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Abstract
Soil microplastic (MP) contamination through plastic mulch and greenhouse soils is a global concern. However, whether 
plastic mulch contaminates the soil to a greater or lesser extent than the contamination caused by building greenhouses 
with MPs has not been documented. This study is the first to examine and compare the abundance and distribution of MPs 
in greenhouses and mulched soils of Korean agriculture field to obtain the polymer types and sizes of MPs present. The 
MP abundances in the greenhouse and mulched soils ranged from 50 to 379 and 158 to 943 particles kg− 1, respectively, 
with an average abundance of 221.4 and 356.8 particles kg− 1. No significant differences (p > 0.05) were observed in soil 
MP contamination between the greenhouse and mulching sites. At both sites, fragments (91%) were the predominant MP 
shape. MPs with a size < 300 μm were dominant, covering 99.57% of the mulch site and 99.69% of the greenhouse. Six 
MP polymers in the greenhouse and mulching sites: polypropylene, polyethylene, polyethylene terephthalate, polyvinyl 
chloride, polyethylene amide, and polymethyl methacrylate were identified. The soil MP contaminants in greenhouses and 
mulch sites in the Haean Basin have originated from the use of plastic films, and ropes. The first-hand data established by 
this study showed the same degree of MP contamination in mulch and greenhouse soils, which provides important back-
ground information on MP characteristics to understand the environmental behavior and ecological effects of MPs in soil 
systematically and comprehensively.
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Introduction

Since the Industrial Revolution that originated in Britain, 
the Earth has faced a series of challenges, such as global 
population explosion and overexploitation of soil [1–5]. 
Many people across the globe rely heavily on soil to pro-
duce food for their livelihoods [6–8]. Several studies have 
documented that over-exploitation of soils can lead to a 
shortage of arable land and a decline in soil fertility and 
moisture in the long run [9–11]. For instance, Nawaz et al. 
[12] reported that the continuously growing population of 
South Asia exerts a considerable amount of pressure on 
soils and degrades their fertility. To deal with the chal-
lenges arising from an excessive dependence on soils for 
agriculture, to feed the huge global population, tremen-
dous efforts have been made to find alternatives that can 
help reduce the existing pressure on soils. In the search for 
a solution, the global scientific community has invented 

many technologies and materials to address this pressing 
concern.

In 1862, Alexander Parkes invented the first artificial 
plastic made from organic compounds to replace ivory 
and horn [13, 14]. In 1907, Dr. Leo Bakeland created 
plastic from an inorganic compound called cellulose [15, 
16]. Since the invention of plastics, many technologies 
have been developed to help increase and/or enhance crop 
yields to feed the current large global population [17]. One 
such technology is the greenhouse. However, the long-
term use of greenhouses built using plastic films may lead 
to soil microplastic (MP) contamination (< 5 mm). For 
example, Wang et al. [18] documented MP concentrations 
of approximately 2215.56 ± 1549.86 particles kg− 1 in soils 
from an abandoned greenhouse and associated the high 
MP concentration with the high-intensity activity in the 
greenhouses used for crops that pollutes soils with MPs. 
In addition, Kim et al. [19] reported an average MP con-
centration of approximately 1880 ± 1563 particles kg− 1 in 
soils from greenhouses in Korea. In Korea, greenhouses 
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are often replaced after being used for three years or more 
[19].

Another technology that serves as a solution to ease soil 
degradation and help increase annual crop yields is plastic 
mulching. According to Wang et al., [20] plastic mulching 
is beneficial for increasing soil nutrient cycling and enzyme 
activity, and reducing soil moisture lost by evaporation. In 
Korea, plastic mulching is widely used to control weeds and 
grow crops such as ginseng, apples, and tomatoes, especially 
in cooler regions such as the Haean Basin, to increase crop 
yields; however plastic films are expected to be removed 
by law once crops are ready to be harvested [22]. Although 
plastic mulch is very useful in modern crop cultivation, 
many studies have reported that the long-term use of plastic 
mulch can contaminate soils with low MP concentrations. 
In addition, Haixin et al. [23]  reported soil MP contamina-
tion concentrations as low as 384.6 particles kg− 1 in plastic 
mulching farmland. In addition, Huang et al. [17] recorded 
a low MP concentration of approximately 1075.6 particles 
kg− 1 in the soil after plastic mulching in cotton fields com-
pared to the MP concentration reported at most greenhouse 
sites.

In contrast, some studies have reported MP concentra-
tions in plastic mulching sites that are similar in magnitude 
to those reported in greenhouse sites. For example, Zhang 
et  al. [24] documented MP concentrations of approxi-
mately 2840 particles kg− 1 following tobacco cultivation 
with plastic mulching, which is nearly equal in magnitude 
to the MP concentrations in greenhouses. Meanwhile, sev-
eral other studies have reported larger magnitudes of MP 
concentrations in plastic mulching soils compared to any of 
the magnitude of MPs reported in any studies to date. For 
example, Xu et al. [25] reported higher MP concentrations 
of 7183–10,586 particles kg− 1 in a corn farm (Zea mays L.) 
with continuous plastic mulching. This MP concentration 
far exceeded that recorded in most greenhouse MP studies. 
Therefore, it is unclear whether mulched soil contaminates 
the soil more or less with MPs compared with building a 
greenhouse for growing crops in the same area. It is neces-
sary to determine which of the two agricultural technolo-
gies is a lesser source of MPs to the soil. Knowing which 
of the two practices causes lesser soil contamination can 
help select a less toxic crop cultivation technology, as the 
use of both technologies cannot be cut off simultaneously 
because of their benefits for crop cultivation. To the best of 
our knowledge, most studies have not considered whether 
plastic mulched soils pollute soils with MPs to a greater or 
lesser extent than that caused by a greenhouse; therefore, the 
data from this study will fill the knowledge gap in this area 
of research interest. In this study, MP abundance and charac-
teristics in mulched and greenhouse soils were investigated. 
It can be hypothesized that mulched and greenhouse soils 
have different MP abundances, polymer types, shapes, and 

sizes because of the differences in crop planting intensities 
and the removal of plastic film from mulch soils during crop 
harvesting stages. Therefore, this study aimed to (1) com-
pare MP abundance between mulched and greenhouse soils 
and (2) explore MP size, shape, and polymer type in both 
mulched and greenhouse soils. To achieve this objective, soil 
samples were collected from both greenhouse and plastic 
mulching sites in the Haean Basin, an agriculturally dense 
area in the Republic of Korea. The results of this study will 
contribute to the prevention and mitigation of soil MP con-
tamination and help to understand the distribution of MPs 
in greenhouses and mulch soils.

Materials and Methods

Site Description

The study was conducted at an adjacent plastic mulching and 
greenhouse site in the Haean Basin, approximately 110 km 
northeast of the capital of the Republic of Korea (hereafter 
Korea), Seoul (128°5′–128°11′E, 38°15′–38°20′N; Fig. 1) 
[26]. The Haean Basin has a temperate climate, with an 
average annual precipitation of approximately 1390 mm 
over the past 25 years, and an average annual temperature 
of approximately 13.4 °C for the same period [27]. A maxi-
mum rainfall of 350.0 mm was recorded in August, and the 
lowest was 49.8 mm in January (Fig. 2) [28]. The periphery 
of the Haean Basin is a Precambrian metamorphic complex 
comprising gneiss, schist, and quartzite. The interior of the 
basin is biotite granite that intruded into the Precambrian 
metamorphic complex in the Jurassic and overlying Quater-
nary alluvial unconformity [21, 27].

The topsoil of the Haean Basin is classified as a coarse 
soil texture that covers the finer-textured subsoil and under-
lying dense bedrock material [21]. Greenhouses in this area 
are commonly used to grow pepper, tomato, and watermelon 
(Table S1). Greenhouses are often recycled after a period of 
5 years. According to Lee et al. [6], apple orchards and gin-
seng cultivation are increasing in the Haean Basin because 
of warm climatic changes in the southern part of the coun-
try. These orchards and ginseng fields use plastic mulch to 
increase yield [6]. In this area, plastic mulching was used for 
eight years before being replaced.

Soil Sample Collection

Topsoil samples (subsamples) were collected as triplicate 
soil cores at three different points (2 cm apart) within a 
quadratic area of 0.5 × 0.5 m2 at five randomly selected 
plots within the greenhouse and plastic mulching sites to 
determine soil MP abundance, shape, and size distribution 
[Fig. 3; Table S1], [25, 29]. A stainless-steel ruler and soil 
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Fig. 1   Location of the (a)study area, (b) Haean basin, and (c)soil sampling points in the greenhouse (G = G1, G2, G3, G4, and G5) and plastic 
mulch area (PM = PM1, PM2, PM3, PM4, and PM5).

Fig. 2   Monthly mean air tem-
perature and precipitation in the 
study area, Haean Basin from 
1997 to 2022
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cores were used to set the topsoil at 0–10 cm to ensure accu-
rate sampling at each site [30]. Triplicate samples (n = 3) 
collected from each point within each plot were mixed to 
form composite samples. After hand-picking any visible 
material, such as large stones, roots, leaves, and any uniden-
tified litter, 5.0 kg of soil was stored in glass containers to 
avoid any plastic contamination before being transported to 
the laboratory (Fig. 3). After transportation, the soil samples 
were refrigerated at 4.0 °C until analysis [18]. In total, 30 
soil samples (three subsamples (1.0 soil depth × 5.0 plots) 
× 2.0 land use sites) were collected from the plastic mulch 
and greenhouse sites selected for the study.

Microplastic Extraction

MPs in the soil were extracted and identified at the Korea 
Institute of Analytical Science and Technology in Seoul, 
Korea through a sequence of processes, as shown in Fig. 4. 
The soil samples were air-dried and crushed lightly using 
a rolling pestle. Soil samples were further filtered through 
a 5 mm stainless steel sieve to remove impurities, such as 

plant roots and leaves that could not be handpicked or were 
not clearly visible to the naked eye [17, 23, 31]. A 5 mm 
stainless steel mesh was chosen for this study because it met 
the MP definition, and a relatively small number of roots 
and leaves were visually observed in the soil samples in this 
study [32]. Soil (0.5 g) from each sampling point was mixed 
with 200 mL of 30% H2O2 in a beaker placed on a heating 
plate at 70 °C for approximately 72 h to completely digest 
and remove organic matter (Fig. 4).

Subsequently, the filtered soil samples were passed 
through a 20 μm stainless steel filter. The inorganic materi-
als in the soil samples were extracted by density separation 
by mixing the soil samples with 40 mL of Li2WO4 solution 
(1.5 g cm − 3) for 24 h. In this study, Li2WO4 was used as 
the separation solution because of its high density, non-haz-
ardous nature, ease of extraction of inorganic materials and 
high MP recovery rate [33, 34]. Precipitated inorganic parti-
cles were removed from the solution and the MP-containing 
supernatant was filtered through a 20.0 μm stainless steel 
filter. The filter was then placed in a desiccator and dried at 
room temperature (25.0 °C ± 1.2 °C). After drying, the filters 

Fig. 3   Pictures showing the 
sampling site and some possible 
sources of MPs in the study area 
(a) a shattered plastic mulching 
film adjacent to the greenhouse 
site (b) plastic ropes used to 
support crops during growing 
and drying and plastic nets used 
to help dry crops in greenhouses 
after harvest (c) labeled glass 
vials used for composite soil 
samples after collection from 
the greenhouse site (d) external 
view of the greenhouse site 
where soil samples were col-
lected
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containing the MPs were placed in aluminum containers and 
covered with aluminum foil prior to identification.

Microplastic Identification

The filters containing the MPs were placed under a Fourier 
transform infrared (FT-IR) microscope to simultaneously 
count and identify MPs according to the method described 
by Bi et al. [35] and Zhang et al. [36]. FT-IR images with 
a spatial resolution of 5 μm were captured on 32 × 32 focal 
plane arrays. A scan spectral range of 4000– 650  cm− 1 
was set for 32 scans with an acquisition time of 3.0 s and a 
resolution of 5.0 cm− 1. FT-IR images were analyzed using 
the automated software MPs Finder (MPF; Purency or 
simple). The siMple software with a wavenumber range of 
2420–2200 cm− 1 was used to count the number of MPs (MP 
abundance) from each sample and provide comprehensive 
statistics on the size and polymer type on the filter accord-
ing to the method described by Cunsolo et al. [37], Primpke 
et al. [38], and Uurasjärvi et al. [39]. The MPs were divided 
into the following size classes:20–49, 50–99, 100–299, and 
300 μm and above. The composition of the MPs was identi-
fied from the infrared spectrum using a micro-Fourier trans-
form interferometer (µ-FTIR, LUMOS II, Brucker, USA). 
The spectra were compared to the Sattler Spectra Library 
(purchased standard library), the matching rates were set 
at less than 60%, and the samples were considered as MP.

Quality Control and Assurance

Cotton and latex gloves were worn while collecting soil sam-
ples from the greenhouse and plastic mulching sites. In addi-
tion, during the extraction and identification of MPs, cotton 
laboratory coats and latex gloves were worn to protect soil 
samples from external MP sources, such as air and clothing. 
Distilled water was used to rinse the soil auger, stainless 
steel ruler, mortar and pestle (for crushing the soil), and 
glass used to store the soil.

In this study, triplicate blank samples were subjected to 
the same analytical procedure as the actual samples and 
MPs were not detected in these samples. Using the same 
method as above, the MP recovery rate was verified by spik-
ing 300 μm PP and PE into 0.5 g of clean soil. The results 
showed that the recovery of MPs by Li2WO4 was 100%.

Statistical Analyses

Prior to the statistical analysis, the normality of the MPs 
datasets obtained from greenhouses and plastic mulching 
sites was checked separately using the Shapiro-Wilk test [29, 
40]. Statistical differences in MP polymer type, size, and 
shape between the greenhouse and plastic mulching sites 
were checked using one-way analysis of variance (ANOVA) 
at the 5.0% significance level. In addition, the t-test was used 
to check for statistical differences in the mean values of MP 
abundance between the greenhouse and the plastic mulching 
site at a significance level of 5.0%.

Tukey’s test was used for mean separation when ANOVA 
and t-test showed statistically significant differences 
(p < 0.05) [29]. The Kruskal-Wallis non-parametric test was 
used as a substitute test when the datasets did not follow the 
normality distribution rules; for example, the datasets for 
MP fibers and fragment shapes did not follow the normal-
ity distribution rules [41]. The software Past 4.10 (Systat 
Software Inc., Oyvind Hammer, Olso, Norway) was used to 
perform all statistical analyses, and the results are presented 
as mean values ± standard error.

Results

Microplastic Abundances

MPs were detected in each soil triumvirate sample col-
lected at each sampling point at the greenhouses and plastic 
mulching sites (Fig. 5; Table S1). In this study, the total 
MP abundance in the soil of the greenhouse area was 1107 

Fig. 4   Schematic diagram of 
soil microplastic extraction 
from collected soil samples
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particles kg− 1, with an average abundance of 221.4 particles 
kg− 1, ranging from 50 to 383 particles kg− 1. At the plastic 
mulching site, the total MP abundance was 1748.0 particles 
kg− 1, within a range of 158 to 235 particles kg− 1 and an 
average of abundance of 356.8 particles kg− 1. However, no 
significant differences were observed in soil MP abundance 
between the greenhouse and plastic mulching sites (Fig. 5; 
t-test, p > 0.05).

Microplastic Polymer Type

In this study, all MP (n = 2855) polymer types were identi-
fied using FTIR spectroscopy (Fig. 6a). A total of six vari-
able types of MPs with a spectral match of > 60% were iden-
tified from all the soil samples collected from the plastic 
mulching and greenhouse sites. These MP polymer types 
were classified as polypropylene (PP), polyethylene (PE), 
polyethylene terephthalate (PET), polyvinyl chloride (PVC), 
polyethylene amide (PA), and polymethyl methacrylate 
(PMMA) (Fig. 6a). PP (70.17% of the total MPs identified) 
was perceived as the dominant MP polymer type, followed 
by PE (22.29%), and PET (7.21%). Among the six variable 

Fig. 5   Box plot of soil MP abundant (0–10 cm; particles kg− 1) in the 
greenhouse and plastic mulching area. Same lowercase (a, a) letter 
shows no statistical differences in MP abundances in greenhouse and 
plastic mulching site respectively

Fig. 6   Soil MP polymer type 
(0–10 cm; particles Kg− 1) in 
the (a) overall study area, (b) 
greenhouse and plastic mulch-
ing site respectively. Different 
uppercase (A, B) or lowercase 
(a, b) letters show statistical dif-
ferences in MP polymer types 
in the greenhouse and plastic 
mulching site respectively
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MP polymer types identified in soils in this study, PVC, PA, 
and PMMA were less than 1.0% (Fig. 6b).

At the greenhouse site, PP (68.02%) was the most sig-
nificantly dominant MP polymer type; however, no signifi-
cant difference was observed in MP abundance between 
PE (21.86%), PET (8.94%), PVC (0.36%), PA (0.54%), and 
PMMA (0.27%) (p > 0.05). In contrast, PP (71.44%) and PE 
(21.63%) were the dominant MP polymers (p < 0.05). How-
ever, there were no significant differences in the MP polymer 

abundances of PE (6.18%), PET (6.18%), PVC (0.21%), PA 
(0.53%), and PMMA (0.00%) (p > 0.05; Fig. 6b). The MP 
polymer types in both greenhouse and mulched soils were 
matched with the reference spectra, as shown in Figs. 7 and 
8.

Fig. 7   FT-IR spectra of MPs from soil samples collected from the 
greenhouses compared to the reference polymers of (a) polyethylene, 
(b) polypropylene, (c) polystyrene, (d) poly(ethylene terephthalate, 

and (e) poly(vinyl chloride) (f) The comparison of the amount and 
composition of plastic debris
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Microplastic Shapes

In this study, two predominant MP shapes were identified 
in the greenhouses and plastic mulching sites, the major-
ity of which were transparent or white (Figs. 9 and 10a). 
Of these MP shapes identified, the fragmented MP shape 
was observed as the major shape, accounting for 91.01% 
of the total (mean = 263.1 particles kg− 1). By contrast, 
fibrous MP types accounted for only 8.99% of the total 

MP shapes in the soil at the study site (mean = 260.0 par-
ticles kg− 1). Overall, fragmented MPs were present in sig-
nificantly higher proportions than fibrous MPs [p (same 
med) = 0.0004328)] (Fig. 10a). Although the total number 
of fragmented MPs (approximately 58.22) at the plastic 
mulching site was numerically higher than that of fibrous 
MPs (3.49; p = 0.05), there was no significant difference 
(p > 0.05) between fibrous and fragmented MPs (approxi-
mately 5.50) in greenhouse soil (p > 0.05) (Fig. 10b).

Fig. 8   FT-IR spectra of MPs from soil samples collected from 
the plastic mulched soil compared to the reference polymers of (a) 
polyethylene (PE), (b) polypropylene (PP), (c) polystyrene (PS), 

(d) poly(ethylene terephthalate) (PET), and (e) poly(vinyl chloride) 
(PVC). (f) The comparison of the amount and composition of plastic 
debris
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Microplastic Size

The MP size distribution for each soil sample is presented in 
Fig. 11. The MP size distribution for each soil sample collected 
from greenhouses and plastic mulching sites was divided into 
four categories:20–49, 50–99, 100–299, and 300 μm and 
above. Overall, MP sizes of 300 μm and above were detected 
and accounted for the smallest proportion of MP size distribu-
tion in the greenhouses and plastic mulching sites, at 0.42% 
and 0.311%, respectively. MP sizes of 20–299 μm in the green-
house and the plastic mulching site accounted for 37.87% and 

61.39%, respectively, which were significantly higher than 
those of MP sizes 300 μm, and above (p < 0.05). At the plastic 
mulching site, MP sizes of 20–49, 50–99, and 100–299 μm 
showed no significant difference (p > 0.05; Fig. 11). However, 
MPs of 20–299 μm occurred as a significantly higher pro-
portion of soil MP contamination than MPs of 300 μm and 
above. In the greenhouse site, MPs of sizes 20–49, 50–99, and 
100–299 μm were not significantly different; however, MPs of 
sizes 50–99, 300 μm, and above were significantly different at 
p (same mean) = 0.044.

Fig. 9   a Polyvinyl Chloride fragment from 5G b Polypropylene frag-
ment from 2PM c  polypropylene fragment from 1PM d  Polyethyl-
ene Terephthalate fiber from 2G e  Polyethylene Terephthalate fiber 

from 5PM. Greenhouse (G = G2, and G5) and Plastic mulch area 
(PM = 2PM and 5PM).

Fig. 10   Soil MP shape 
(0–10 cm; particles kg− 1) in 
the (a) overall study area, (b) 
greenhouse and plastic mulch-
ing site respectively. Different 
uppercase (A, B) letters show 
statistical differences and same 
lowercase (a, a) letters display 
no statistical differences in MP 
shapes between the fragment 
and fiber MP shape
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Discussion

Sources of Microplastic Abundance in Mulch 
and Greenhouse Soils

The average MP concentration of 358.8 particles kg− 1 deter-
mined in the mulching site of this study was lower than that 
of a cotton-plastic mulching site in Hangzhou Bay, China 
(571 particles kg− 1) [42] and a tobacco plastic mulching 
farm in Hubei, China (media = 647 particles kg− 1) [24]. The 
reason for the low concentration of MPs at the mulch site in 
this study is that the mulch site does not have any form of 
water irrigation [17]. For instance, according to Kim et al. 
[19], the water used for irrigation may be an additional 
source of soil MP pollution. In addition, Samandra et al. 
[43] reported that irrigation of soil with groundwater may 
be a source of MP pollution. Several studies have shown 
that the occasional use of organic or sludge fertilizers to 
treat soil is another source of MP contamination at plastic 
mulching sites [44]. However, no fertilization practices were 
used at the study site, suggesting that the MP concentrations 
were lower than those observed in other studies [24, 45]. For 
instance, Stefano et al. [46] reported macroplastic concen-
trations of approximately 9247 particles/mg in crop fields 
resulting from the application of organic and conventional 
fertilizers. These macroplastics can be degraded into MPs 
in the long run or by soil titling.

In addition, the lower average concentration of MPs 
(221.4 particles kg− 1) was observed in the greenhouse 
contrasts with the observations of a few other studies [e.g., 
Yanju, Korea [media = 379 particles kg− 1, [47], China: aver-
age = 5,124 ± 632 particles kg− 1], [48], where high concen-
trations of MPs were reported. The low average concentra-
tion of MPs from the greenhouse site suggests less intensive 
crop cultivation activity, short-term replacement of plastic 

films used for the construction of the greenhouse (5 years), 
and less human interference in the greenhouse compared to 
other study sites [44]. Despite different levels of soil MP 
contamination in greenhouses and mulched soils, there was 
no significant difference in soil MP concentration abundance 
between the two sites, as in the study by Liu et al. [49]. 
However, this contrasts with other studies that have reported 
significantly higher or lower abundances of MPs in plastic 
mulching soils than in greenhouse soils [19, 44, 49]. The 
lack of a significant difference in MP abundance between the 
plastic mulching and greenhouse sites is contrary to our con-
jecture that plastic mulching sites should have significantly 
higher MP abundance than greenhouse sites. In addition, 
a similar abundance of MPs between the two sites can be 
attributed to the fact that there were no planting activities in 
this study site, such as water irrigation or sludge application, 
which would lead to more MP pollution in the soil in a short 
period of time at the greenhouse site [49]. Plastic films used 
in greenhouse manufacturing are typically replaced after five 
years. In Korea, the plastic films used in plastic mulching 
and greenhouses should be removed after use [22].

Characteristics of Microplastic in Mulch 
and Greenhouse Soils

Overall, the dominance of the MP polymer PP in this study 
is consistent with the findings of previous studies [47, 50, 
51]. According to Zhang et al. [24] and Xu et al. [25], the 
dominance of PP throughout the study site can be attributed 
to the fact that PP is one of the most widely used polymers 
for plastic films used in the construction of greenhouses and 
for plastic mulching. In greenhouse sites alone, the domi-
nance of PP in the soil can be attributed to the fact that the 
weathered plastic films used to build the greenhouse undergo 
mechanical fragmentation, causing them to settle in the soil 
[51]. Also, the raw materials used to manufacture the ropes 
used to support plant growth within the greenhouse are made 
from PP [23].

Where plastic mulching is in place, the predominance of 
both PP and PE can be attributed to PE being a widely used 
polymer in farmlands since 1938 [52, 53]. Furthermore, the 
dominance of PE in plastic mulching fields suggests that 
plastic films made from PE polymers that are inadvertently 
discarded after crops are harvested easily degrade into MPs 
because of their thinness [23, 42, 48]. In addition, the domi-
nance of PP may be related to soil contamination with MPs 
from unseen sources, such as MPs and/or atmospheric depo-
sition from crop cultivation tools (e.g., ropes and machine 
parts used for farming) [25, 54].

This study determined fragment-shaped MPs as the 
dominant MP shape in the entire study area, which sug-
gests physical and mechanical fragmentation of the plastic 

Fig. 11   MP size distribution (0–10 cm; µm) by sampling in a green-
house and plastic mulching site. Different uppercase (A, B) and low-
ercase (a, b) letters show statistical differences in MP shapes in green-
house and plastic mulching site respectively
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materials used either for plastic mulching or the construc-
tion of greenhouses [24, 55]. These results support those 
of previous studies that document fragment-shaped MPs as 
dominant MP shapes in greenhouse sites or plastic mulch-
ing sites [23, 30, 42, 56]. According to Wang et al. [18], 
the dominance of fragment-shaped MPs in soils from both 
sites suggests physical weathering by UV-radiation of plas-
tic films used for plastic mulching, wear and tear of plastic 
films by soil particles, and weathering of abandoned plastic 
ropes used to support the growth of creeping plants in green-
houses. The lack of a significant difference in the proportion 
of fragment and fiber-shaped soil MPs in the greenhouse and 
plastic mulching sites could be discretely associated with 
the physical weathering of the plastic film used either for 
mulching or greenhouse construction [18].

In this study, MP sizes of 50–99 μm were dominant at the 
greenhouse site, which can be because towing to occasional 
tillage and soil abrasion, which facilitates the physical rup-
ture of plastics deposited in the soils either involuntarily in 
the greenhouse site during soil preparation before planting 
or during harvesting [23, 57]. Likewise, at the plastic mulch 
site, the presence of a large number of MPs smaller than 
300 μm may be owing to exposure of the plastic film used 
for mulching to UV radiation, weathering them to smaller 
sizes [30]. In addition, the predominance of MPs smaller 
than 300 μm may be related to the possibility of airborne 
MP deposition in the soil of the plastic mulching sites [53, 
58–65].

Conclusion

In this study, the abundance of MP contaminants in green-
houses and plastic mulching topsoil in an agriculture-dom-
inated region of Korea was examined and compared. Over-
all, soil MP abundance did not vary significantly between 
the greenhouse and plastic mulching sites. However, some 
MP polymer types, shapes, and sizes varied between plastic 
mulching and greenhouse sites. Furthermore, we observed 
that the dominant shape and size of MPs were fragments 
smaller than 300 μm in the plastic mulch and greenhouse 
sites. At the plastic mulching site, MPs made composed of 
PP and its copolymer PE were dominant. However, at the 
greenhouse site the dominant, PP was the dominant MP pol-
ymer. Following the discovery of MPs in plastic mulch and 
greenhouse sites, it can be inferred that the possible sources 
of these MPs are plastic films and plastic ropes. There was 
no significant difference in abundance between the two sites, 
suggesting that regardless of the form of plastic film used 
at the crop sites, they contaminate the soil with MPs in the 
long run. The results of this study undoubtedly show that 
both mulched and greenhouse soils are equal sources of 
MP pollution in crop fields, implying that these soils are 

significant environmental reservoirs of MPs. These results 
provide important background data that can be considered 
for future studies focusing on the sources of MPs and access 
to groundwater in the agricultural regions of Korea. These 
results can serve as a reference for reducing and controlling 
plastic mulch and soil MP pollution at greenhouse sites.
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