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Abstract
In this study, levan biopolymer (a fructose-based exopolysaccharide) was produced by Paenibacillus polymyxa HCT33-3, 
which was immobilized onto the composite of silica-coated magnetite nanoparticles  (Fe3O4@SiO2 NPs). For this purpose, 
firstly, synthesis of magnetite nanoparticles  (Fe3O4 NPs) was followed by  Fe3O4@SiO2 composite formation to enhance its 
stability. The characterization studies were investigated with the scanning electron microscopy and energy dispersive X-ray 
analyzes, transmission electron microscopy, X-ray diffraction analyses. Then, the microorganism Paenibacillus polymyxa 
HCT33-3, immobilized onto  Fe3O4@SiO2 and levan fermentation was carried out in the media including molasses. Effects 
of molasses percentage in the growth media, initial pH, temperature and fermentation period parameters were tested on levan 
production capability. The highest levan concentration of 35.8 g/L was obtained at the 54th hour in the medium including 20% 
molasses (v/v) with the initial pH and temperature values of 7.0 and 37 °C, respectively. The characterization studies clearly 
confirmed that the produced exopolysaccharide was levan, which showed an antimicrobial effect against all microorganisms 
used in the study, besides its effectiveness on the biofilm formed by Pseudomonas aeruginosa. This is the first study focusing 
on high-value levan biopolymer production by the immobilized microorganisms onto  Fe3O4@SiO2 nanocomposite in the 
growth media including molasses as the sole carbon source. This environmentally friendly process, which can potentially 
enable the repeated use of the  cells, seemed to be significantly advantageous in terms of both cost and sustainability.
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Introduction

Levan is a polymeric structure that can be obtained from 
certain plant species, Archaea or produced by some micro-
organisms. It is fructose biopolymer predominantly linked 
by β-2,6 glycosidic 6 + bonds and β-2,1-linked side chains 
[1]. In addition to being a limited plant species that produce 
levan, a much wider variety of microorganisms perform the 
production of levan. Microbial levan production is carried 
out by various microorganisms such as Bacillus subtilis, 
Bacillus polymyxa, Aerobacter levanicum, Streptococcus 

sp., Pseudomonas sp., Corynebacterium laevaniformans, 
Zymomonas mobilis, Brachybacterium phenoliresistens, 
Erwinia, Azotobacter in production environments contain-
ing sucrose [2–5].

Levans are fructose-based polysaccharides with a vari-
ety of potential applications in a variety of industries such 
as food, cosmetics, pharmaceuticals, and medical [6–8]. 
Levan and levan-type fructooligosaccharides have been 
found to have positive effects on human and animal intes-
tinal microbiota and probiotic microorganisms. Adamberg 
et al. reported an increase in the microbiota of Bacteroides, 
Escherichia, Streptococcus and Faecalibacterium due to the 
use of levan in human stool samples that they analyzed using 
metagenomic and metabolomic methods [9]. Levan-based 
films are used in biodegradable food packaging with a good 
oxygen barrier [7, 10]. One of the most exciting research 
in the medical field is the production of levan-based thin 
films to heal damaged tissue. According to Sturzoiu et al., 
levan plays a role in activating metalloproteinases, which 
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is a crucial step in the healing of burned or mechanically 
damaged tissues [11]. Furthermore, the antimicrobial and 
antibiofilm properties of levan are highly significant in 
medical applications in our current era where antibiotic-
resistant microorganisms are increasing [12–14]. Although 
the mechanism of the antimicrobial and antibiofilm effect 
of levan is not yet fully known, it has been reported that 
this may be due to changes in the cell surface that reduce 
auto-aggregation and bacterial cell interaction as well as 
inhibition of the adhesion mechanism in the early stages of 
bacterial growth [14, 15].

It would be very advantageous in terms of the process 
cost when waste and by-products are used as a nutrient 
medium for the cells during the microbial production pro-
cess of levan, which is a quite promising biopolymer for 
future applications. Syrups and molasses are the most com-
mon sucrose sources used for this purpose in fermentative 
production [16]. Molasses is a dark brown and viscous liquid 
byproduct produced during the formation process of sugar 
crystals using repeated evaporation, centrifugation, and crys-
tallization methods from sugar beets or cane juices. It has 
a weak fluidity and is considered a byproduct of the sugar-
making process [17]. Molasses, which consists of 23–26% 
water, 47–48% sugar, 9–14% mineral substances (Mg, Mn, 
Al, Fe and Zn) and 8–12% nitrogenous compounds, signifi-
cantly increases microbial growth efficiency due to its rich 
nutritional content [18, 19]. Bio-products and industrial 
enzymes with high added value such as bioethanol, single 
cell oil (SCO), pullulan, fructooligosaccharides (FOS), poly-
saccharides, lipase, protease can be produced by microor-
ganisms through different biosynthetic pathways by using 
molasses [20–22].

Nanoparticles (NPs), which are particles having dimen-
sions of 100 nm and below, show superior properties (i.e., 
quantum size effects, size dependence of its electronic 
structure, unique characteristics of surface atoms, and high 
surface-to-volume ratio) when compared to many of the 
commercial materials. Magnetic NPs are widely used in 
magnetic fluids, catalysis, biotechnology, biomedicine, mag-
netic resonance imaging, information storage, environmental 
remediation [23]. The ability of magnetic NPs (MNPs) to 
be moved by applying magnetic field provides advantages 
in many application areas, especially in the medicine [24]. 
MNPs are one of the most used nanomaterials in disease 
diagnosis, targeted drug delivery, and biomedical imaging, 
such as magnetic resonance imaging (MRI) [25]. MNPs 
have a wide range of uses in cancer treatments as they can 
combine multiple functions [26]. Thanks to its large surface 
area, metal nanoparticles enable to transport large amounts 

of drugs and medical cargoes in drug delivery applications 
[27–29].

Magnetite  (Fe3O4) is one of the most widely used magnetic 
NP structure. It has a cubic structure formed on an inverted 
backbone. While the oxygen atoms forming this structure are 
arranged facing the center, the Fe cations are surrounded by 
4 or 6 oxygen atoms [30]. Electrons show transition property 
between  Fe2+ and  Fe3+ ions at the room temperature, so it is 
a semi-metallic material. In different studies, the encapsula-
tion of  Fe3O4 NPs can be done with various compounds such 
as  TiO2,  ZrO2,  SiO2. The use of silica, among these, is very 
advantageous due to its non-toxicity, transparency, stability of 
biocompatibility at different pH and temperatures, and preven-
tion of NP leakage. In addition, immobilization of structures 
such as microorganisms and enzymes on silica-coated iron 
oxide NPs and their applications are among the new research 
topics [31–35].

Levan can be produced by immobilizing the levansucrase 
enzyme on titanium-activated magnetite [36]. Microbial bio-
reactors can be developed by immobilizing microorganisms 
into nanoparticles [23]. If a microbial cell is immobilized 
in the magnetite, it can be directed to an exact target easily. 
Therefore, the transport of the substances such as enzymes 
and polymers, which will be produced by the microorganism 
trapped in the magnetic nanoparticle, would be possible by 
applying magnetic field. However, there is no report reveal-
ing with levan production from enzymes or microorganisms 
immobilized on silica coated magnetite.

Considering the usage areas of magnetite nanoparticles, 
it was concluded that these particles can also play a role in 
biopolymer production. In this context, several questions arose 
in our minds: How will the entrapment of microorganisms 
with levansucase enzyme into these nanoparticles affect the 
yield in levan production? Is it possible to obtain levan from 
microorganisms that are trapped in nanoparticles in molasses 
medium? What is the bioactivity of the levan obtained with 
the immobilized microorganisms? Silica-coated magnetite 
 (Fe3O4@SiO2) nanoparticles were immobilized with Pae-
nibacillus polymyxa HCT33-3 to produce levan in molasses 
media, in order to search for answers to all of these questions. 
The conditions affecting levan production efficiency, such as 
pH and temperature, were examined, and the bioactivity of the 
obtained levan was evaluated (Fig. 1). This is the first study 
in which levan production was performed by immobilizing 
a microorganism on  Fe3O4@SiO2 nanoparticles in a culture 
medium using molasses as a carbon source. In addition to the 
repeated usability potential of the bacteria immobilized on 
nanoparticles, the valorization of molasses for the bioproduc-
tion of such a valuable polymer having wide variety of applica-
tions will provide new ideas for future research.
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Materials and Methods

Materials and Bacterial Culture

Paenibacillus polymyxa HCT33-3 culture, which was iso-
lated from previous studies and known to produce levan, was 
obtained from Hacettepe University, Department of Biotech-
nology (Ankara, Turkey). P. polymyxa HCT33-3 has levan-
sucrase enzyme at a concentration of > 5 U/mL.  NH4OH, 
 FeCl3⋅6H2O,  FeCl2⋅4H2O, Tetraethyl orthosilicate (TEOS) 
and all other chemicals and media used were obtained from 
Sigma-Aldrich (Merck). Molasses was obtained from RCan 
Ticaret (Turkey). The molasses content used in the medium 
is listed as follows; 73–79% dry matter, 48–57% Sucrose, 
11–12% Protein, 1.3% Specific Gravity, 8–10% Crude Ash, 
2–2.7% Invert Sugar, Arsenic mg/kg up to 1, Copper mg/kg 
up to 18, Zinc mg/kg up to 100, Iron mg/kg up to 100, Tin 
mg/kg up to 100, Lead mg/kg up to 2, 80–83 Brix (total dis-
solved matter), 0.2–0.5% Calcium, 0.05–0.3% Phosphorus, 
1% Sodium [37].

Methods

Synthesis and Characterization of  Fe3O4 NPs

50 mL of  NH4OH was added to 200 mL deionized water and 
mixed at 1000 rpm. 2.5 mmol of  FeCl3⋅6H2O and 1.25 mmol 
of  FeCl2⋅4H2O were separately dissolved in 50 mL of dis-
tilled water to prepare a 0.5 mol solution. 10 mL of  FeCl2 
and 20 mL of  FeCl3 solutions were added to the  NH4OH 

solution. The mixture was stirred at 100 rpm for 2.5 min, 
until a black precipitate was observed. The resulting precipi-
tate was washed four times with deionized water and  Fe3O4 
NPs were magnetically separated. The structural and surface 
properties of the produced NPs were investigated.

Encapsulation of  Fe3O4 NPs Through Silica

2 g of  Fe3O4 NPs were dispersed in Millipore water and this 
mixture was placed in a solution containing ethanol (80 mL) 
and water (40 mL). 3 mL of ammonium hydroxide  (NH4OH) 
and 2 mL of tetraethyl orthosilicate (TEOS) were added to 
this mixture and stirred for 24 h. The precipitate obtained 
was separated, washed three times with Millipore water and 
dried in an oven at 80 °C. The untreated  Fe3O4 NPs and 
the silica encapsulated composite ones  (Fe3O4@SiO2) were 
characterized comparatively.

Immobilization of the Microorganism

Paenibacillus polymyxa HCT33-3 colonies were inoculated 
in 5 mL of TSB (Tryptone Soy Broth) and allowed to grow 
overnight. The concentration of Paenibacillus polymyxa 
HCT33-3 cultures in the initial inoculum was 5.0 ×  106 CFU/
mL. Then, 200 µL of culture was transferred to 20 mL of TSB 
and incubated at 37 °C for 24 h. Bacteria were separated from 
the culture media by centrifugation at 9000 rpm for 20 min. 
20 mg of  Fe3O4@SiO2 nanocomposite was dispersed in 5 mL 
of bacteria suspension. To immobilize the bacteria on the mag-
netic nanocomposite, the mixture was stirred in an incubator 
at 150 rpm and 37 °C for 30 min. The precipitate was washed 

Fig. 1  Production of levan biopolymer in molasses medium from Paenibacillus polymyxa immobilized on  Fe3O4@SiO2 nanoparticles and deter-
mination of the bioactivity of the produced levan
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three times with distilled water to remove the free cells and the 
growth media constituents. The morphologies of the immobi-
lized cells were visualized via microscopic techniques.

Production and Characterization of Levan

Levan was produced in sterile nutrient media including 
molasses at varying ratios between 1.5 and 50% (v/v) in 
addition to 1.0 g/L  K2HPO4, 1.0 g/L  (NH4)2SO4 and 0.5 g/L 
 MgSO4⋅7H2O. Effects of initial sugar concentration, pH, tem-
perature and time on levan production efficiencies were inves-
tigated. Each culture was inoculated at 1 McFarland standard 
at 10% (v/v) and incubated at 37 °C for 48 h. The media were 
centrifuged at 4000 rpm for 15 min and the immobilized cells 
were separated from the liquid phase. The polymers were 
precipitated by adding ethanol at a ratio of 1:2 (v/v) to the 
supernatants, whose pH was adjusted to 10.0. Then, the levan 
particles were collected after centrifugation of the mixture at 
4000 rpm for 10 min and removal of the ethanol. The precipi-
tated levan biopolymer was dissolved in distilled water at 4 °C. 
Levan solution was dialyzed against distilled water (MWCO 
14,000 Da) for 24 h. Levan was precipitated again with ethanol 
and centrifuged at 10,000 rpm for twenty minutes. The pure 
levan obtained was dried in an oven at 45 °C and weighted 
[38]. The same procedure was applied to the non-immobilized 
Paenibacillus polymyxa HCT33-3 and levan production was 
carried out. This experiment was carried out in three repeti-
tions. The levan produced at the optimum condition was stored 
for further analysis (FTIR, NMR and XRD) in tightly closed 
containers.

Calculation of Levan Production Efficiency

The percentage ratio of the produced levan (product) concen-
tration and consumed sucrose (substrate) concentration at any 
experimental condition was defined as “conversion efficiency” 
(Eq. 1).

Here P: Product (levan) concentration (g/L),  S0: Initial 
substrate (sucrose) concentration (g/L), S: Substrate (sucrose) 
concentration at time t (g/L).

The product yield was also calculated in terms of initial 
substrate concentration and expressed as “Effective efficiency” 
(Eq. 2).

(1)Conversion Efficiency (%) =
P

S0-S

(2)Effective Efficiency = P∕S0

Analytical Methods

Initial reducing sugar concentrations of the growth media 
were determined spectrophotometrically (Shimadzu 
UV-1700, Kyoto, Japan) with DNS (3-5 Dinitrosalicylic 
acid) method [39]. 0.1 g of levan powder was dissolved in 
0.1 N HCl at 100 °C for an hour. After the levan hydrolysis, 
1 mL of freshly prepared DNS was added to two test tubes. 
One of the test tubes contained 1 mL of the hydrolyzed levan 
sample, and the second test tube contained 1 mL of distilled 
water as a blank. The test tubes were then placed in a water 
bath container for 10 min and allowed to cool to ambient 
temperature. To obtain an appropriate dilution from the sam-
ple, 10 mL of distilled water were added to each individual 
tube. Standard solutions containing 0.09, 0.18, 0.27, and 
0.36 mg/mL of fructose were prepared using this method. 
Measurements were then taken using a spectrophotometer 
at a wavelength of 575 nm [40]. Total concentrations of the 
unconsumed sugars remaining in the nutrient media were 
measured using Phenol–Sulphuric Acid method [41]. 50 μL 
sample of levan at a concentration of 1 mg/mL was mixed 
with 100 μL of concentrated sulfuric acid solution (75% 
v/v). Then, 200 μL of anthrone reagent, which consisted 
of 5 mg of anthrone dissolved in 100 μL of ethanol and 
mixed with 2.4 mL of 75% v/v sulfuric acid, was added to 
the mixture. The resulting mixture was incubated at 100 °C 
for 15 min in a dry oven. After heating, the mixture was 
allowed to cool for 5 min at room temperature. To analyze 
the levan samples, standard solutions containing sucrose at 
concentrations of 20, 40, 60, 80, and 100 mg/L were pre-
pared. The cooled levan samples and the standard solutions 
were read on a spectrophotometer at a wavelength of 490 nm 
[14, 42]. The functional groups included in the NPs, nano-
composites and biopolymer were analyzed using Fourier 
Transform Infrared Spectrophotometer (FTIR) (Thermo 
Scientific Nicolet 6700 Smart iTR). FTIR spectra were 
recorded in the range 4000–400  cm−1 [43]. The scanning 
electron microscopy and energy dispersive X-ray analyzes 
(SEM/EDX) (Tescan, GAIA3 + Oxford XMax 150 EDS) 
showed the surface morphologies and/or elemental composi-
tions of the particles and composites. For SEM/EDX analy-
sis, the samples were coated with an Au sputtering layer 
[44]. Size and shape of the untreated and silica-coated NPs 
were evaluated by using transmission electron microscopy 
(TEM) (FEI 120 kV HCTEM) [45]. To prepare samples for 
TEM analysis, a drop of diluted solution was deposited on 
an amorphous carbon-coated copper grid. Low-resolution 
images were captured using a FEI 120 kV HCTEM micro-
scope operating at 120 kV [46]. 1H and 13C nuclear magnetic 
resonance (NMR) (Bruker (2 ́ 300, 400 MHz) spectra ana-
lyzes were carried out for levan fermented. Each sample for 
1H and 13C NMR analysis contained 0.5 mg of levan, which 
was dissolved in dimethylsulfoxide (DMSO). The 1H NMR 
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spectra were collected using a 300 MHz instrument, while 
the 13C NMR spectra were collected using a 75.46 MHz 
instrument [5]. X-ray diffraction (XRD) analysis were per-
formed by using Rigaku Ultima IV Diffractometer under a 
Cu Kα radiation at 40 kV/30 and with a scan rate of 1 deg/
min [47].

Determination of Bioactivity of Levan

Evaluation of Antimicrobial Effect of Levan by Agar 
Diffusion Test

Different concentrations of levan (0.50 g/mL, 0.25 g/mL, 
0.10  g/mL) from immobilized Paenibacillus polymyxa 
HCT33-3, pure levan (0.50 g/mL) from Erwinia herbicola 
(Sigma) and 0.5 g/mL levan from unimmobilized Paeniba-
cillus polymyxa were dissolved in 1 mL of distilled water 
and absorbed into the empty antibiotic discs.

In order to observe the antimicrobial effect, 0.5 McFar-
land, 100 µL of bacteria were inoculated on Mueller–Hinton 
Agar. 0.5 McFarland, 100 µL of Candida albicans was inoc-
ulated on Sabouraud Dextrose Agar. 100 µL  (105 spores/mL) 
of Aspergillus niger was inoculated on Sabouraud Dextrose 
Agar. After spreading E.coli ATCC 35218, Staphylococcus 
aureus subsp. aureus ATCC®29213™, Klebsiella pneumo-
niae ATCC 1705, Pseudomonas aeruginosa ATCC 27853 as 
bacteria, Candida albicans ATCC® 90029™ as yeast, and 
Aspergillus niger as mold on Petri dishes, discs impregnated 
with levan were placed on petri dishes under sterile condi-
tions and the antimicrobial effect was determined by meas-
uring zone diameters by digital caliper (Insize 1108-150 
Digital caliper). The experiment was repeated three times.

Evaluation of Antimicrobial Effect of Levan by Minimum 
Inhibitory Concentration (MIC)

Minimum inhibitory concentration (MIC) test of levan 
produced from Paenibacillus polymyxa HCT33-3 was 
determined by standard method E2149-13a from the 
American Society for Testing and Materials (ASTM) [48]. 
E.coli ATCC 35218, Staphylococcus aureus subsp. aureus 
ATCC®29213™, Klebsiella pneumoniae ATCC 1705, 
Pseudomonas aeruginosa ATCC 27853 were used as bac-
terial cultures and Candida albicans ATCC® 90029™ as 
the yeast culture. In this analysis, bacterial and yeast suspen-
sions were prepared at a concentration of ∼  106 CFU/mL 
(0.5 McFarland). For Aspergillus niger, the measurement 
of spore count was performed on the Thoma slide (Merck) 
where the fungal concentration was adjusted to  105 spores/
mL. For bacterial culture, 1 mL of each bacterial suspen-
sion was added to 9 mL of Luria Broth medium. For fun-
gal culture, 1 mL of Candida and Aspergillus cultures were 
added to 9 mL of Sabouraud Dextrose Broth medium. Levan 

solutions obtained from Paenibacillus polymyxa HCT33-3 
at concentrations of 0.5 g/mL, 0.25 g/mL, 0.10 g/mL, pure 
levan solution (0.5 g/mL) obtained from Erwinia herbicola 
and 0.5 g/mL concentrations of levan by untreated Paeniba-
cillus polymyxa HCT33-3 1 mL was added to each medium. 
Bacteria were incubated at 37 °C for 24 h, fungi at 30 °C for 
48 h and microbial concentrations, measured as absorbance 
at a wavelength of 600 nm. Control experiments were also 
performed without levan biopolymer solutions. The experi-
ment was repeated 3 times and the results were compared 
with the control groups [49, 50].

Antibiofilm Effect

Within the scope of the study, biofilm formations were inves-
tigated by “Crystal Violet Stained Biofilm Measurement on 
Plate”. The Pseudomonas aeruginosa strain, known to pro-
duce biofilm, was inoculated into Brain Heart Infusion Broth 
medium in accordance with the McFarland 2.0 (6 ×  108 CFU/
mL) standard and left for a 24-h incubation at 37 °C. After 
24 h, the samples were diluted 1:100 and 1 mL of each were 
transferred to the wells of a 24-well polystyrene plate under 
sterile conditions. 0.5 g/mL levan solution (from untreated 
cells), pure levan (0.50  g/mL) from Erwinia herbicola 
(Sigma) and different concentrations (0.50 g/mL, 0.25 g/mL, 
0.10 g/mL) of levan solutions (from immobilized cells) were 
added to each well. After the samples were loaded into the 
wells, the plate was closed and incubated at 37 °C. Plates, 
after a certain incubation period, were removed from the 
incubator. The liquid cultures on the plate were taken from 
the plate medium and the wells were washed with distilled 
water so that no culture residues remained. After the wash-
ing process was completed, the plates were allowed to dry. 
After the plate dried, 1% Crystal Violet solution was added 
to the wells and waited for 40–45 min for staining. 1 mL of 
Ethanol-Acetic Acid (90:10) solution was added to the wells 
and the Crystal Violet solution was dissolved. The amount 
of Crystal Violet dissolved in the Ethanol-Acetic Acid solu-
tion was determined by measuring in a spectrophotometer 
device at 540 nm, and the effect of the obtained leva on 
the biofilm was evaluated in this way. The experiment was 
repeated 3 times.

Results and Discussion

Characterization of Untreated and Silica coated 
 Fe3O4 Nanoparticles

FTIR

A composite structure  (Fe3O4@SiO2) was obtained by coat-
ing the produced magnetite NPs with silica. FTIR analysis 
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of both samples was performed to compare the structural 
changes in the particles after the silica coating process and 
the results were presented in Fig. 2. The peak observed at 
542  cm−1 in magnetite NP is due to the stretching vibration 
in the Fe–O metal–oxygen bond, which is very characteristic 
for this particle [51]. The peaks seen around 1991, 1505, 
1318 and 1094   cm−1 were related with deionized water 
used as solvent [52]. The FTIR spectrum of  Fe3O4@SiO2 
composite significantly differed from that of the untreated 
NPs. While the large peak observed at 1031  cm−1 indicated 
the presence of asymmetrical –Si–O–Si- bond stretching; 
another characteristic peaks seen at 783  cm−1 and 948  cm−1 
revealed the symmetrical bond stretching and stretch-
ing vibration of –Si–O–Si– bond, respectively. The peak 
at 576  cm−1 was related with Fe–O stretching vibration, 
which indicated the presence of ferrous oxide structure [53]. 
Hence, the FTIR spectra obtained for the untreated and silica 
coated magnetite particles, which were found to be quite 
compatible with the literature data, showed the efficiently 
produced  Fe3O4@SiO2 composite material.

SEM/EDX

The effect of silica coating on surface characteristics of 
magnetite NPs were investigated via SEM/EDX analysis 
(Fig. 3). The results reveal the regular morphologies of 
untreated magnetite particles, which include high levels of 
Fe and O elements (Fig. 3a). SEM micrographs of silica 
coated magnetite particles clearly showed the increase in the 
particle size in addition to their uniform structure (Fig. 3b). 
Elemental analysis also showed that there was a significant 
increase in the ratio of O element in addition to the existing 
Fe element found in the NPs. The existence of the Si element 
was also an indicator showing efficient interaction between 
magnetite NPs and silica.

TEM

Particle dimensions and detailed surface characteristics were 
investigated with TEM. The results confirmed the SEM 
images. The magnetite NPs were found to be having diam-
eter values around 10 nm. The significant increase in the 
particle size clearly indicated the change on the magnetite 
surface which was caused by its coating with silica (Fig. 4).

XRD

XRD diagram of silica coated magnetite NPs  (Fe3O4@SiO2) 
was shown in Fig. 5. The main peaks obtained at 30.2°, 
35.7°, 43.7°, 54.2°, 57.6° and 63.1° are the characteristic 
peaks of (220), (311), (400), (422), (511), and (440) crys-
talline planes of magnetite nanoparticles, respectively [54, 
55]. In addition, the broad peak seen at 22.7° confirms the 
presence of amorphous silica in the nano-composite pro-
duced [56].

Characterization of Microorganism‑Fe3O4@SiO2 
Composite

Surface characterization of the composite structure, which 
was obtained with the immobilization of cells onto silica-
coated magnetite NPs (Microorganism +  Fe3O4@SiO2), was 
carried out with SEM (Fig. 6) analysis. The images demon-
strated the presence of cellular structures in the composite 
and hence, successfully carried out immobilization process.

Levan Production

Effects of molasses ratio in the growth media, initial pH, 
temperature and time on levan concentration were shown 
in Fig. 7.

Fig. 2  FTIR spectra for (a) 
untreated magnetite NPs, (b) 
silica-coated magnetite NPs 
 (Fe3O4@SiO2)
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In order to test the growth medium composition effect on 
levan production capability of the isolated Paenibacillus poly-
myxa strain, fermentation processes were carried out in the 
media containing molasses in varying ratios (Fig. 7a). It was 
seen that, the product could not be produced due to the lack of 
sufficient carbon source in the media including 1% of molas-
ses (v/v). When the ratio of molasses in the nutrient media 
was increased in the range of 5% and 20% (v/v), produced 
levan concentrations were also boosted significantly due to 
the increasing available carbon source in the media. However, 
when the molasses ratio exceeded 20% (v/v), levan concen-
trations reduced with increased molasses due to the negative 
effects of the ionic components of molasses on cell membrane 
activities under studied conditions. Change in levan concen-
trations in the media at different initial pH values were pre-
sented in Fig. 7b. The experimental data clearly showed that, 
the highest product concentration was reached at the initial 
pH value of 7.0. Temperature effect on the levan production 
capacity of the microorganism was tested for both agitated 
and static processes and the greatest efficiency was obtained 
in non-agitated system at 37 °C (Fig. 7c). When the variation 
of the produced levan concentration with time was examined, 
54th hour was obtained as optimum due to the maximum 
levan concentration obtained at that time period (Fig. 7d). 
As a result, the highest levan concentration of 35.8 g/L was 

observed at the 54th hour of the incubation, while the pH and 
temperature values were 7.0 and 37 °C, respectively, in a static 
(non-agitated) medium including 20% (v/v) molasses. Conver-
sion efficiency and effective efficiency values were determined 
as 47.5% and 35.2%. The highest levan concentration obtained 
with the non-immobilized cells in the medium containing 20% 
molasses at pH 7, 37 °C, 54th hour was measured as 36.2 g/L.

The results indicated that, there was no significant differ-
ence in the maximum levan concentrations obtained with 
immobilized and non-immobilized cells. This was thought to 
be related with the nature of the levan-synthesizing enzyme 
(i.e., levansucrase), which is an extracellular enzyme [57–59]. 
In the fermentation processes based on intracellular enzymes, 
the inactive cells are not expected to be involved in the micro-
bial product synthesis due to cell lysis. However, the activity 
of extracellular enzymes such as levansucrase regardless of 
whether the cells are living or inactive provides a great advan-
tage in this respect.

Characterization of the Levan Biopolymer

FTIR, NMR and XRD analyzes were performed in order to 
examine the surface and structural properties of the levan 
polymer, in addition to antimicrobial and antibiofilm tests.

Fig. 3  SEM/EDX micrographs of a untreated magnetite NPs (magnification of 100 kx) and b silica coated magnetite NPs  (Fe3O4@SiO2) (mag-
nification of 50 and 100 kx)
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FTIR

The FTIR spectrum of the levan that was produced at opti-
mum conditions was shown in Fig. 8. The peak observed at 
3273  cm−1 was due to the O–H stretching bond in the poly-
mer, represented the presence of intermolecular hydrogen 

bonding. The peaks at 2976, 2931 and 2877  cm−1 indicated 
the existence of C–H stretching vibration [60]. The band 
seen at 1636  cm−1 was associated with the C=O stretching 
vibration [14, 61]. The peaks at 1123 and 1012  cm−1 were 
related with the stretching vibration of C–OH groups and 
stretching vibration of glycosidic C–O–C bonds, which were 
typical for carbohydrate structures. The peaks at 924 and 
808  cm−1 revealed symmetric stretching vibration and C-H 
bending vibration of furanose, respectively [62]. FTIR spec-
trum of levan biopolymer produced in this study was found 
to be quite compatible with the ones that were reported in 
the literature and obtained via various types of microbial 
species [62–64].

NMR

13C NMR and 1H NMR analyzes were carried out to con-
firm the FTIR results of levan biopolymer (Fig. 9). In 13C 
NMR spectrum, a distinct peak was observed at 104.16 ppm, 
which was related with C2 signal of β-fructose. The distinc-
tive signals seen at 59.77, 76.18, 75.88, 80.23 and 63.33 ppm 

Fig. 4  TEM micrographs of a, 
b untreated magnetite NPs and 
c, d silica coated magnetite NPs 
 (Fe3O4@SiO2)

Fig. 5  XRD results of silica coated magnetite NPs  (Fe3O4@SiO2)
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represented the presence of C1, C3, C4, C5 and C6 carbon 
atoms in the fructose structure, respectively [40, 62]. The 
chemical shift at 63.33 ppm was accepted as the indicator 
of β-(2-6) linkage found in C6 of fructose [61]. 1H NMR 
analysis also supported the 13C NMR results. The signal 
at the proton chemical shift of 4.69 ppm was related with 
 D2O. The distinctive signals were observed between 3.4 
and 4.2 ppm range, which was attributed as “ring proton 
region” and showed the existence of fructose monomer (i.e., 
the building block of levan biopolymer) [62]. Both 1H and 
13C NMR characteristics of the biosynthesized levan were 
found to be pretty consistent with the ones reported in the 
literature [64, 65].

XRD

X-ray diffraction (XRD) analysis was performed to inves-
tigate the phase identification and crystallinity properties 
of the produced levan biopolymer (Fig. 10). A very wide 
diffraction peak was seen at 2θ = 18.77. It was noteworthy 
that, the interplanetary gap (d spacing) at 18.77 degrees was 
4.725 Å and the diffraction peaks were quite significant. 
These results, which showed the mainly amorphous structure 
of the biopolymer produced, were quite compatible with the 
levan characteristics obtained with microbial production in 
the literature [66, 67].

Fig. 6  SEM micrograph of microorganism-immobilized silica coated 
magnetite NPs composite (Microorganism +  Fe3O4@SiO2)

Fig. 7  Effects of molasses percentage in the growth media (a), initial pH (b), temperature (c) and fermentation period (d) on the levan concen-
tration
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Bioactivity of Levan Biopolymer

Antimicrobial Effect

Agar Diffusion Test The antimicrobial effect of the levan 
obtained by growing Paenibacillus polymyxa HCT33-3, 
which was immobilized on silica-coated iron oxide nano-
particles  (Fe3O4@SiO2) in molasses medium, was stud-
ied on E.coli ATCC 35218, Staphylococcus aureus subsp 
aureus ATCC®29213™, Klebsiella pneumoniae ATCC 
1705, Pseudomonas aeruginosa ATCC 27853, Candida 
albicans ATCC® 90029™ and Aspergillus niger ATCC 
6275. Tetracycline (TE, 30 mcg) antibiotic disc was used 
as a control for bacteria. When the antimicrobial effect of 
levan synthesized by immobilized cell was evaluated, the 
proportional decrease in the antimicrobial effect of levan 
with the decreasing concentration was observed (Table 1). 
The effectiveness on Candida albicans and Aspergillus 
niger than other microorganisms may be due to the fact 
that these organisms are eukaryotic. Eukaryotic cells have 
different structures and metabolic pathways from bacterial 
(prokaryotic) cells. For example, peptidoglycan is structur-
ally different from cell wall components in archaea and uni-
cellular eukaryotes (with the exception of certain plant and 
algal chloroplasts) and has no homologue in multicellular 
eukaryotic organisms. Peptidoglycan is a defining feature 
of the bacterial cell wall and they are identified as targets 
of beta-lactam antibiotics. The difference in cell structures 
makes Candida and Aspergillus more resistant to antimi-
crobial agents [68, 69]. Shi et  al. reported that Candida 
albicans and Aspergillus niger cells are more resistant than 

Escherichia coli cells, thanks to their eukaryotic cell mem-
brane, and that the inhibition of eukaryotic microorganisms 
is more difficult [70]. Concentrations of levan lower than 
0.5 g/mL was observed to have no effect on growth or kill-
ing of Aspergillus niger. The antimicrobial effect of the 
commercially available pure levan produced from Erwinia 
herbicola (Sigma) also showed similar results with the one 
obtained from the immobilized cells in the study. The high-
est antimicrobial effect was the 15.5 ± 0.07 mm zone diam-
eter of the levan obtained from immobilized cells at a con-
centration of 0.50 g/mL, measured on E. coli ATCC 35218 
strain. In the study of Hamada et  al. in 2022, the levan 
obtained from Bacillus subtilis MZ292983.1 strain at a 
concentration of 0.25 mg/mL was exhibited inhibition zone 
diameter measured as 8.00 mm on E.coli and 10.00 mm on 
S.aureus [14]. Ağçeli et al. reported the antimicrobial effect 
of 1 g/mL levan obtained from Pseudomonas mandelii on E. 
coli, S. aureus, C. albicans and A. niger as 16 mm, 14 mm, 
12 mm and 10 mm, respectively [4]. Levan obtained from 
immobilized cells and free cells did not differ in antimicro-
bial activity.

Minimum Inhibitory Concentration (MIC) The minimum 
inhibitory concentration test results given in Table  2 also 
supported the agar diffusion test. Depending on the decreas-
ing levan concentrations, the antimicrobial effect of levan 
on microorganisms also decreased. The effect of levan on 
A. niger is very small compared to bacteria. Only 0.5 g/mL 
levan obtained in the study and pure levan obtained from 
Erwinia showed antimicrobial effect on A. niger. In A. niger 
cultures measured as 5.19 ± 0.03 Log CFU/mL as a control, 

Fig. 8  FTIR spectrum of levan biopolymer produced by Paenibacillus polymyxa 
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A. niger values measured with 1 g/mL concentration of levan 
were as 5.02 ± 0.03 and 4.98 ± 0.03 Log CFU/mL, respec-
tively. Contrary to our study, in the study of Gökmen et al. 
(2020), 0.04  g/mL concentration of levan obtained from 
Zymomonas mobilis showed an antifungal effect on Asper-
gillus niger [49]. For Candida albicans, the control value 
was 8.35 ± 0.05 Log CFU/mL. The 0.5 g/mL concentrations 
of the levan synthesized in the study decreased the growth 
with its effect on Candida albicans and were measured as 
7.96 ± 0.03 and 8.10 ± 0.03 Log CFU/mL, respectively. 0.25 
and 0.1  g/mL concentrations of levan from Paenibacillus 
polymyxa HCT33-3 were not effective on Candida albi-
cans. When the effect of levan on bacteria was evaluated, 
all levan concentrations used in the study created an anti-
microbial effect on bacteria. With the decreasing levan con-

Fig. 9  13C NMR (a) and 1H 
NMR (b) results of levan 
biopolymer

Fig. 10  XRD results of levan biopolymer by immobilized Paenibacil-
lus polymyxa HCT33-3
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centrations, the effect of levan on bacteria also decreased 
in direct proportion. Levan from Lactobacillus gasseri and 
levan at concentrations varying between 400 and 1.56 mg/
mL were used against P. aeruginosa strains isolated from 
burns and wounds. Pseudomonas cultures were inhibited by 
the obtained pure levan, as well as by certain virulence fac-
tors [71].

Antibiofilm Effect

The antibiofilm effect of levan obtained by the production 
of Paenibacillus polymyxa HCT33-3 immobilized on silica 
coated iron oxide nanoparticles  (Fe3O4@SiO2) in molas-
ses medium was studied on Pseudomonas aeruginosa 
ATCC 27853 strain, which is known to produce biofilms. 
According to the values measured at 540 nm, the biofilm 
formation was measured as 0.510 ± 0.03 nm in the control 
medium without levan, while that OD value decreased to 
0.310 ± 0.03 nm in the culture medium incubated with 0.5 g/
mL levan (Fig. 11). However, the antibiofilm effect of levan 
with 0.25 and 0.1 g/mL concentrations on Pseudomonas 
biofilm was measured as 0.493 ± 0.03 and 0.505 ± 0.03 nm, 
respectively. Considering that these measured values were 

the same as the control group, it was determined that levan 
with concentrations of 0.25 and 0.1 g/mL had no effect on 
the Pseudomonas aeruginosa ATCC 27853 biofilm. In 
accordance with these results, it was determined that 0.5 g/
mL concentrations of levan obtained from molasses medium 
were effective on Pseudomonas aeruginosa ATCC 27853 
biofilm. The study results show that the commercially avail-
able levan obtained from Erwinia herbicola also has antibi-
ofilm effect on the biofilm (0.25 ± 0.03 nm OD) similar to 
the levan obtained in the study results. The effect of levan 
produced in molasses medium from non-immobilized cells 
on Pseudomonas aeruginosa ATCC 27853 biofilm was 
measured as 0.297 ± 0.03 nm OD. There is no significant 
difference between the data obtained from this result and the 
levan data obtained from cells immobilized to  Fe3O4@SiO2 
nanoparticles. In molasses medium, the antibiofilm effect of 
levan obtained with cells immobilized to nanoparticles and 
levan obtained with free cells is similar.

The results obtained in this study, which reported levan 
production trajectories of the immobilized and non-immo-
bilized Paenibacillus polymyxa HCT33-3 strains compara-
tively for the first time in the literature, was thought to be 
bringing a new perspective to the microbial levan production 

Table 1  Comparison of antimicrobial effect of levan against different pathogenic microorganisms

Inhibition Zone diameters (mm)

Antimicrobial substance E. coli ATCC 35218 S. aureus 
ATCC®29213™

K. pneumo-
niae ATCC 
1705

P. aeruginosa 
ATCC 27853

C. albicans 
ATCC® 
90029™

A. niger ATCC 6275

Levan (0.50 g/mL) 14.5 ± 0.07 11.0 ± 0.07 11.2 ± 0.07 12.3 ± 0.07 6.3 ± 0.07 –
Levan (0.25 g/mL) 11.8 ± 0.07 9.0 ± 0.08 9.5 ± 0.07 10.4 ± 0.07 – –
Levan (0.10 g/mL) 7.0 ± 0.03 5.7 ± 0.07 6.0 ± 0.08 6.5 ± 0.07 – –
Levan (0.50 g/mL)
(Erwinia herbicola, Sigma)

15.0 ± 0.07 13.5 ± 0.07 13.8 ± 0.07 13.7 ± 0.07 8.5 ± 0.07 7.2 ± 0.07

Levan (0.5 g/mL) (untreated) 14.0 ± 0.07 10.5 ± 0.07 11.0 ± 0.07 12.5 ± 0.03 7.0 ± 0.07 –
Tetracycline (TE, 30 mcg) 16.5 ± 0.07 10.0 ± 0.07 18.0 ± 0.09 18.0 ± 0.09 – –

Table 2  Comparison of antimicrobial effect with minimum inhibitory concentration of levan obtained from molasses medium on different 
microorganisms

Amount of Levan (g/mL)

Control 0.5 0.25 0.1 0.5 (Erwinia herbi-
cola, Sigma)

0.5 Levan (untreated)

Microorganisms (Log CFU/mL)
E. coli ATCC 35218 8.10 ± 0.03 7.10 ± 0.03 7.55 ± 0.03 8.00 ± 0.03 6.51 ± 0.03 7.05 ± 0.03
S. aureus ATCC®29213™ 8.23 ± 0.03 7.14 ± 0.03 7.45 ± 0.03 7.97 ± 0.03 6.87 ± 0.03 7.20 ± 0.03
K. pneumoniae ATCC 1705 8.03 ± 0.03 7.17 ± 0.05 7.58 ± 0.05 7.87 ± 0.05 6.75 ± 0.03 6.83 ± 0.03
P. aeruginosa ATCC 27853 8.15 ± 0.03 6.82 ± 0.03 7.49 ± 0.03 7.82 ± 0.03 6.74 ± 0.03 7.07 ± 0.05
C. albicans ATCC® 90029™ 8.35 ± 0.05 8.10 ± 0.03 8.39 ± 0.03 8.38 ± 0.03 8.00 ± 0.03 8.24 ± 0.03
A. niger ATCC 6275 5.19 ± 0.03 5.17 ± 0.03 5.16 ± 0.03 5.16 ± 0.03 4.98 ± 0.03 5.15 ± 0.03
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processes. Although cell immobilization did not have a sig-
nificant effect on the productivity since the levansucrase is 
an extracellular enzyme; this process, enabling reusability of 
this biocomposites, was still considered to be advantageous. 
This study would form a basis for the future applications tar-
geting low-cost and sustainable production of levan, which is 
a valuable biopolymer with wide variety of usage.

Conclusion

In the current study, levan production was carried out in 
molasses medium from Paenibacillus polymyxa HCT33-3 
strains immobilized on  Fe3O4@SiO2 nanoparticles. The effi-
cient levan production in the media including molasses up 
to 20% by volume showed the sucrose consumption capabil-
ity of P. polymyxa strain. However, more elevated molas-
ses concentrations caused inhibition effect at the conditions 
studied. 35.8 g/L levan was obtained with the immobilized 
P. polymyxa strain at the optimum conditions. The resulting 
levan had antimicrobial and antibiofilm properties. Since 
levansucase is an extracellular enzyme, its activity in both 
free and immobilized cells is almost the same. The use of 
waste molasses as a carbon source in biopolymer produc-
tion and the reuse potential of immobilized microorganisms 
will encourage low-cost production of levan, an expensive 
polymer with wide variety of uses. However, further inves-
tigation is required to explore the potential reusability of 
microorganisms immobilized on nanoparticles under various 
parameters in polymer production, as well as to understand 
the mechanism of action of levan in both prokaryotic and 
eukaryotic cells.
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