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Abstract
A novel macro intermediate based on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) was synthesized for 
use in the copolymerization with dimethyl amino ethyl methacrylate (DMAEMA). Methyl amino ethanol was reacted 
with PHBHHx to prepare a dihydroxy terminated polyester. The hydroxyl ends of the obtained PHBHHx derivatives were 
capped with 4,4’-azobis cyanopentanoic acid to obtain the PHBHHx macroazo initiator (PHBHHx-AI) for free radical 
copolymerization of DMAEMA at 70oC. A steady increase in DMAEMA units in the synthesized block copolymer as a 
function of time was observed. The overall rate constants for the free radical polymerization of DMAEMA initiated by 
PHBHHx-AI was k = 2.33 × 10− 4 Lmol-1s-1. Block copolymers were characterized using the 1 H NMR, FTIR, DSC and 
TGA techniques.
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Introduction

Owing to the evolving plastic disposal problem, modern 
technology is in constant need of new, environmentally 
friendly polymeric materials with varying properties over 
those demonstrated by many homopolymers. Block copo-
lymers combine two or more polymer segments into a 
main chain that reflect the thermal, mechanical and physi-
cochemical properties of each related segment [1, 2]. In 
many polymerization methods, macro initiators are used to 
synthesize block (or block/graft) copolymers [3–10]. Free 
radical macroinitiators are frequently prepared from macro-
molecules containing azo and/or peroxide groups. Typically, 
2,2’-azobis cyanopentanoyl chloride is reacted with the 
hydroxyl termini of the polymers (e.g., polyethylene gly-
col (PEG), polytetrahydrofuran diol, poly(dimethyl silox-
ane) diol and polycaprolactone diol) to produce macroazo 
initiators that can be used in the synthetic process [11–18]. 
Another type of macroazo initiator involves the reaction of 
PEG with 2,2’-azobis isobutyronitrile under dry hydrogen 
chloride to produce a PEG-azo ester [19, 20].

Anionic polymerization has garnered a significant role 
in the synthesis of well-defined polymers. This technique 
allows excellent molecular weight control by regulating the 
ratios of monomer and initiator throughout the polymeriza-
tion process [21–24]. Recent progress in controlled/living 
radical polymerization (CLRP) has provided a powerful tool 
for the controlled synthesis of well-defined polymers. CLRP 
covers a myriad of polymerization techniques including 
nitroxide-mediated radical polymerization (NMP) [25–27], 
atom transfer radical polymerization (ATRP) [28–31], and 
reversible addition fragmentation chain transfer (RAFT) 
polymerization [32–40], among others.

Biopolymers are gaining importance for biomedical and 
industrial applications in view of their biorenewability, bio-
degradability and other environmental benefits. Among the 
known biopolymers, microbial polyesters can be obtained 
from bacteria when gown on renewable resources such as 
sugar, and/or aliphatic carboxylic acids under favorable 
growth conditions. Poly(3-hydroxyalkanoate)s, (PHA)s, 
are accumulated in bacterial cells as a result of a metabolic 
stress causing unbalanced growth due to a limited supply 
of an essential nutrient and an excess of utilizable carbon. 
These polymers are promising materials for many different 
applications due to their biocompatibility and biodegrad-
ability [41–49]. Improvements in the mechanical, thermal, 
and hydrophilic properties of PHA biopolymers have been 
previously reported [50–63]. One interesting class of PHA 
with enhanced mechanical properties is the copolymer com-
posed of 3-hydroxybutyric acid (3HB) and 3-hydroxyhexa-
noic acid (3HHx). 3HHx-containing PHA copolymers are 
typically prepared by bacterial fermentation using bacteria 

such as wild-type Aeromonas hydrophila, and Pseudomo-
nas species resulting in copolymers with 3HHx units com-
prising as much as 12% of the total polymer composition 
[64–66]. By varying the amount of 3HHx subunits within 
the mature copolymer, the melting transition (Tm) and glass 
transition (Tg) temperatures can be controlled. For example, 
Doi et al. synthesized PHBHHx with a Tm of 112.7 °C and a 
Tg of 1.6oC while those of PHB are around 170 °C and 3oC, 
respectively [67]. DMAEMA was chosen as the monomer 
for the copolymerization initiated by the chemically synthe-
sized PHBHHx macroazo initiator. PDMAEMA is an inter-
esting polymer because it is a thermosensitive polymer in 
aqueous solution at neutral pH and temperatures up to about 
50˚C [68–70].

Great efforts have been undertaken to synthesize poly-
meric derivatives of microbial polyesters for use in medical 
applications such as drug delivery systems and tissue engi-
neering. Previous reports have documented the synthesis of 
amphiphilic and thermoresponsive copolymers of PHB for 
this purpose [56, 71, 72] however, to our knowledge, there 
are no reports detailing the synthesis of PHBHHx amphi-
philic and thermoresponsive block copolymers using PHB-
HHx macroazo initiator with DMAEMA.

In this work, we report a new macroazo initiator based on 
PHBHHx and 2,2’ azobis cyanopentanoic acid (PHBHHx-
AI). While PHBHHx derivatives are known, they are only 
minimally described in the literature and until now, specific 
PHBHHx free radical macroinitiators have not been pub-
lished. To our knowledge, this is the first report of this type 
of free radical macro intermediate. Specifically, free radi-
cal polymerization of DMAEMA was initiated by this mac-
roazo initiator to obtain a PHBHHx-b-PDMAEMA block 
copolymer. Polymerization kinetics were evaluated and the 
synthesized block copolymers were characterized by physi-
cochemical methods.

Experimental

Materials

PHBHHx samples containing 9 mol% of 3-hydroxyhexa-
noic acid (PHBHHx-9) was supplied by Procter & Gam-
ble Company (Cincinnati, OH, USA). Al2O3 (≥ 99.9%), 
DMAEMA (98%), dimethyl formamide (99.8%), chlo-
roform (≥ 99.9%), 4,4’-azobis cyanopentanoic acid (AI-
COOH), and dichloromethane (≥ 99.9%) were supplied 
from Sigma-Aldrich (St. Louis, MO, USA) and passed 
through Al2O3 before use. Carbon disulfide (≥ 98%), methyl 
amino ethanol (mae) (≥ 98%), 4, 4’-azobis cyanopentanoic 
acid (98%), N, N′-dicyclohexylcarbodiimid (DCC; 99%), 
dimethyl amino pyridine (DMAP; 99%), stannous 2-ethyl 
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hexanoate (Sn-oct; ≥92.5%), and all other chemicals were 
purchased from Sigma-Aldrich.

Synthesis of Hydroxylated PHBHHx Using Methyl 
Amino Ethanol (mae), (PHBHHx-mae-9)

Hydroxylated PHBHHx was obtained by the reaction of 
PHBHHx with mae according to the slightly modifed proce-
dure reported in the cited reference [73]. Briefly, a mixture 
of 15.6 g of PHBHHx-9, 4.13 g of mae (or dea depend-
ing on the desired product) and 0.29 g of Sn-oct in 250 mL 
of CHCl3 was stirred at room temperature for 24 h. Then, 
the mixture was refluxed for 1 h. The solvent was distilled 
under atmospheric conditions at between 90 °C and 105oC. 
The product was washed with excess methanol and filtered. 
The crude product was dried under vacuum at 40 °C. For 
further purification, the obtained polymer was dissolved in 
100 mL of CHCl3 and filtered from any undissolved residue. 
The polymer solution was poured into excess methanol. The 
obtained polymer was filtered and dried under vacuum at 
40 °C for 24 h. Yield was 9.3 g. Characteristic FTIR signals 
were at 1567 cm− 1 corresponding to the amide carbonyl, 
3301 cm− 1 attributed to the primary hydroxyl groups of dea, 
1721 cm− 1 which belongs to the ester carbonyl of PHB. The 
characteristic chemical shifts of the PHBHHx-mae sample 
in 1 H NMR spectrum were observedat 1.3 ppm for –CH3, 
2.4–2.6 ppm for –CH2-COO–, 2.8 ppm for –N-CH2–, 3.3 
ppm for –N-CH3, 3.5–3.8 ppm for –CH2-OH, 4.1 ppm for 
–CH-OH and 5.1–5.3 ppm for –CH-O–.

Synthesis of PHBHHx Macroazo Initiator (PHBHHx-
mae-AI-9)

The synthesis of the PHBHHx macroazo initiator was 
carried out by the reaction between PHBHHx-mae-OH 
(8.15 g) and 2,2’-azobis cyanopentanoic acid (0.70 g) in the 
presence of DCC (0.28 g) and DMAP (0.20 g) in CH2Cl2 
(20 mL). After the mixture was stirred at room temperature 
for 48 h the precipitated side product formed in the excess 
methanol was filtered through the solution. The solvent was 
evaporated and the obtained PHBHHx macroazo initiator 
was dried under vacuum at room temperature giving a yield 
of 7.0 g.

Free Radical Polymerization of DMAEMA Initiated by 
(PHBHHx-AI-9) at 70oC in DMF

A solution of PHBHHx-AI-9 (0.40 g), DMAEMA (2.50 g) 
and DMF (2.50 mL) was reacted at 70oC for from 10 to 
65 min under argon. The obtained polymer solution was 
poured into excess petroleum benzene to isolate the 

PHBHHx-b-PDMAEMA block copolymer which was dried 
under vacuum at 40oC for 24 h.

Characterization

1 H NMR spectra of the synthesized products were taken 
at 25 °C with an Agilent NMR 600 MHz NMR (Agilent, 
Santa Clara, CA, USA) spectrometer equipped with a 3 mm 
broadband probe. Acquisition parameters included a 45° 
hard pulse angle, a sweep width of 14 ppm, 1.7 s acquisi-
tion time, 0.1 s pulse delay and continuous WALTZ – 16 
broadband 1 H decoupling. Up to 2000 scans were collected 
per sample, corresponding to ~ 1 h of collection time. FT- 
IR spectra of the polymer samples were recorded using a 
Perkin-Elmer FT-IR Spectrometer 100. Size exclusion chro-
matography (SEC) was used to determine the molecular 
weights of the reacted polymers. A calibration curve was 
generated with five polystyrene (PS) standards of molecu-
lar weight 2960, 8450, 50,400, 200,000 and 696,500 Da 
with low polydispersity. A gel permeation chromatography 
instrument was used which included a Viscotek GPC max 
auto sampler system, consisting of a pump, three ViscoGEL 
GPC columns (G2000H HR, G3000H HR and G4000H 
HR), and a Viscotek differential refractive index (RI) detec-
tor. CHCl3 (or THF) was used as the mobile phase with a 
flow rate of 1.0 mL/min at 30 °C. The RI detector was cali-
brated with polystyrene standards having narrow molecular 
weight distributions. Data were analyzed using Viscotek 
OmniSEC Omni – 01 software.

Differential scanning calorimetry (DSC) was used in the 
thermal analysis of the obtained polymers. The DSC analy-
sis was carried out under nitrogen using a TA Q2000 DSC 
instrument that was calibrated using indium (Tm = 156.6 °C) 
and a Q600 Simultaneous DSC-TGA (SDT) series thermal 
analysis system. DSC measures the temperatures and heat 
flows associated with thermal transitions in the polymer 
samples obtained. The dried polymer samples were heated 
from − 60 to 120 °C under a nitrogen atmosphere. All melt-
ing endotherms (Tm) were reported as peak temperatures 
while all glass transition temperatures (Tg) were reported as 
midpoint temperatures. Thermogravimetric analysis (TGA) 
is used to determine the decomposition temperature (Td) 
characteristics of the polymers by measuring weight loss 
under a nitrogen atmosphere over time. In these analyses 
the obtained polymers were heated from 20 to 600 °C at a 
rate of 10 °C/min and the results were determined based on 
the 1st derivative of each curve.

Dynamic light scattering (DLS) was used to determine 
micelle formation within the synthesized polymers. In order 
to prepare micelles, 10 mg of the PHBHHx-PDMAEMA 
was dissolved in 1 mL of DMF under stirring for 2 h. Then, 
10 mL of Milli-Q ultra-purified water was added dropwise to 
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used in this reaction to prepare the azo terminated PHBHHx 
derivative.

Free Radical Polymerization of DMAEMA Initiated by 
PHBHHx-AI

A series of PHBHHx-b-PDMAEMA block copolymers 
were obtained by varying the polymerization times from 
between 10 and 65 min at 70oC in DMF solution. The indi-
vidual copolymers were coded as PHDM-AI-0, -1, -2, -3, 
and − 4. The results and the reaction conditions can be seen 
in Table 1.

The polymer yield improved by approximately 0.02 g/
min as the polymerization reaction time increased from 
10 to 50 min. Beyond that, yields stabilized culminating 
at 1.43 g in 65 min. The obtained block copolymers were 
characterized by 1 H NMR (Fig. 2). The PHBHHx contents 
of the block copolymers were calculated by using the inte-
gral ratio of the signal at 5.2 ppm (O-CH- of PHBHHx) and 
the integral ratio of the signal at 4.0 ppm (-COO-CH2- of 
DMAEMA units) (Table 1).

The FTIR spectra of the PHBHHx-PDMAEMA series 
also confirmed their chemical structures. Figure 3 shows 
the FTIR results from the synthesized copolymers with the 
characteristic signals at 3430 (-OH and quarternery ammo-
nium), 2936 (-C-H), 1721 (-C = O) and 748 cm-1 (tertiary 
nitrogen) [70, 74].

Free Radical Polymerization Kinetics of DMAEMA 
Initiated by the PHBHHx-macroazoinitiator

Conventional radical polymerization is usually a first order 
(or pseudo first order) reaction [36, 75, 76]. In this case, 
the rate of the polymerization reaction of DMAEMA using 
the PHBHHx-AI macroazo initiator at 70oC obeyed the first 

the solution under stirring. After 3 h of stirring at room tem-
perature, the DMF was removed by dialysis against water 
for 3 days. DLS measurements were performed at 633 nm 
on a Malvern Instrument Zetasizer Nano ZS provided with 
a He-Ne laser source. Measurements were conducted at an 
angle of 173° at 25 °C. The cumulative method was used 
to analyze the autocorrelation functions to determine diam-
eters and distributions.

Results and Discussion

PHBHHx-9 was chosen as the precursor for the macroazo 
initiator. The PHBHHx chain originally contains one OH 
group and one –COOH terminal group. The carboxylic acid 
terminus was converted into a hydroxyl group by the reac-
tion with methyl amino ethanol to obtain dihydroxyl ter-
minated PHBHHx. The hydroxyl ends were reacted with 
the carboxylic acid terminated reagent, 4,4’-azobis cyano-
pentanoic acid, to obtain the PHBHHx-macroazo initia-
tor (PHBHHx-AI-9). The reaction scheme can be seen in 
Fig. 1. An excess amount of azobis cyanopentanoic acid was 

Table 1 Free radical polymerization of DMAEMA initiated by the 
AIBN-COOH terminated PHBHHx (PHBHHx-AI-9) at 70oC, in DMF 
under argon
Codea Time 

(min.)
Yield 
(g)

PHBHHx 
in copo-
lymer 
(%)

Ln[M○]/[M]

PHDM-AI-0 10 0.605 24 0.086
PHDM-AI-1 20 0.841 40 0.194
PHDM-AI-2 35 1.085 54 0.569
PHDM-AI-3 50 1.355 66 0.781
PHDM-AI-4 65 1.432 67 0.851
aThe PHBHHx-AI-9 and the DMAEMA amounts used in all reac-
tions were 0.40 and 2.50 g, respectively.

Fig. 1 Chemical reactions for the 
synthesis of PHBHHx-macroazo 
initiator
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Molecular Weights of the PHBHHx-PDMA Block 
Copolymers and PHBHHx Precursors

The molecular weights of the obtained block copolymers 
and PHBHHx precursors were determined by size exclusion 
chromatography in CHCl3 (Table 2).

Figure 5 shows the unimodal SEC chromatograms which 
were used to determine the molecular weights of the copo-
lymers. Because of degradability issues associated with the 
PHAs upon hydroxylation with methyl amino ethanol, there 
was a dramatic decrease on the molecular weights of the 
resultant copolymers. The Mn of the pristine PHBHHx-9 

order kinetics and the reaction rate constant (k) was calcu-
lated according to Eq. (1).

Ln [Mo] / [M ] = kapp × t  (1)

Where [Mo] and [M] are the total concentrations of the 
monomer in the beginning and after a polymerization time 
(t), respectively. Figure 4 shows the plot of Ln[Mo]/[M] 
against the polymerization time t (s). The calculated overall 
rate constant was found to be k = 2.33 × 10− 4 Lmol-1s-1.

Fig. 2 1 H NMR spectra of the 
PHDM block copolymers: (a) 
PHDM-AI-0, (b) PHDM-AI-1, 
(c) PHDM-AI-2, (d) PHDM-
AI-3, (e) PHDM-AI-4, (f) PHB-
HHx-OH-9, (g) PHBHHx-AI.
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was 70300 g/mol but, after capping with 4, 4’-azobis cyano-
pentanoic acid there was a marked decrease in the Mn value 
for the obtained macroazo initiator, PHBHHx-AI-9 how-
ever, once this initiator was reacted with the DMAEMA 
to form the block copolymer series (PHDM-AI-0 through 
PHDM-AI-4), the molecular weights of the block copoly-
mers increased by 19% as polymerization time increased 
from 10 to 65 min.

Because of the high hydrophilic effect of PDMAEMA, 
micelle formation of the obtained block copolymers was 
measured in aqueous medium. The micelle sizes of the 
block copolymers varied from 602 to 1351 nm with poly-
dispersity indices varying from 0.317 to 0.437. From this, 
we can infer that micelle size increases with the increase in 
DMAEMA content in the block copolymer. Size distribu-
tion can be seen in Fig. 6.

Thermal Properties

The thermal properties of the PHBHHx-PDMAEMA block 
copolymers were determined using DSC and TGA tech-
niques. The thermal analysis results are shown in Table 3 

Table 2 The molecular weights of the block copolymers, the precur-
sors, and the micelle diameters of the amphiphilic block copolymers
Code Mn

a (g/mol) Poly-
dis-
persity 
Indexa

Micelle 
Diameterb 
(nm)

Poly-
dis-
persity 
Indexb

PHBHHx-H-9 70,300 2.2 - -
PHBHHx-OH-9 2500 1.6 - -
PHBHHx-AI-9 3900 1.5 - -
PHDM-AI-0 4300 1.4 602 0.391
PHDM-AI-1 4500 1.4 1136 0.421
PHDM-AI-2 4900 1.4 971 0.425
PHDM-AI-3 4900 1.5 1097 0.317
PHDM-AI-4 5100 1.4 1351 0.437
aDetermined by SEC in CHCl3. bDetermined by DLS.

Fig. 4 The plot of Ln[Mo]/[M] against the polymerization time t (s) 
in free radical polymerization kinetics of DMAEMA initiated by the 
PHBHHx-macro azoinitiator

 

Fig. 3 FTIR spectra of the PHBHHx-PDMAEMA (PHDM) block 
copolymers: (a) PHBHHx-H9, (b) PHBHHx-OH-9, (c) PHDM-AI-9, 
(d) PHDM-AI-0, (e) PHDM-AI-1, (f) PHDM-AI-2, (g) PHDM-AI-3, 
(h) PHDM-AI-4.
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While the actual curves are shown in Fig. 7. Glass transi-
tion (Tg) and melting transition temperatures (Tm) were 
determined by DSC. The typical Tm values of the PHBHHx 
block copolymers were observed at around 125 ± 3oC. Addi-
tionally, multiple Tgs and Tms were observed in some of the 
copolymers. Presumably, during the polymerization, small 
amounts of degraded polymer segments can cause these 

Fig. 6 Micelle size distribution of the PHBHHx-PDMAEMA amphi-
philic block copolymers: (a) PHDM-0, (b) PHDM-1, (c) PHDM-2, (d) 
PHDM-3, (e) PHDM-4.

 

Fig. 5  s chromatograms of the block copolymers and the precur-
sors: (a) PHBHHx-9, (b) PHBHHx-OH-9, (c) PHBHHx-AI-9, (d) 
PHDM-AI-0, (e) PHDM-AI-1, (f) PHDM-AI-2, (g) PHDM-AI-3, (h) 
PHDM-AI-4.
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The hydroxylated PHBHHx obtained using dea showed a 
bimodal Tm whose peak values were both approximately 
15% higher than those corresponding to the mae derived 
copolymers. The effect of the PDMAEMA blocks lowered 
the Tm of pure PHBHHx (ca. 145oC).

multiple Tgs and Tms. Homo PDMAEMA is an amorphous 
polymer with a Tg of around 10 °C [77].

The carboxyl ends of PHBHHx were converted into 
hydroxyl groups using methyl amino ethanol amine. Ther-
mal properties of the hydroxylated PHBHHx were also 
compared with their melting transitions in Fig. 7(g and h). 

Table 3 Results of thermal analysis of the PHBHHx-PDMAEMA block copolymers. aDetermined by DSC analysis. bDetermined by TGA analysis
Code Tg

a (°C) Tm
a (°C) Td

b (°C)
1 2 3 4

PHDM-AI-0 8.6, 71 106, 119 239 413 513
PHDM-AI-1 5.9, 73 110, 124 228 278 396 487
PHDM-AI-2 3.6, 74 113, 126 238 294 404 513
PHDM-AI-3 4.1, 75 112, 126 244 296 413 526
PHDM-AI-4 5.4, 75 117, 128 242 300 417 525
PHBHHx-9 1.4, 82 125, 141 254
PHBHHx-OH-9 7.7 123, 140 258
PHBHHx-mae-OH 0.5, 55 106, 123 238
PHBHHx-AI-9 6.7, 29, 77, 83 93, 108 252
PDMAEMA 325 423

Fig. 7 DSC analysis of the PHBHHx-b-PDMAEMA block copolymers: (a) PHDM-AI-0, (b) PHDM-AI-1, (c) PHDM-AI-2, (d) PHDM-AI-3, (e) 
PHDM-AI-4, (f) PHBHHx-9 (pristine), (g) PHBHHx-dea-OH, (h) PHBHHx-mae-OH, (i) PHBHHx-AI-9.
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PHBHHx macroazo initiators were prepared and used in the 
synthesis of DMAEMA amphiphilic block copolymers with 
a reasonable polydispersity. This type of macroazo initiator 
can be used to prepare block copolymers with a wide range 
of vinyl monomers to obtain very versatile PHA derivatives. 
Because of the mild polymerization conditions, PHBHHx 
macroazo initiators can also be promising macrointermedi-
ates to prepare bioconjugates for medical applications.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10924-
023-02857-3.
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