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Abstract
In this study, a green and effective adsorbent of chitosan/montmorillonite/algae (CHI/MMT/ALG) composite was developed 
to be an alternative adsorbent to remove dyestuffs including basic green 1 (BG1) and reactive blue 19 (RB19) from the aque-
ous solutions. The physicochemical characteristics of CHI/MMT/ALG were analyzed using XRD, CHN–O, BET, FTIR, 
 pHpzc, and SEM analytical techniques. The findings of the characterization revealed that the increased surface functionalities 
offered an enticing platform for the improved adsorption of cationic and anionic dye molecules. The essential adsorption 
variables, such as A: CHI/MMT/ALG dosage (0.02–0.08 g), B: pH (4–9), and C: duration (5–30 min), were optimized using 
the Box-Behnken design (BBD) approach. The BG1 adsorption process demonstrated a better match with the Langmuir 
model, whereas the RB19 adsorption process exhibited a better fit with both the Temkin and Langmuir models. The fitting 
of the kinetic analysis illustrates that the BG1 and RB19 adsorption by CHI/MMT/ALG could be better represented by a 
pseudo-second-order model. The maximum adsorption capacity of CHI/MMT/ALG for BG1 and RB19 was specified to be 
509.5 mg/g and 227.9 mg/g, respectively. The endothermicity and spontaneity of the BG1 and RB19 adsorption processes are 
evidenced by thermodynamic analysis. The improved surface functionalities of CHI/MMT/ALG inspired the adsorption 
mechanism of CHI/MMT/ALG for BG1 and RB19 could be essentially ascribed by electrostatic attraction, n-π stacking, and 
hydrogen bonding. Overall, the study’s findings indicate that the newly developed CHI/MMT/ALG has significant potential 
for the removal of synthetic dye from aqueous.
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Introduction

The release of synthetic dyes into aquatic environments is 
considered one of the enormous pollution resources since 
they constitute a significant component of hazardous efflu-
ents. These dyes are often complex organic compounds 
with a variety of diverse structural configurations that are 
extremely stable and even resistant to biological, photol-
ytic, and chemical activities [1]. The aquatic ecology and 
human health are all seriously threatened by dyes, which 
are often hazardous, mutagenic, and carcinogenic [2, 3]. 
Basic green 1(BG1) dye is primarily used in the manufac-
ture of cover paper [4] and is also used in the textile, rubber, 
and plastic industries [5]. The hazardous, mutagenic, and 
carcinogenic effects of BG1 dye threaten aquatic species 
as well as humans [5]. Reactive blue 19 (RB19) dye is a 
toxic anionic dye that is commonly employed as a foun-
dational ingredient in the production of polymeric dyes. It 
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is regarded as an organopollutant that is recalcitrant and 
harms both humans and other living things [6]. Therefore, 
reliable techniques are essential for the effective removal of 
organic dyes from a variety of contaminated surface waters. 
A variety of physical, chemical, and bioremediation meth-
ods have been developed for this purpose, including ultra-
filtration [7], coagulation [8], adsorption [9], photocatalytic 
degradation [10], and biodegradation [11]. The adsorption 
procedure has been presented as a more cost-effective and 
efficient approach for treating organic dyes since the major-
ity of current treatment strategies are quite expensive and 
generate by-pollutants [12].

From this perspective, biopolymers have appeared as 
environmentally friendly, cost-effective, and sustainable 
materials for dye removal [13]. Chitosan (CHI), the sec-
ond most prevalent polymer in the environment following 
cellulose, is a linear polysaccharide with distinctive chemi-
cal, physical, and biological properties that commercial 
polymers frequently lack [14]. It offers the characteristics 
needed for generating effective and feasible adsorbents for 
environmental remediation because it is non-toxic, renew-
able, profuse in the functional groups, cost-effective, and 
ecologically friendly biopolymer [15]. Nevertheless, CHI 
has certain drawbacks, including limited mechanical charac-
teristics, low surface area, and pH dependence (solubilized 
or viscous state in acidic media) [16]. The physicochemi-
cal characteristics of CHI have been improved through the 
application of techniques such as grafting [17], crosslinking 
[18], and composition [19], resulting in the development 
of a new adsorbent with desirable properties. Adsorbents 
with good binding strength for cationic and anionic organic 
dyes are subjected to several parameters such as the adsor-
bent’s functional groups, surface area, and surface charge. 
For this reason, a number of unique metal oxides and natural 
substances have been incorporated with CHI polymer, for 
instance, zinc oxide [20], montmorillonite (MMT) mineral 
[21], and algae (ALG) biomass [22].

MMT is among the numerous and frequently utilized 
inorganic minerals as an efficient adsorbent for the capture 
of organic/inorganic contaminants from the aquatic environ-
ment owing to its unique characteristics such as high cation 
exchange capacity, swelling property, large specific surface 
area, structural stability, environment benign, and inexpen-
sive [23–25]. As a result, it has been extensively researched 
that the combination of CHI biopolymer and MMT min-
eral is a perfect absorbent that can remove both cationic 
and anionic pollutants along with addressing some of CHI's 
drawbacks [26, 27].

In the same scenario, there has been a lot of interest in 
the application of biomaterials as efficient, affordable, and 
sustainable biosorbents (such as microalgae, fungi, and bac-
teria) for the removal of various pollutants from wastewater 
[28–30]. Due to its renewable nature, low cost, year-round 

availability, excellent adsorption affinity, and fairly high 
surface area, algae (ALG) is one of the fascinating biomate-
rials utilized as biosorbent for environmental remediation. 
ALG is known for having reactive functional groups in their 
structure, such as phosphate (–PO4

−3), carboxyl (–COOH), 
hydroxyl (–OH), and amino (–NH2) groups [31]. These 
groups have the ability to bind with various organic and 
inorganic contaminants through complexation, electrostatic 
attraction, and ion exchange [31]. Hence, this work attains 
to develop an adsorbent capable of adsorption both cationic 
and anionic dyes, where chitosan is basic for the adsorption 
of anionic dye (reactive blue 19, RB19) owing to the pres-
ence of cationic groups (e.g., –NH3

+) in its backbone, while 
algae and montmorillonite are the basic for adsorption of 
cationic dye (basic green 1, BG1) owing to the presence 
the negatively functional groups ( PO−3

4
,≡ Si − O−

, −COO− , 
and −O− ) in their backbone. The physicochemical properties 
of CHI/MMT/ALG were investigated using XRD, CHN–O, 
BET, FTIR,  pHpzc, and SEM techniques. The Box-Behnken 
design (BBD) strategy was used to optimize  the impor-
tant adsorption factors, such as A: CHI/MMT/ALG dose 
(0.02–0.08 g), B: pH (4–9), and C: time (5–30 min). The 
BG1 and RB19 dyes’ experimental adsorption data were 
examined using kinetic, isotherm, and thermodynamic anal-
yses. The potential adsorption mechanism of BG1 and RB19 
on CHI/MMT/ALG was proposed.

Materials and Methods

Materials

The CHI flakes (deacetylation level ≤ 75) and inorganic 
material (MMT) were provided by Sigma-Aldrich. The 
Microalgae was laboratory synthesized according to the 
reported method [25]. An exactly measured amount of 
BG1 dye  (C27H34N2O4S; FW: 482.62; dye content ~ 90%; 
R&M Chemicals; Color Index Number: 42040) and RB19 
 (C22H16N2Na2O11S3; FW: 626.53 g/mol; dye content ~ 50%; 
R&M Chemicals; Color Index Number: 61200) was dis-
solved in 1 L of deionized water to obtain the stock solution 
(1000 mg/L). In this study, analytical-grade chemicals from 
R&M Chemicals, namely, HCl, NaOH pellets, and NaCl 
powder were used.

CHI/MMT/ALG Synthesis

The CHI/MMT/ALG’s synthesis was based on the method 
outlined in the literature [32]. The CHI/MMT/ALG was 
produced by combining 2 g of CHI, 1 g of MMT, and 1 g 
of ALG with 80 mL of a 5% v/v solution of acetic acid 
under strenuously stirring for 24 h at 27 °C. A syringe needle 
(10 mL) was used to insert the CHI/MMT/ALG solution into 
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a NaOH solution (0.5 M, 1000 mL) to create CHI/MMT/
ALG beads. CHI/MMT/ALG beads were crushed while 
oven dried for 24 h after being washed with water to get rid 
of any NaOH residue. Finally, CHI/MMT/ALG was pow-
dered to a tiny powder (˂250 μm) for BG1 and RB19 adsorp-
tion studies. The preparation steps of CHI/MMT/ALG are 
given in Fig. 1.

Characterization

The instrument (Micromeritics, ASAP 2060) was used to 
examine the surface physical characteristics of the CHI/
MMT/ALG, including its pore volume and specific surface 
area. The surface configurations of the CHI/MMT/ALG 
were examined using scanning electron microscopy (SEM, 
Zeiss Supra 40 VP) prior to and following the adsorption of 
RB19 and BG1. The samples were put on stubs, coated with 
gold using a gold-coating device, and then SEM analysis 
was performed at 15.0 keV to provide high-resolution SEM 
micrographs. The crystalline nature of CHI/MMT/ALG was 
identified using an X-ray polycrystal diffractometer (XRD, 
PANalytical X’Pert PRO). Fourier transform infrared (FTIR) 
spectra from the FTIR spectrophotometer (Perkin-Elmer, 
Spectrum RX I) were taken to describe the essential groups 
of CHI/MMT/ALG before and after the adsorption of RB19 
and BG1. The charge on the CHI/MMT/ALG surface was 
derived using a point of zero charge  (pHpzc) procedure [33]. 
The proportions of carbon (C), hydrogen (H), nitrogen (N), 
and oxygen (O) in CHI/MMT/ALG were measured using a 
CHN–O analyzer (Flash 2000, Thermo-Scientific).

Experimental Design

The optimal conditions of three input factors (CHI/MMT/ALG 
dosage, pH, and duration), which result in maximum BG1 
and RB19 adsorption onto CHI/MMT/ALG were identified 
using BBD. Adsorption experiments were built using Design 
Expert (13.0, Stat-Ease, USA), and the outcomes were statis-
tically analyzed. Table 1 presents three studied factor ranges 
(i.e., 1, 0, and 1): CHI/MMT/ALG dosage (A), pH (B), and 
time (C). The experimental design's ranges for each variable 
studied were determined based on the findings of premonitory 
investigations. Two replication runs (experiments) were done 
under the same conditions for each test, and the findings are 
provided as an average. The following equation (Eq. (1), 2nd 
polynomial) was used to predict the relationship between the 
dependent variable and the independent variables in order to 
determine the best operational parameters [19].

where Y = response (dye removal); �i = linear influ-
ence;�0 = intercept; �ij = interaction effect; and  Xi and Xj 

(1)
Y = �0 +

∑k

i=1
�iXi +

∑k

i=1
�iiX2

i

+
∑k

i=1

∑k

j=1
�ijXiXj + �

Fig. 1  The preparation steps of CHI/MMT/ALG

Table 1  Codes and actual variables and their levels in BBD

Codes Variables Level 1 (− 1) Level 2 (0) Level 3 (+ 1)

A Dose (g) 0.02 0.05 0.08
B pH 4 6.5 9
C Time (min) 5 17.5 30
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= independent variables. K and ε represent the number of 
parameters and the random error discrepancies, respectively. 
Table 2 outlines the functions of generated models as well as 
actual responses (BG1 removal and RB19 removal). In order 
to begin the BG1 and RB19 decolorization tests, a specific 
amount of CHI/MMT/ALG was introduced to Erlenmeyer 
flasks having dye solution (100 mL). The solutions were 
moved into a water-bath thermostatic oscillator (WNB7-45, 
Memmert) and quietly agitated for a determined time period 
at a constant rate of 90 rpm. The solutions were then filtered 
through a 0.45 μm syringe filter (evergreen, 25 mm Nylon 
for BG1 dye; 25 mm PTFE hydrophobic for RB19 dye) to 
obtain liquids free of CHI/MMT/ALG. By using a spectro-
photometer (HACH DR 3900) the remnant concentration in 
the BG1 and RB19 solutions was detected at λmax = 625 nm 
and λmax = 592 nm, respectively. The next formula (2) was 
employed to measure the removal effectiveness (R%) of BG1 
and RB19 dyes [12]:

where  Co (mg/L) and  Ce (mg/L) indicate the adsorbates' 
concentrations in the beginning and equilibrium levels, 
respectively.

(2)R% =

(

Co − Ce

)

Co

× 100

Adsorption Study of BG1 and RB19 on CHI/MMT/ALG

Batch adsorption procedures have been used to determine 
the maximum quantity of adsorbate that can adsorb onto 
the CHI/MMT/ALG. Based on the BBD model, maximum 
removals of 76.2% and 91.7% were attained at CHI/MMT/
ALG dosage of 0.08 g, pH of 9 for BG1 and 4 for RB19, 
and duration of 17.5 min for BG1 and RB19, respectively. 
With these ideal input factors, a range of BG1 and RB19 
concentrations (20–250 mg/L) were tested for adsorption 
equilibrium. BG1 and RB19 batch adsorption tests were 
conducted using the same approach described in the pre-
vious “Experimenta design”. The equilibrium adsorption 
capacity (qe, mg/g) of the CHI/MMT/ALG was established 
using the formula (3) as follows [12]:

where W (g) signifies the CHI/MMT/ALG's quantity and V 
(L) denotes the dye solution volume.

Results and Discussion

Characterization of CHI/MMT/ALG

The CHI/MMT/ALG’s surface area and porosity are indis-
pensable characters for the adsorption of the RB19 and BG1 
dyes. Table 3 records elemental analysis and the surface 
characteristics of CHI/MMT/ALG. The percentages of C, H, 
N, and O in CHI/MMT/ALG were 31.94%, 5.26%, 5.72%, 
and 57.08, respectively, as shown by elemental analyzed 
data. The calculated pore volume and surface area of CHI/
MMT/ALG are 0.01029  cm3/g and 2.64  m2/g, respectively. 
The measurements of the mean pore diameter (14.80 nm) 
show that the CHI/MMT/ALG has a mesoporous structure 
[pores varying in size (2.0–50 nm)] as per IUPAC [34]. The 
CHI/MMT/ALG's  N2 adsorption/desorption isotherms are 
represented in Fig. 2. As per the IUPAC classification, the 

(3)qe =

(

Co − Ce

)

V

W

Table 2  Experimental matrix based on BBD approach for design-
ing experiments and corresponding responses (BG1 removal (%) and 
RB19 removal (%)

Run A: Dose (g) B: pH C: Time (min) BG1 
removal 
(%)

RB19 
removal 
(%)

1 0.02 4 17.5 6.2 54.7
2 0.08 4 17.5 21.7 91.7
3 0.02 9 17.5 28.9 41.2
4 0.08 9 17.5 76.2 61.1
5 0.02 6.5 5 19.7 33.8
6 0.08 6.5 5 67.6 46.6
7 0.02 6.5 30 64.1 38.2
8 0.08 6.5 30 73.2 80.9
9 0.05 4 5 9.7 66.1
10 0.05 9 5 56.4 34.3
11 0.05 4 30 27.1 77.8
12 0.05 9 30 68.9 63.1
13 0.05 6.5 17.5 49.5 52.5
14 0.05 6.5 17.5 46.6 55.4
15 0.05 6.5 17.5 40.4 57.9
16 0.05 6.5 17.5 47.2 54.9
17 0.05 6.5 17.5 48.8 50.8

Table 3  Physiochemical characteristics of CHI/MMT/ALG

Parameter(s) CHI/MMT/ALG

Surface area  (m2/g) 2.64
Langmuir surface area (  m2/g) 3.0683
Pore volume  (cm3/g) 0.01029
Mean pore diameter (nm) 14.80
C (%) 31.94
H (%) 5.26
N (%) 5.72
O (by the difference) (%) 57.08
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CHI/MMT/ALG’s  N2 adsorption/desorption isotherms were 
type IV, which supports the existence of mesopores [34]. 
The type H3 hysteresis loop depicted in Fig. 2 confirms the 
existence of mesopores in the CHI/MMT/ALG [35].

The XRD study was conducted to identify the crystalline 
phase of the powdered CHI/MMT/ALG. The CHI/MMT/
ALG's XRD pattern appears in Fig. 3. XRD analysis of CHI 
shows a prominent peak at about 2θ = 20°, which is char-
acteristic of the quasi-crystalline phase of CHI [36]. The 
crystalline phase of cellulose associated with ALG may also 
be deduced from the unique peak at 22° [37]. Importantly, 
XRD pattern of CHI/MMT/ALG exhibited several peaks 
at 2θ = 9◦, 18◦, 19.8◦, 27.5◦, and 36◦, which correspond to 
the (001), (002), (020), (003), and (130) planes of MMT, 
respectively [1].

FTIR spectroscopy analysis was used to fully identify 
the functional groups available in the CHI/MMT/ALG 

prior to and after the adsorption of the adsorbates (BG1 
and RB19). The FTIR spectra of (a) CHI/MMT/ALG 
before and after (b) BG1 and (c) RB19 adsorption appear 
in Fig. 4. The O–H stretching vibrations of the MMT, CHI, 
and ALG are accountable for the absorption bands in the 
3300–3650  cm−1 range that are seen in the CHI/MMT/
ALG spectra (Fig. 4a) [38]. The stretching vibrations of 
amino (-NH2) groups, which are associated with CHI and 
ALG biomaterials, are also shown by this bandwidth [1]. 
The C-H stretching vibrations in the alkyl chain caused 
the band at 2850  cm−1 to arise [29]. Furthermore, there 
were many peaks at 2300  cm−1, 1650  cm−1, 1500  cm−1, 
and 1360  cm−1, which correspond to the C≡C bonds, car-
bonyl C=O groups, the stretching vibration of the C=C 
bonds, and the C-N stretching (present in the amino func-
tional groups of CHI and ALG), respectively. The Si–O 
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Fig. 2  The  N2 adsorption–desorption isotherms of CHI/MMT/ALG

Fig. 3  XRD pattern CHI/MMT/ALG
Fig. 4  FTIR spectra of (a) CHI/MMT/ALG and CHI/MMT/ALG 
after adsorption (b) BG1 and (c) RB19 dyes



3912 Journal of Polymers and the Environment (2023) 31:3907–3924

1 3

stretching vibration of the Si–O–Si bonds in the tetrahe-
dral layer causes the strong band detected at 1022  cm−1 
[38]. The vibrations of the Al–OH bond (MMT) and the 
O–P–O bond (ALG) were linked to the absorption peaks 
at 720  cm−1 and 545  cm−1, respectively [39]. The FTIR 
spectra of CHI/MTT/ALG after BG1 and RB19 adsorp-
tion displayed spectra that were substantially similar to 
CHI/MMT/ALG with alterations in various bands (e.g., 
absorption peaks of -OH, -NH2, C=O, and peak Al–OH), 

stating that the reactive groups of CHI/MMT/ALG played 
a major role in BG1 and RB19 adsorption.

Prior to and during the uptake of the adsorbates (BG1 
and RB19), the surface morphologies of CHI/MMT/ALG 
were examined by SEM analysis. Figure 5a–c presents the 
microphotographs of the SEM analysis for CHI/MMT/ALG 
before and after the adsorption of the adsorbates (BG1 and 
RB19). As shown in Fig., the surface of CHI/MMT/ALG is 
uneven, diverse, and contains some cracks. The morphology 

Fig. 5  SEM images and EDX spectra of (a) CHI/MMT/ALG, (b) CHI/MMT/ALG after RB19 adsorption, and (c) CHI/MMT/ALG after BG1 
adsorption
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of CHI/MMT/ALG was slightly changed after the adsorption 
of BG1 (Fig. 5b) and RB19 (Fig. 5c), in accordance with the 
adsorption of BG1 and RB19 molecules on the CHI/MMT/
ALG surface.

Statistical Evaluation

The relationship between the hypothesized and actual data, 
as well as the accuracy of the developed 2nd mathematical 
model, were assessed using ANOVA. Table 4 summarizes 
the statistics of the ANOVA for the BG1 and RB19 remov-
als. The BG1 removal and RB19 removal had F-values of 
49.40 and 102.73, respectively, implying that the models 
could be applied to evaluate the relationship between the 
theoretical and experimental findings [40]. The strong cor-
relation coefficients of BG1 removal (R2 = 0.984) and RB19 
removal (R2 = 0.992) highlighted the significance of the 
models and the fact that the estimated and actual removal 
measurements of BG1 and RB19 dyes are perfectly consist-
ent. The minimal p-values (Lack of Fit), 0.2847 and 0.9778 
for BG1 removal and RB19 removal, respectively, supported 
the robustness of the predicted models [41]. If p < 0.05, the 
properties of the suggested model are assumed to be statis-
tically significant. The removal of BG1 is mathematically 
influenced by the following terms: A, B, C, AB, AC,  B2, and 
 C2, while the removal of BG1 is mathematically influenced 
by the following terms: A, B, C, AB, AC, BC,  B2, and  C2. 
The BG1 removal and RB19 removal quadratic Eqs. (4) and 
(5) were developed by calculating the most important input 
factors.

Figure 6a and b provide the normal probabilities for the 
BG1 removal and RB19 removal models, respectively. The 
spots in Figs. 5a and b seem to be closely matched to a 
single line, supporting the suitability and acceptability of 
the models and the ANOVA statistics [42]. Figure 6c and d 
provide graphics illustrating the link between the expected 
and actual levels of BG1 and RB19 removals. In Fig. 6c 
and d, the significant association between the observed 
outcomes (BG1 removal and RB19 removal) and those 
that are hypothetically calculated are evident, proving the 
statistical validity of the designed models. The plots of the 
residuals versus the run number are represented in Fig. 6e 
and f. The accuracy of the models is also evidenced by the 
points' random distribution around zero in Fig. 6e and f.

Interactive Effects of Factors

In order to assess the impact of the investigated factors 
and to identify the significant relationships between the 
tested characteristics on the BG1 and RB19 removal 
processes, 3D response surface diagrams were con-
structed. Figure 6a and b express the dual influences 
of the CHI/MMT/ALG dosage and pH on the rate of 
removal of BG1 and RB19 whereas the time (17.5 min) 

(4)
BG1 removal(% ) = +46.50 + 14.98A + 20.71B + 9.99C

+ 7.95AB − 9.70AC − 14.44B2 + 8.46C2

(5)

RB19 removal(% ) = +54.30 + 14.05A − 11.32B + 9.90C

− 4.28AB + 7.48AC + 4.28BC

+ 9.16B
2 − 3.14C

2

Table 4  ANOVA analysis for BG1 removal (%) and RB19 removal (%)

BG1 removal (%) RB19 removal (%)

Source Sum of Squares df Mean Square F-value p-value Sum of Squares df Mean Square F-value p-value

Model 7790.49 9 865.61 49.40  < 0.0001 4146.15 9 460.68 102.73  < 0.0001
A-Dose 1794.01 1 1794.01 102.37  < 0.0001 1579.22 1 1579.22 352.17  < 0.0001
B-pH 3432.06 1 3432.06 195.85  < 0.0001 1026.04 1 1026.04 228.81  < 0.0001
C-Time 798.00 1 798.00 45.54 0.0003 784.08 1 784.08 174.85  < 0.0001
AB 252.81 1 252.81 14.43 0.0067 73.10 1 73.10 16.30 0.0049
AC 376.36 1 376.36 21.48 0.0024 223.50 1 223.50 49.84 0.0002
BC 6.00 1 6.00 0.3425 0.5767 73.10 1 73.10 16.30 0.0049
A2 5.94 1 5.94 0.3388 0.5788 6.98 1 6.98 1.56 0.2523
B2 877.65 1 877.65 50.08 0.0002 353.48 1 353.48 78.83  < 0.0001
C2 301.53 1 301.53 17.21 0.0043 41.45 1 41.45 9.24 0.0188
Residual 122.67 7 17.52 31.39 7 4.48
Lack of Fit 70.67 3 23.56 1.81 0.2847 1.37 3 0.4567 0.0608 0.9778
Pure Error 52.00 4 13.00 30.02 4 7.50
Cor Total 7913.16 16 4177.54 16
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was held unchanged. It is evident from the results shown 
in Fig. 7a and b that the adsorption efficiency of BG1 
and RB19 was significantly improved at pH 9 and 4, 
respectively. As shown in Fig. 7b, the effectiveness of 
RB19 removal was enhanced by increasing CHI/MMT/
ALG dosages synchronized with lowering pH. Analyzing 
the impact of pH on BG1 and RB19 adsorption could be 
done using the  pHpzc property of CHI/MMT/ALG and 
the favored form (anionic or cationic) of the adsorbates 
(BG1/RB19) to CHI/MMT/ALG surface. According to 
Fig. 7f, CHI/MMT/ALG had a  pHpzc = 7.5. In turn, this 
caused the CHI/MMT/ALG surface to change from posi-
tively charged to negatively charged for basic pH values 
over  pHpzc, and vice versa at acidic pH values (i.e., from 
positively charged to negatively charged). This increases 
CHI/MMT/ALG’s concentration on adsorbing positively 
charged MB molecules and negatively charged RB19 
molecules depending on pH value, as illustrated in the 
formulas below (Eq. (6) and (7)).

Figure 7c and d, respectively, demonstrate the dual 
influences of the CHI/MMT/ALG dosage and time on 
the removal rates of BG1 and RB19, whereas pH (6.5) 
was kept unchanged. The data displayed in Fig. 6c dem-
onstrate that elevating the dose of CHI/MMT/ALG from 
0.02 g to 0.08 g boosted the efficacy of removing BG1, 
but did not improve the efficacy of removing RB19 syn-
chronized with extending the time. The increased BG1 
removal is ascribed to the CHI/MMT/ALG's large surface 
area and efficient adsorption sites at higher CHI/MMT/
ALG dosages. As per Fig. 7c, the level of BG1 removal 
improved with extending the time (30). This happens 
because the BG1 molecules require considerable time to 
enter the CHI/MMT/ALG pores, attach to the surface of 
the CHI/MMT/ALG, and attain the equilibrium time. Fig-
ure 7e illustrates the combined impact of pH and time on 
the rate of RB19 removal while maintaining a consistent 
dosage of CHI/MMT/ALG (0.05 g). Figure 7e exhibits 
that the RB19 dye’s adsorption efficiency was increased 
at an adsorption duration of 30 min. This observation is 
linked that RB19 molecules needing sufficient time to 
penetrate the CHI/MMT/ALG pores, attach to the surface 
of the CHI/MMT/ALG, and achieve the equilibrium time.

(6)
CHI/MMT/ALG− + BGI+ ↔ CHI/MMT/ALG−...+BGI

(7)
CHI/MMT/ALG+ + RB19− ↔ CHI/MMT/ALG+...−RB19

Adsorption Study

Examining the impact of initial dye concentration is neces-
sary to fully understand the adsorption performance charac-
teristics of the CHI/MMT/ALG and the nature of relations 
between CHI/MMT/ALG and dye species. As demonstrated 
in Fig. 8a, b, varying the initial concentration (20–250 mg/L) 
of the BG1 and RB19 solutions possesses a remarkable 
impact on the adsorption efficiency of the CHI/MMT/ALG. 
The effect of initial concentration was investigated using 
100 mL of dye solution and 0.08 g/L of CH/MMT/ALG at 
30 °C and pH (9 for BG1 and 4 for RB19). The adsorption 
rate of CHI/MMT/ALG was significantly enhanced (41.31 to 
330.08 mg/g for BG1; 20.04 to 226.70 mg/g for RB19) when 
the initial concentration of BG1 and RB19 was changed 
from 20 to 250 mg/L. This increment can be due to a rise 
in the mass transfer driving force that appears when the ini-
tial concentration of the dye is raised. As a consequence of 
this boost in driving force, more dye molecules in the bulk 
solution migrate into the interior pores of the CHI/MMT/
ALG [43].

Adsorption Kinetics

The information provided by the kinetic study is extremely 
helpful for scaling up and developing the technology of 
the adsorption process of BG1 and RB19 employing CHI/
MMT/ALG. Two kinetic models, namely, pseudo-first-order 
and pseudo-second-order were applied in order to specify 
the adsorption process and analyze the kinetics of the BG1 
and RB19 adsorption [44, 45]. For all of these models, 
Table 5 provides the non-linear equations of them, while 
Table 6 provides values of the computed kinetic parameters. 
The PSO model was found to have higher R2 values than 
the PFO model (cf. Table 6), and the estimated values of  qe 
for the PSO model were notably comparable to the actual 
values of  qe, illustrating that the BG1 and RB19 adsorption 
by CHI/MMT/ALG could be better represented by a pseudo-
second-order model. This finding indicates that the primary 
driver of the BG1 and RB19 adsorption is the chemisorp-
tion mechanism [46]. The k2 values decrease as the initial 
dye concentrations increase from 20 to 250 mg/L. Lower k2 
values are a result of the longer time to equilibrium, and thus 
indicate a lower rate of adsorption with increase in initial 
dye concentrations [47].

Adsorption Isotherms

The maximum adsorptive capacity of the CHI/MMT/ALG 
as well as the nature of relations between CHI/MMT/ALG 
and dye species were evaluated using isotherm models. The 
Langmuir, Freundlich, and Temkin isotherms were used to 
thoroughly investigate the adsorption of BG1 and RB19 on 

Fig. 6  a Normal probability plots of residuals for (a) BG1 and (b) 
RB19; plots of the relationship between the predicted and actual val-
ues of (c) BG1 and (d) RB19; plots of the residual versus run number 
of (e) BG1 and (f) RB19

◂
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CHI/MMT/ALG [48–50]. For all of these models, Table 5 
provides the non-linear equations of them, while Table 7 
and Fig. 9a, b provide values of the computed isotherm 

parameters and diagrams of isotherm models, respectively. 
As per the R2 values outlined in Table 7, the BG1 adsorp-
tion process demonstrated a better match with the Langmuir 
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Fig. 7  3D response surfaces plots of significant interactions including 
(a) AB (dose × pH) for BG1 removal, (b) AB (dose × pH) for RB19 
removal, (c) AC (dose × time) for BG1 removal, (d) AC (dose × time) 

for RB19 removal, and (e) BC (pH × time) for RB19 removal, while 
(f)  pHpzc of CHI/MMT/ALG
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Fig. 8  Effect of the contact 
time on (a) BG1 and (b) RB19 
adsorption at several concentra-
tions (dosage = 0.08 g, solution 
pH = 9 for BG1 and 4 for RB19, 
temperature = 25 °C, agitation 
speed = 85 rpm, and volume of 
solution = 100 mL)
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Table 5  Adsorption kinetics and 
isotherms nonlinear models

Models Formula Descriptions

Pseudo-first order (PFO) qt = qe
(

1 − e−k1 t
)

k
1
 : pseudo-first-order rate constant (1/min)

Pseudo-second order (PSO) qt =
q2
e
k
2
t

1+qeK2
t

k
2
 : pseudo-second-order rate constant (g/mg min)

Langmuir qe =
qmKLCe

1+KLCe

qm : monolayer capacity (mg/g)
KL: Langmuir constant (L/mg)

Freundlich qe = KFC
1∕n
e

KF: Freundlich constant (mg/g) (L/mg)1/n

n: adsorption intensity
Temkin qe =

RT

bT
ln
(

KTCe

)

KT : Temkin constant (L/mg)
bT : heat of adsorption (J/mol)
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model, whereas the RB19 adsorption process exhibited a 
better fit with both the Temkin and Langmuir models. The 
equilibrium findings revealed that the adsorption of BG1 
and RB19 happened via monolayer adsorption on the 
homogeneous surface of CHI/MMT/ALG [51]. Values of 
1/n indicate whether an isotherm is irreversible (1/n = 0), 
favorable (0 > 1/n < 1 or unfavorable (1/n > 1). In the Fre-
undlich isotherm, the values of 1/n for BG1 and RB19 were 
0.56 and 0.33, demonstrating a desirable adsorption behav-
ior [52]. Table 7 demonstrates that the bT value is positive, 
demonstrating that the adsorption process is endothermic 
since the heat of adsorption rises with a rise in tempera-
ture [12]. The maximum adsorption capacity of CHI/MMT/

ALG for BG1 and RB19 was specified to be 509.5 mg/g and 
227.9 mg/g, respectively. Table 8 displays the determined 
adsorption capabilities of CHI/MMT/ALG as well as other 
adsorbent materials applied for the adsorption of BG1 and 
RB19. Overall, the study's findings indicate that the newly 
developed CHI/MMT/ALG has significant potential for 
employment in synthetic dye removal applications.

Thermodynamic Functions

The adsorption mode of BG1 and RB19 on CHI/MMT/
ALG in terms of feasibility and spontaneity was inspected 
with thermodynamic features including change in Gibbs 
free energy (∆G°), entropy (ΔS°), enthalpy (ΔH°) at four 
different temperatures, 303.15 K, 313.15 K, 323.15 K, and 
333.15 K. The Gibbs Eq. (8), thermodynamic equilibrium 
constant (kd) Eq. (9), and Van't Hoff Eq. (10) were used to 
extract the ∆G◦, kd, and ∆Ho and ∆So), respectively [61].

(8)ΔG◦ = −RTlnkd

(9)kd =
qe

Ce

(10)lnkd =
ΔS◦

R
−

ΔH◦

RT

Table 6  PFO and PSO kinetic parameters for the BG1 and RB19 adsorption on CHI/MMT/ALG

BG1 
Concentration
(mg/L)

qe exp. (mg/gm) PFO PSO

qe cal (mg/gm) k1 (1/min) R2 qe cal (mg/gm) k2 ×  10–2 (g/mg 
min)

R2

20 41.3 41.2 1.806 0.99 41.3 35.89 0.99
50 67.1 66.5 1.683 0.99 66.8 16.17 0.99
80 90.5 84.8 0.688 0.94 88.2 1.277 0.98
100 118.2 110.6 0.094 0.94 114.5 0.169 0.86
150 209.8 204.1 0.046 0.91 221.4 0.0297 0.95
200 240.8 225.4 0.047 0.88 245.5 0.0150 0.93
250 330.1 333.2 0.020 0.98 400.0 0.0053 0.99

RB19 
Concentration
(mg/L)

qe exp. (mg/gm) PFO PSO

qe cal (mg/gm) k1 (1/min) R2 qe cal (mg/gm) k2 ×  10–2 (g/mg 
min)

R2

20 20.0 19.4 0.963 0.97 19.8 10.84 0.99
50 51.4 50.7 1.212 0.99 51.3 8.173 0.99
80 83.9 83.2 0.478 0.99 85.5 1.121 0.99
100 103.8 101.9 1.000 0.98 103.8 2.382 0.99
150 160.6 149.9 0.159 0.85 157.6 0.177 0.95
200 184.4 168.7 0.139 0.82 178.7 0.128 0.93
250 226.7 204.5 0.082 0.81 215.9 0.064 0.91

Table 7  The parameters of isotherm models and equilibrium param-
eters for BG1 and RB19 adsorption on CHI/MMT/ALG

Adsorption isotherm Parameter BG1 RB19

Langmuir qm (mg/gm) 509.5 227.9
Ka (L/mg) 0.7912 0.28
R2 0.969 0.95

Freundlich Kf (mg/gm) (L/mg)1/n 207.84 64.58
1/n 0.56 0.33
R2 0.941 0.89

Temkin KT (L/mg) 2.64 1.21
bT (J/mol) 29.21 56.0
R2 0.884 0.95
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Plotting ln kd vs. 1/T (Fig. 10) allows to compute ∆So 
and ∆Ho parameters, where slope represents ∆Ho, while 
intercept signifies ∆So. Table 9 displays the results derived 
from thermodynamic factors. The negative numbers of 
∆G° reflect the spontaneity of BG1 and RB19 adsorption 
by the CHI/MMT/ALG, which might be thermodynamically 
desirable. Furthermore, the endothermic nature of the BG1 
and RB19 adsorption by CHI/MMT/ALG was confirmed by 
the positive values of ∆Ho (156.99 kJ/mol for BG1 and 
160.11 kJ/mol for RB19) [62]. The elevation in irregularity 

at the adsorbent-liquid interface caused by the uptake of 
BG1 and RB19 molecules onto the CHI/MMT/ALG surface 
is illustrated by the positive values of ∆So (0. 543 kJ/mol K 
for BG1 and 0.535 kJ/mol K for RB19).

Adsorption Mechanism of Dyes

There are several functional groups present on the surface 
of the CHI/MMT/ALG, which are evidenced via FTIR 
analysis. These data were used to construct the adsorption 

Fig. 9  Adsorption isotherms 
of (a) BG1 (dosage = 0.08 g, 
solution pH = 9, tem-
perature = 25 °C, agitation 
speed = 85 rpm, and volume 
of solution = 100 mL) and (b) 
RB19 (dosage = 0.08 g, solution 
pH = 4, temperature = 25 °C, 
agitation speed = 85 rpm, and 
volume of solution = 100 mL)
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Table 8  Comparison of the 
adsorption capacity of CHI/
MMT/ALG towards BG1 
and RB19 dyes with different 
adsorbents

Adsorbents Dye qmax (mg/g) References

CHI/MMT/ALG BG1 509.5 This study
CHI/MMT/ALG RB19 227.9 This study
Graphite oxide nanoparticle BG 416.67 [53]
Hemp hurd nanocomposite BG 256 [54]
Chitosan-graft-itaconic acid BG 135 [55]
Nano hydroxyapatite/chitosan composite BG 49.1 [56]
Chitosan hollow fibers RB19 454.5 [57]
ZnO-polyacrylonitrile-hinokitiol RB19 267.37 [58]
Cross-linked glutaraldehyde-chitosan/MgO/Fe3O4 RB19 193.2 [19]
Nano-carbon material RB19 116.01 [59]
Hybrid magnetic  CoFe2O4@γ-Fe2O3@CTAB nanocomposite RB19 56.3 [60]

Fig. 10  Van’t Hoff plot for (a) 
BG1 and (b) RB19 adsorption 
onto CHI/MMT/ALG (dos-
age = 0.08 g, solution pH = 9 for 
BG1 and 4 for RB19, agitation 
speed = 85 rpm, and volume of 
solution = 100 mL)
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mechanisms for the cationic dye (BG1) and the anionic dye 
(RB19), as depicted in Fig. 11. The active groups that can 
adsorb both cationic and anionic contaminants are very 
numerous in CHI/MMT/ALG, as mentioned earlier, mak-
ing it a super absorbent material known as a zwitterion 
adsorbent. The CHI/MMT/ALG’s composition of inorganic 
materials (MMT) and biomaterials (CHI and ALG), both 
of which are naturally rich in active groups. In this way, 
the active groups of CHI/MMT/ALG, which are –NH2, 
 PO4

−3, –COOH, -OH, and ≡Si–OH, allow CHI/MMT/ALG 

to effectively remove BG1 dye in the alkaline medium via 
the electrostatic interactions between the negative groups 
( PO−3

4
,≡ Si − O−

, −COO− , and −O− ) of the CHI/MMT/
ALG and the dependent group 

(

= N+ −
(

CH2CH3

)

2

)

 of the 
BG1 [31, 38]. Conversely, in the acidic media, the CHI/
MMT/ALG adsorbs the RB19 by electrostatic interactions 
between the sulfonate groups ( −SO−

3
 ) of the RB19 and the 

protonated groups of the CHI/MMT/ALG [19]. Due to a 
large number of hydroxyl groups on the surface of CHI/
MMT/ALG, which supplies considerable hydrogen to form 
hydrogen bonds with the N and O atoms of adsorbates. The 
connection between the aromatic rings of the BG1 and RB19 
dyes and the nitrogen and oxygen groups in CHI/MMT/ALG 
generates n-π interactions, which assist in the adsorption 
process of both dyes. Finally, the exchangeable cations pre-
sent in MMT of CHI/MMT/ALG can be exchanged with 
BG1 cations through ion exchange.

Conclusion

A green and eco-friendly biomaterial of CHI/MMT/ALG 
composite was effectively developed to be an alternative 
adsorbent to remove dyestuffs including BG1 and RB19 
from the aqueous solutions. Based on the BBD model, 

Table 9  Thermodynamic parameters for the adsorption of BG1 and 
RB19 on CHI/MMT/ALG

T (K) kd ∆Go (kJ/mol) ∆Ho (kJ/mol) ∆So (kJ/
molK)

303.15 12.937 − 6.45 156.99 0.543
BG1 313.15 209.17 − 13.91

323.15 1892.4 − 20.25
333.15 3362.2 − 22.65
303.15 3.0035 − 2.74 160.11 0.535

RB19 313.15 15.514 − 7.13
323.15 102.87 − 12.43
333.15 935.76 − 17.56

Fig. 11  Illustration of the possible interaction among CHI/MMT/ALG and dyes (BG1 and RB19), namely, electrostatic interactions, hydrogen 
bonding, n-π stacking, and ion exchange



3922 Journal of Polymers and the Environment (2023) 31:3907–3924

1 3

maximum removals of 76.2% and 91.7% were attained at 
CHI/MMT/ALG dosage of 0.08 g, pH of 9 for BG1 and 
4 for RB19, and duration of 17.5 min for BG1 and RB19, 
respectively. The equilibrium and kinetic findings revealed 
that the adsorption of BG1 and RB19 happened via mon-
olayer adsorption, with chemisorption functioning as the 
rate-controlling step. Thermodynamic calculations demon-
strated that the adsorption process of BG1 and RB19 was 
favorable and spontaneous. The maximum adsorption capac-
ity of CHI/MMT/ALG for BG1 and RB19 was specified to 
be 509.5 mg/g and 227.9 mg/g, respectively. The improved 
surface functionalities of CHI/MMT/ALG inspired the 
adsorption mechanism of CHI/MMT/ALG for BG1 and 
RB19 could be essentially ascribed by electrostatic attrac-
tion, n-π stacking, and hydrogen bonding. The results of the 
investigation show that the newly formed CHI/MMT/ALG 
has a large potential for use in wastewater treatment systems.
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