 8  Shows the antibacterial 
inhibition area diameter of Cs/
PVA-Co3O4 PNCs films
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cause harm through interactions with the phosphorus and 
sulfur groups found in DNA and proteins [65, 66]. Table 2 
lists earlier research on polymer nanocomposites and how 
they affected S. aureus and E. coli. These findings suggest 
that nanocomposites’ appropriate composition can be used 
to customize their potential antibacterial profile for use in 
food packaging applications.

Conclusions

Effective synthesis of  Co3O4 nanoparticles using cobalt salt 
has been accomplished. The existence of  Co3O4 NPs and 
the increased amorphous content of the polymer blend are 
validated by XRD analysis. The FTIR analysis confirms 
that the interactions between PVA/Cs blend functional 
groups and nanofiller. With the addition of nanoparticles, 
the intensity of the UV–visible absorption spectra increases. 
Because more energy states were introduced between the 
valence and conduction bands as the dopant concentration 
increased, the optical absorption edge and optical band gaps 
(both direct and indirect) showed a decreasing trend. The 
improved optical properties of the 2.5%  Co3O4-PVA/Cs 
nanocomposite indicate that it may be a promising mate-
rial for optoelectronic applications. The TGA analysis of 
PVA/Cs-Co3O4 nanocomposites revealed that the addition of 
 Co3O4 nanoparticles enhanced the thermal stability of PVA/
Cs. The Young’s modulus, tensile strength, and elongation% 
of the blend were all improved by the  Co3O4 nanoparticles, 
according to the results.  Co3O4 nanoparticles integrated with 
PVA/Cs film demonstrated outstanding antibacterial activity 
against fungi (A. niger and C. albicans) as well as Gram-
negative (E. coli) and Gram-positive (S. aureus) bacteria. 
Additionally, the  Co3O4-PVA/Cs nanocomposite’s poten-
tial antibacterial profile can be tailored for food packaging 
and biomedical applications with the help of an appropriate 
composition.
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