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Abstract
In the present work, novel pH-sensitive nanocomposite hydrogels were developed by grafting acrylamide onto carboxymethyl 
cellulose backbone (Hyd) using the free radical grafting polymerization method for the decontamination of methylene blue 
(MB) from an aquatic medium. Optimum values of weight percentage of acrylamide to total weight and content of carbon 
black nanoparticles based on removal efficiency were obtained at 75% and 7.5 wt%, respectively. The chemical structure, 
morphology, and thermal properties of synthesized adsorbents were characterized by FTIR, XRD, TGA, BET, and SEM 
methods. The removal efficiency under optimum conditions of pH 7, adsorbent dosage 1.5 g/L, contact time 60 min, dye 
initial concentration 10 mg/L, and temperature 25 °C were calculated to be 84.6 and 96.68% for Hyd and Hyd/CB, respec-
tively. Kinetic and Equilibrium data were in good agreement with quasi-second-order and Langmuir models, respectively. 
With the rising temperature, the uptake of MB decreased, which implied the exothermic nature of the adsorption process.
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Introduction

With the growth of the world population and the develop-
ment of industries, the accessibility to healthy water is a 
global problem. Every day, a large volume of water is con-
sumed in industries and is discharged into the environment 
without any treatment. Discharge of colored effluents from 
various industries such as textile, and paper leads to water 
resources causes severe problems in the natural ecosystem. It 
was estimated that around 7 × 105 tons of dyes are produced 
annually, and about 9 billion tons are discharged into water 
resources without any treatment [1]. Due to their complex 
structure, these pollutants suffer from low degradability and 
high stability to heat, light, and oxidizing agents. Methylene 
blue (MB) is a water-soluble cationic dye that causes severe 
problems in human health such as nausea, mental confusion, 
methemoglobinemia, eye burns, and vomiting [2]. Several 
dye removal technologies are proposed in countless research 
papers such as precipitation, chemical degradation, chemical 

coagulation, and adsorption. Through these technologies, 
adsorption as an efficient, effective, and low-cost process 
has been examined over many years. The main restriction of 
this technology is the formation of secondary residues that 
need treatment before throwing away. Hydrogels are flexible 
three-dimensional polymeric networks with the capability 
of swelling in aquatic medium and adsorption of pollutants 
due to the presence of hydrophilic functional groups like 
carboxyl (COO−), sulphonic (–SO3H), hydroxyl (–OH), and 
amide (–CONH) [3]. Physical and chemical crosslinking 
methods were used to prepare these materials to avoid their 
dissolving in the water [4]. Physically crosslinked hydrogels 
have low mechanical strength so chemical crosslinking is the 
best method to prepare hydrogels, especially for wastewater 
treatment application. The reaction of functional groups, 
chemical grafting reaction, free radical polymerization, and 
high energy irradiation are common methods of chemical 
crosslinking of hydrogels [5]. To develop low-cost, biode-
gradable, and biocompatible hydrogels, different biopoly-
mers like chitosan, carboxymethyl cellulose, alginate, starch, 
salecan, carrageenan, and gelatin are used [6]. Among deriv-
atives of cellulose, carboxymethyl cellulose (CMC) has high 
solubility due to the replacement of some of –OH group by 
the carboxyl. Due to the presence of hydroxyl and carboxyl 
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groups, CMC can be effectively utilized for removing cati-
onic dyes and heavy metals [3]. Besides low thermal and 
mechanical properties, CMC hydrogels suffer from low spe-
cific surface area and low functionality. So, to enhance the 
performance of neat CMC hydrogels various strategies are 
developed such as blending, grafting, and using nanoparti-
cles. Grafting of multiple monomers such as acrylic acid, 
methyl methacrylate, acrylamide, N-Isopropylacrylamide, 
itaconic acid (IA), and 2-acrylamido-2-methylpropane sul-
fonic acid (AMPS) on CMC backbone by free radical polym-
erization method has been reported in literatures [3, 7–10]. 
Peighambardous et al. indicated that the CMC based hydro-
gel containing acrylamide can efficiently adsorb malachite 
green dye [9]. Sinha et al. synthesized CMC-g-AMPS/Fe/
Al/AC composite hydrogels for remediation of fluoride (F−) 
ions from aqueous solution. They revealed that the maxi-
mum removal efficiency of F− is 84.67% which is occurs at 
pH of 6 [11]. To further enhancement of grafting networks, 
various nanomaterials such as clays [12], graphene oxide 
[10, 13], activated carbon [14], carbon black [15], and mul-
tiwall carbon nano-tube [16] are used. Incorporation of these 
nanomaterials not only enhances mechanical and thermal 
properties but also promotes swelling and adsorption capa-
bility. To enhance the antibacterial performance of hydro-
gels some metal-based nanoparticles can be incorporated 
into polymer matrix such as silver. Khan et al. synthesized 
silver nanoparticles using sulfonated carboxymethyl cellu-
lose as a biocompatible stabilizer and a non-toxic reducing 
agent. The obtained results showed that silver nanoparticles 
have a good antimicrobial performance against Gram-pos-
itive B. subtilis and Gram-negative E.coli bacterial strains 
[17]. Makhado et al. prepared xanthan gum-cl-poly(acrylic 
acid)/o-MWCNTs nanocomposite hydrogel to remove MB 
from aqueous solution. The adsorption data of synthesized 
adsorbents follow quasi second order and Langmuir models. 
They showed that the addition of o-MWCNTs enhances the 
reusability of hydrogel in successive adsorption–desorption 
cycles [18]. Makhado et al. synthesize xanthan gum-cl-pol 
(acrylic acid)/rGO nanocomposite hydrogels by free radi-
cal polymerization using microwave irradiation method to 
remove MB and methyl violet from aqueous solution. They 
showed that incorporation of rGO improves swelling and 
removal efficiency. The equilibrium adsorption data of both 
dyes were well fitted with the Langmuir isotherm model 
[19]. Wang et al. prepared chitosan/montmorillonite nano-
composite hydrogel to remove Pb2+ from aquatic medium. 
The results of XPS analysis showed that ion exchange is 
the main mechanism of Pb2+ adsorption [20]. For develop-
ing hydrogels with capability of photocatalytic degradation 
of dyes using UV light, TiO2 and ZnO nanoparticles can 
be employed [21, 22]. However, their use in the industrial 
scale is a challengeable issue. In recent years, carbon base 
materials have attracted the attention of many researchers 

due to their excellent surface area, abundance, and electrical 
characteristics [23]. One of the best carbon base nanomateri-
als in the preparation of nanocomposite hydrogels is carbon 
black (CB) which is generated from incomplete combus-
tion of hydrocarbons. CB as an industrial carbon material 
can be used in wastewater treatment applications due to the 
existence of carboxyl, carbonyl, and hydroxyl functional 
groups in its structure. Structurally, CB consists of two parts 
graphitic and amorphous. In the graphitic domain, layers 
of hexagonal rings of carbon which is called basic struc-
tural unit (BSU) stacked together with interlayer distance 
of 0.35 nm [24]. Amorphous core is more or less concentri-
cally surrounded by units of carbon layers [24, 25]. Another 
attractive carbon-base nanomaterial that gained the attention 
of researchers is graphene oxide (GO). GO has a layered 
structure showing high thermal stability, good mechanical 
strength, and chemical properties. GO is a good candidate 
to remove pollutants from wastewater due to high specific 
surface area and presence of functional groups like epoxy, 
hydroxyl, and carboxyl [26]. However, the disadvantages of 
GO in comparison with CB are its high cost and difficulties 
in production.

In this work, poly(acrylamide) grafted on carboxymethyl 
cellulose hydrogels were synthesized by free radical polym-
erization method using potassium persulfate (KPS) as an 
initiator and N, N’-methylene bisacrylamide (MBA) as a 
chemical cross-linker for remediation of methylene blue dye 
from the aquatic medium. To improve the removal efficiency 
of CMC-based hydrogel, various contents of CB nanoparti-
cles are incorporated into the hydrogel matrix. The impact 
of different adsorption conditions such as pH, initial concen-
tration, dose, temperature, and contact time on removal effi-
ciency was precisely studied to achieve optimum conditions. 
To assess the chemical structure, thermal stability, and mor-
phology of synthesized hydrogels, Fourier-transform infra-
red spectroscopy (FTIR), X-ray diffraction analysis (XRD), 
Thermogravimetric analysis (TGA), Brunauer, Emmett, and 
Teller (BET), and scanning electron microscopy (SEM) were 
performed. Also, kinetics and isotherm models were evalu-
ated to discover the mechanism of adsorption.

Materials and Methods

Materials

Potassium persulfate (KPS, 98.0%) was purchased from 
Samchun chemical Co, Korea. Sodium carboxymethyl cel-
lulose (Na-CMC, average Mw ~ 90,000), Acrylamide (AAm, 
99%), and N,N′-methylene bisacrylamide (MBA, 99.5%) 
were obtained from Merck, Germany. Sodium hydroxide 
(NaOH), hydrochloric acid (HCl, 37%), sodium chloride 
(NaCl), and calcium chloride (CaCl2) were bought from 



941Journal of Polymers and the Environment (2023) 31:939–953	

1 3

Merck, Germany. Carbon black with an average particle size 
of 0.042 microns was purchased from Exir.co, Australia. 
It is a byproduct of acetylene production from natural gas. 
Methylene blue (MB) was obtained from Mojallali reagent 
chemical Co. (Iran, Tabriz). All reactants possessed analyti-
cal grade and deionized water was used throughout the work.

Synthesize of Hydrogel Samples

At first, 1.0 g of CMC powder was dissolved in 20 mL deion-
ized water in a 250 mL four-necked round bottom flask 
equipped with a stirrer, a thermometer, nitrogen gas inlet, 
nitrogen gas outlet tubes, and a reflux condenser to obtain a 
viscous solution. Under the atmosphere of N2, the tempera-
ture of the CMC solution was raised to 70 °C. After 30 min 
of N2 purging, 0.1 g of the KPS was added to this sticky 
solution to produce CMC radicals and vigorously stirred. 
After 10 min, the mixture of monomer and cross-linker was 
charged to the flask. After 3 h, the obtained gel product was 
cut into small pieces and washed with distilled water sev-
eral times to eliminate unreacted monomer, initiator, and 
soluble polymers. Afterward, the gel pieces were placed in 
an oven at 70 °C for 24 h until they were completely dried. 
The dried hydrogel was ground into the powder and sifted 
through 40–80 sieves for the removal of MB. The prepara-
tion method of nanocomposite hydrogels is identical to the 
hydrogel synthesis method just a determined amount of CB 
was added to the monomer and cross-linker solution and 
sonicated for half of 1 h then this suspension solution was 
discharged to the reaction flask. The feed composition of 
synthesized hydrogels is tabulated in Table 1.

Characterizations

FTIR analysis of CMC, AAm, Hyd, and Hyd/CB nanocom-
posite hydrogel was performed by the FTIR spectrometer 

(Tensor 27, Bruker, Germany) operating at wavenumbers of 
400 to 4000 cm−1. The surface morphology of CMC before 
and after graft copolymerization with P(AAm), CB, Hyd/
CB nanocomposite hydrogel was demonstrated by scanning 
electron microscopy (SEM, MIRA3, TESCAN, Brno, Czech 
Republic) under the voltage of 15 kV. The samples were made 
conductive by coating them with gold by sputtering after frac-
turing them in liquid nitrogen. To evaluate the thermal stability 
of CMC, Hyd, and Hyd/CB nanocomposite hydrogel, a ther-
mogravimetric analyzer (TGA-PL, TGA 1500, Canada) was 
used operating at a heating rate of 10 °C/min and temperature 
range of 25–900 °C under nitrogen atmosphere. X-ray diffrac-
tion (XRD) analysis was used to find out the crystalline or 
amorphous nature of CMC, CB, Hyd, and Hyd/CB by (Kris-
allofex D500, Siemens, Germany) diffractometer equipped 
with CuKα irradiation (λ = 1.5406 Å) operating at 40 kV and 
25 mA over the scanned range of 4°–80° with a scan step of 
0.05°. N2 adsorption–desorption isotherm plots were obtained 
at 77 K using by gas sorption instrument (A sap 2020, Micro-
metrics, USA) to calculate specific surface area, mean pore 
diameter, and total ore volume of CB, Hyd, and Hyd/CB.

Dye Adsorption Study

The impact of initial concentration, dose, pH, contact time, 
and temperature on the removal efficiency was studied in batch 
mode. Before placing flasks on a thermostatic shaker, a deter-
mined amount of adsorbent was charged into flasks containing 
50 mL of methylene blue solution. After ending the adsorption 
process, the dye solution was centrifuged and the final concen-
tration of dye was measured by UV–Visible spectrophotom-
eter (Hanon Instruments Co, Model I3, China) at a maximum 
absorption wavelength of methylene blue (λm = 664 nm). The 
equilibrium adsorption capacity of adsorbent (qe(mg/g)) and 
removal efficiency are computed by Eqs. 1 and 2, respectively.

Ci, Ce, V (L), and m (g) are the initial and equilibrium con-
centrations of dye, the volume of the MB solution, and the 
amount of adsorbent, respectively. All adsorption experi-
ments were performed three times and the mean standard 
deviation was reported as the error.

(1)qe =
(Ci − Ce)

m
V

(2)Removal (%) =
Ce − Ci

Ci

× 100

Table 1   The feed composition of adsorbent samples

Adsorbent codes Weight percent-
age of AAm to 
total weight (wt%)

KPS (g) MBA (g) CB (wt%)

Sample (1) 50 0.1 0.02 0
Sample (2) 67 0.1 0.02 0
Sample (3) 75 0.1 0.02 0
Sample (4) 80 0.1 0.02 0
Sample (5) 75 0.1 0.02 2.5
Sample (6) 75 0.1 0.02 5
Sample (7) 75 0.1 0.02 7.5
Sample (8) 75 0.1 0.02 10
Sample (9) 75 0.1 0.02 12.5
Sample (10) 75 0.1 0.02 15
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Fig. 1   Analyzes of a, b FTIR, c TGA, d XRD, e BET of CB, and f BET of Hyd and Hyd/CB
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Fig. 2   SEM images of a–d CB, e–h CMC, i–l Hyd, m–p Hyd/CB, and q–t Hyd/CB after MB adsorption at different magnification
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Results and Discussion

FTIR Spectra Analysis

FTIR spectra of CMC, AAm, CB, Hyd, and Hyd/CB 
are depicted in Fig. 1a and b. The characteristics peaks 
were observed in the FTIR spectrum of CMC at 3460, 
2916, 1608, 1263, and 1056 cm−1 which is assigned to the 
stretching bands of –OH, –CH, –C=O, C–O, and C–O–C, 
respectively [27, 28]. For pure AAm monomer, the adsorp-
tion peaks at 3369, 3188, 2814, 1674, and 1430 can be 
corresponded to asymmetric stretching of –NH, sym-
metric stretching of –NH, stretching vibrations of –CH, 
–C=O, and –C–N, respectively [29]. In the FTIR spectrum 
of Hyd, the peaks at wavenumbers of 3427, 2920, 1697, 
1552, 1263, and 1055 cm−1 were related to the overlap-
ping of –OH and –NH bands, –CH, –C=O, –NH (bending 
vibrations), –C–O and –C–O–C– bands, respectively [30]. 
The peak intensity of –OH group of CMC was reduced 
in FTIR spectrum of Hyd because of participation this 
functional group in the free radical polymerization pro-
cess for formation of hydrogel. Also, intensity of –C=O 
peak of CMC and AAm was reduced after grafting polym-
erization and was shifted from 1607 and 1674 cm−1 to 
1697 cm−1. The small peak at wavenumber of 1458 cm−1 
can be assigned to –C–N vibrations of AAm which indi-
cates successful grafting of AAm onto the CMC backbone 
[31, 32]. The FTIR spectrum of CB demonstrates absorp-
tion bands at 3438, 2910, 1778, and 1246 cm−1 which are 
assigned to –OH, –CH, –C=O, and –C–O, respectively. 
FTIR spectrum of Hyd/CB was almost identical to Hyd 
which demonstrated the physical interaction of these nano-
particles with polymeric chains.

Thermogravimetric Analysis (TGA)

TGA curves of CB, Hyd, and Hyd/CB are demonstrated in 
Fig. 1c. As shown in Fig. 1c, the decomposition of samples 

happens in four stages. In the first step, the minor weight 
loss of 10% occurs in the temperature range of 35–90 °C 
which is related to moisture and water evaporation. The 
second degradation step happens due to the breakage of 
C–O–C bands in CMC chains and dehydration of saccha-
ride rings. The third degradation step which happens in the 
temperature range of 320–600 °C for CMC, 408–700 °C 
for Hyd, and 420–700 °C for Hyd/CB can be related to 
the decomposition of amide side and carboxyl groups. 
In the fourth step, the thermal decomposition of samples 
is related to the breakage of the polymer chain and the 
destruction of the hydrogel network. In this step, lower 
weight loss is observed for Hyd/CB nanocomposite hydro-
gel which demonstrates improvement of thermal stability 
of hydrogel by the addition of CB nanoparticles. Also, 
the higher char yield for Hyd/CB (30%) in comparison to 
CMC (22%) and Hyd (24%) verified this result. These find-
ings are in accordance with the results of other researchers 
[8].

X‑ray Diffraction Analysis (XRD)

XRD analysis was applied to determine the crystalline and 
amorphous nature of CMC, CB, Hyd, and Hyd/CB. As 
depicted in Fig. 1d, CMC has a relatively sharp peak around 
2θ = 20° which demonstrates its semi-crystalline structure 
[33]. In the XRD pattern of CB, two relatively sharp peaks 
were presented at 2θ of 25.4° and 42.5° which are assigned 
to (002) reflection and the (10) band. A broad peak was 
observed around 24° in the XRD pattern of Hyd which dem-
onstrates that the semi-crystalline structure of CMC was 
destroyed after grafting of P(AAm). In the XRD pattern of 
Hyd/CB, a relatively small peak was observed around 25° 
which overlapped with the broad peak of Hyd demonstrating 
that Hyd/CB has a relative crystalline structure due to the 
presence of CB nanoparticles.

Fig. 3   Effect of a weight 
percentage of AAm to the total 
weight, and b weight percent-
age of CB on removal efficiency 
at pH 7, dose 1.5 g/L, initial 
concentration 10 mg/L, contact 
time 60 min, temperature 25 °C, 
and mixing speed 400 rpm
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Fig. 4   Effect of a pH (dose 
1 g/L, initial concentration 
10 mg/L, contact time 60 min, 
temperature 25 °C, and mixing 
speed 400 rpm), b dose (pH 7, 
initial concentration 10 mg/L, 
contact time 60 min, tempera-
ture 25 °C, and mixing speed 
400 rpm), c initial concentration 
(pH 7, dose 1 g/L, contact time 
60 min, temperature 25 °C, 
and mixing speed 400 rpm), d 
contact time (pH 7, dose 1 g/L, 
initial concentration 10 mg/L, 
temperature 25 °C, and mixing 
speed 400 rpm), ionic strength 
e NaCl, f CaCl2, g tempera-
ture (pH 7, dose 1 g/L, initial 
concentration 10 mg/L, contact 
time 60 min, and mixing speed 
400 rpm) on removal efficiency, 
and h Reusability
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BET Analysis

The BET surface area, total pore volume, and mean pore 
diameter were determined using the measurement of N2 
adsorption and desorption. Isotherm curves of CB, Hyd, 
and Hyd/CB were shown in Fig. 1e and f. All mentioned 
samples have IV-type hysteresis loop based on IUPAC clas-
sification revealing mesoporous structure. For CB, BET sur-
face area, total pore volume, and mean pore diameter were 
calculated to be 73.27 m2/g, 0.1902 cm3/g, and 10.381 nm, 
respectively. As shown in Fig. 1f, the amount N2 adsorp-
tion and desorption for Hyd/CB is higher than Hyd which 
arises from the capability of CB to bond with polymer chains 
leading to a finer porous structure. BET surface area, total 
pore volume, and mean pore diameter were computed to be 
0.92 m2/g, 0.00236 cm3/g, 8 nm, for Hyd, respectively, and 
2.0665 m2/g, 0.0041376 cm3/g, and 10.254 nm for Hyd/CB, 
respectively. Based on the obtained results, incorporation of 
CB into Hyd matrix enhances BET surface area, total pore 
volume, and mean pore diameter so it was anticipated that 
Hyd/CB will have good performance in the decontamination 
of MB in comparison with Hyd.

Scanning Electron Microscopy (SEM) Analysis

The morphology of CB, CMC, Hyd, and Hyd/CB nanocom-
posite hydrogel is depicted in Fig. 2 (a-p) with different mag-
nifications. Agglomeration of spherical particles of CB can 
be seen in Fig. 2a–d. According to Fig. 2e–h, some cracks 
can be seen in the CMC structure. As depicted in Fig. 2i–l, 
the grafting of P(AAm) and crosslinking with MBA led 
to the formation of heterogeneous and irregular surfaces 
with interconnected pores. The porous structure facilities 
the diffusion of dye molecules to adsorbent structures and 
their accessibility to functional groups. Figure 2m–p dem-
onstrates that Hyd/CB has a rougher surface than Hyd and 
the incorporation of CB enhances the porosity of the hydro-
gel matrix so higher removal efficiency can be expected 
for nanocomposite hydrogel. As depicted in Fig. 2q–s, the 
surface of Hyd/CB after MB adsorption gets smoother due 
to the filling of pores of the adsorbent with dye molecules.

The Influence of Different Parameters on MB 
Removal

Influence of Weight Ratio of AAm to CMC and CB Content

As shown in Fig. 3a, the weight percentage of AAm to total 
weight has a significant effect on the removal efficiency of 
hydrogels. When the weight ratio of AAm varied from 50 
to 75 wt%, the removal efficiency was increased from 80.41 
to 84.65%. By altering the weight percentage of AAm to 
total weight from 75 to 80 wt%, the removal efficiency was 

decreased to 82.53% which can be related to the decre-
ment of the grafting ratio by increasing the viscosity of the 
polymerization medium. The effect of CB content on the 
removal efficiency of Hyd is demonstrated in Fig. 3b. By 
increasing the weight percentage of CB from 0 to 7.5 wt%, 
the removal efficiency was increased from 84.5 to 96.68% 
then it decreased. By increasing CB content, the electrostatic 
repulsion between –COO− of CB and CMC enhances so the 
adsorbent structure is expanded leading to more dye diffu-
sion. In addition, the electrostatic attraction between adsor-
bent and cationic dye molecules is promoted by increasing 
CB content. Further increase of CB leads to the decrement 
in removal efficiency which results from the act of nanopar-
ticles as cross-linkers and filling of pores of adsorbents due 
to aggregation of CB particles.

Influence of pH

pH is a significant factor in the adsorption process that 
affects the surface charge of adsorbents and dye solutions. 
The effect of pH on the removal efficiency of Hyd and Hyd/
CB is depicted in Fig. 4a. By increasing pH from 3 to 7, the 
removal efficiency was increased from 64.53 to 84.6% for 
Hyd and from 67.5 to 96.68% for Hyd/CB due to increment 
of electrostatic attraction between carboxyl groups of CMC 
and CB and cationic dye. By increasing pH from 7 to 10, the 
removal efficiency of both adsorbents was almost constant. 
In acidic pH, low removal efficiency is related to competi-
tion between dye molecules and H+ ions to sorption to active 
sites of adsorption and weak electrostatic attraction between 
cationic dye and low negatively charged adsorbent [34].

Influence of Adsorbent Dose

The effect of adsorbent dose on the removal efficiency of 
Hyd and Hyd/CB is depicted in Fig. 4b. It can be seen that 
the removal efficiency is increased when the adsorbents 
dose increases up to 1.5 g/L then it remains constant. By 
increasing the adsorbents dose, the number of the active site 
of adsorbents and surface area increases so the interactions 
between adsorbents and MB dye molecules are enhanced 
[35, 36]. For further experiments, the value of 1.5 g/L is 
selected as the optimum dose for both adsorbents.

Influence of Initial Concentration

Initial concentration as one of the significant factors of the 
decontamination process can have a significant effect on 
the removal efficiency and adsorption capacity. The initial 
concentration provides the driving force of mass trans-
fer between dye solution and adsorbent and represses the 
mass transfer resistance. In the current study, the impact 
of initial concentration on MB removal was studied in the 
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range of 10–100 mg/L, and obtained results are depicted in 
Fig. 4c. With the increase of initial concentration from 10 to 
80 mg/L, the removal efficiency was decreased from 84.59 to 
36.55% for Hyd and from 96.73 to 38.48% for Hyd/CB due 
to saturation of active sites of adsorbents [37].

Influence of Contact Time

The dependency of MB adsorption rate on the contact time 
was evaluated in the range of 2–250 min at pH of 7, initial 

concentration of 10 mg/L, adsorbent dose of 1.5 g/L, and 
temperature of 25 °C. As depicted in Fig. 4d, the removal 
efficiency increased with the increment of contact time 
from 2 to 60 min due to the vacancy of the sorption site 
of adsorbents [38]. After 60 min, the adsorption process 
reached equilibrium and a further increase in contact time 
hasn’t effect on removal efficiency. The equilibrium removal 
efficiency for nanocomposite hydrogel is 96.66% which is 
12.06% higher than the removal efficiency of the hydrogel.

Fig. 5   Curves of linear kinetic 
models a quasi-first-order, b 
quasi-second-order, c Temkin, 
and d IPD for Hyd and Hyd/CB
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Table 2   Kinetic parameters 
for MB adsorption onto Hyd 
and Hyd/CB (pH 7, initial 
concentration of dyes 10 mg/L, 
adsorbent dose 1.5 g/L, 
temperature 25 °C, and mixing 
speed 400 rpm)

Kinetic model Adsorbent Kinetic model Adsorbent

Hyd Hyd/CB Hyd Hyd/CB

Quasi-first-order Elovich
 qe,cal (mg/g) 9.598 4.299    α (mg/g min) 9.255 127.608
 k1(min−1) 0.066 0.0689    β (g/mg) 0.499 0.612
 R2 0.904 0.895    R2 0.914 0.7689

Quasi-second-order IPD
 qe,cal (mg/g) 13.157 14.71    ki,1 (mg/g min0.5) 1.6341 1.7743
 k2 (g/mg min) 0.012 0.0321    C1 (mg/g) 1.9131 4.7978
 qe,exp (mg/g) 12.71 14.52    R2 0.9848 0.8944
 R2 0.99 0.99 ki,2 (mg/g min0.5) 0.0586 0.0009

   C2 (mg/g) 11.929 14.399
   R2 0.3787 0.4953
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Influence of Ionic Strength

The ionic strength and co-exiting ions are two major fac-
tors that affect the performance of adsorbents. In this 
regard, NaCl and CaCl2 salts in the concentration range of 
0–1.4 mol/L were selected to assess the interference effect 
of Na+, Ca2+ ions, and MB molecules to sorption to adsorp-
tion sites, and findings were demonstrated in Fig. 4e and f. 
The obtained results showed that the removal efficiency of 
synthesized adsorbents decreased by increasing the concen-
tration of salts which is assigned to increment of competition 
between Na+ and Ca2+ ions and MB molecules to sorption to 
actives sites [20]. In addition, the decrement of the removal 
performance of adsorbents in presence of Ca2+ ions was 
higher than Na+ relating to act of Ca2+ as a crosslinker which 
limits the expansion of hydrogels network [8].

Influence of Temperature

The influence of temperature on the removal efficiency was 
assessed when the temperature was raised from 25 to 45 °C. 
As shown in Fig. 4g, the removal efficiency decreased from 
96.66 to 71.65% for nanocomposite hydrogel and 84.59 to 
57.09% for hydrogel as the temperature was changed from 
25 to 45 °C. The decrement in removal efficiency with the 
increase in temperature can be related to the separation of 
MB molecules from the adsorbent's surface and some struc-
tural changes in adsorbents [8].

Reusability

From the economical view of point, one adsorbent should 
have reusability in the different adsorption–desorption 
cycles without a significant loss in the removal performance. 
For this purpose, the reusability of synthesized adsorbents 
was investigated in eight successive adsorption–desorption 
cycles. Desorption of MB from adsorbents was performed 
by immersing them in 1 M HNO3 solution for 4 h then they 
were washed several times with distilled water to prepare 
them for the next adsorption cycle. As depicted in Fig. 4h, 

the removal efficiency of Hyd and Hyd/CB were nearly con-
stant in two and four cycles, respectively then it decreased. 
The decrement in removal efficiency can be attributed to the 
morphological changes and blocking of active sites of adsor-
bents [39]. Finally, it can be concluded that the synthesized 
adsorbents can be applied economically and potentially for 
the removal of MB from an aqueous solution.

Kinetics Study

To evaluate the kinetic behavior of MB adsorption, quasi-
first-order (Eq. 3), quasi-second-order (Eq. 4), Elovich 
(Eq. 5), and intra-particle diffusion (IPD, Eq. 6) models 
were used which were presented in the following equations.

where qe, qe,cal (mg/g), k1 (min−1) and k2 (g/mg min) rep-
resent experimental equilibrium adsorption capacity, theo-
retical equilibrium adsorption capacity, rate constants of 
PFO, and PSO models, respectively. In the Elovich model, 
α (mg/g min) represents the initial absorbance and β (g/mg) 
reflects the desorption constant related to surface coverage, 
and activation energy of chemisorption [40]. ki (mg/g min0.5) 
and Ci (mg/g) are intra-particle diffusion rate constant and 
the intercept of qt vs t0.5 plot depicting boundary layer effect, 
respectively [41]. The fitting results based on the data in 
Fig. 4d are shown in Fig. 5a–d and calculated parameters of 
kinetic models are tabulated in the Table 2. Comparison of 
R2 values of kinetic models showed that the quasi-second-
order model has the nearest value to 1 showing the rate of 

(3)Ln(qe − qt) = Ln qe,cal. − k1t

(4)
t

qt
=

t

qe
+

1

k2 q
2
e

(5)qt =
1

�
Ln (t) +

1

�
Ln (� �)

(6)qt = ki,d t
0.5 + Ci

Table 3   Isotherm parameters 
for MB adsorption onto Hyd 
and Hyd/CB samples (pH 7, 
contact time 60 min, adsorbent 
dose 1 g/L, temperature 25 °C, 
and mixing speed 400 rpm)

Isotherm model Adsorbent Isotherm model Adsorbent

Hyd Hyd/CB Hyd Hyd/CB

Langmuir Temkin
 qm (mg/g) 26.247 27.32    KT (L/g) 2.01 31.836
 k1 (L/mg) 0.155 0.9196    b (J/mol) 486.195 644.3
 R2 0.99 0.9833    R2 0.9771 0.849

Freundlich Dubinin-Radushkevich
 n 2.63 4.019    qs (mg/g) 18.976 21.658
 KF (mg/g.(L/mg)1/n) 5.6865 11.57    Ea (kJ/mol) 0.79 4.082
 R2 0.938 0.9385    R2 0.8185 0.6762
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Fig. 6   Curves of linear isotherm models for Hyd and Hyd/CB nanocomposite hydrogel a Langmuir, b Freundlich, c Temkin, and d Dubinin-
Radushkevich

Table 4   Comparison of maximum monolayer adsorption capacity of Hyd and Hyd/CB samples with other adsorbents used in MB adsorption

Adsorbent Initial concentration Qm (mg/g) References

N-isopropylacrylamide 10–50 8.5 [44]
N-isopropylacrylamide/itaconic acid 10–50 17.52 [44]
N-isopropylacrylamide/itaconic acid/pumice 10–50 22.18 [44]
Carboxymethyl cellulose/k-carrageenan/activated montmorillonite 10–500 10.75 [45]
Carboxylmethyl cellulose coated Fe3O4@SiO2 magnetic nanoparticles 100 17.5 [46]
Alginate/almond peanut bio composite 25–100 22.8 [47]
H2SO4 crosslinked magnetic chitosan nanocomposite bead – 20.408 [48]
Hyd 10–100 26.247 This work
Hyd/CB 10–100 27.32 This work
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MB adsorption is controlled by chemisorption. MB mol-
ecule's migration during the adsorption process was assessed 
by the IPD model. According to Fig. 5d, MB adsorption 
occurs in two stages including diffusion of dye molecules 
from bulk to the adsorbent surface (first stage) and diffusion 
of dye molecules through pores (second stage). In addition 
to intra-particle diffusion, boundary layer diffusion con-
trols MB adsorption rate because the fitting curve intercept 
doesn’t pass through the origin [38, 42].

Isotherms Study

The four most common isotherm models include Langmuir 
(Eq. 7), Freundlich (Eq. 8), Temkin (Eq. 9), and Dubinin-
Radushkevich (Eq. 10) models are applied to understand the 
distribution of MB molecules at aqueous/adsorbents surface 
[43]. The mathematical equations of these models are rep-
resented as follows.

where qm, and KL (mg/L) denote the Langmuir constant and 
maximum monolayer adsorption capacity, respectively. KF 
(mg/g (L/mg)1/n) and n are Freundlich constants, KT (L/g) 
demonstrates Temkin equilibrium binding constant, and B is 
a constant related to the heat of sorption. In Dubinin-Radu-
shkevich (D-R) isotherm model, qs (mg/g), β (mol2/J2), ɛ (J/
mol), and, Ea (kJ/mol) are theoretical saturation adsorption 
capacity, Dubinin-Radushkevich constant, Polanyi potential, 
and mean adsorption energy, respectively. Equilibrium data 
of MB adsorption are fitted by mentioned models (Fig. 6) 
and their parameters are tabulated in the Table 3. The cor-
relation factor (R2) of the Langmuir model is higher than 
other models depicting monolayer adsorption of MB mol-
ecules occurring on homogenous adsorption surface [2]. 
The maximum monolayer adsorption capacity is 26.247 and 
27.32 mg/g for Hyd and Hyd/CB, respectively. The higher 
adsorption capacity of Hyd/CB is related to providing higher 
surface area and more adsorption sites which are provided by 
CB nanoparticles. The values of separation factor (RL) for 
both adsorbents are founded to be between 0 and 1 revealing 
that the MB removal process is desirable [38]. The values of 
this factor for Hyd/CB are lower than Hyd indicating more 
desirability of MB adsorption onto nanocomposite hydrogel.

To evaluate the performance of synthesized adsorbents, a 
comparison study is performed based on maximum monolayer 
adsorption. As depicted in Table 4, synthesized adsorbents 
show good performance in the adsorption of MB from aque-
ous solution so they can be used as efficient adsorbents for the 
remediation of MB from wastewater.

Thermodynamic Study

To understand the nature and feasibility of the decontamina-
tion process, thermodynamic parameters are determined in the 
temperature range of 25–45 °C. Changes in Gibbs free energy 
(∆G°), change in enthalpy (∆H°), and change in entropy (∆S°) 
are calculated using Van’t Hoff formula (Eq. 11), and obtained 
results are presented in Table 5.

(7)
Ce

qe
=

Ce

qm
+

1

KL qm
RL =

1

1 + KL Ci

(8)Ln (qe) = Ln (KF) =
1

n
Ln (Ce)

(9)qe = B Ln (KT) + B Ln (Ce) B =
RT

b

(10)

Ln (qe) = Ln (qs) − � �2, � = R T Ln

�

1 +
1

Ce

�

, Ea =
1

√

2 �

Table 5   Thermodynamic parameters of MB adsorption to Hyd and 
Hyd/CB samples

Adsorbent T(°C) ∆G° (KJ/mol) ∆H° (KJ/mol) ∆S° (KJ/mol K)

Hyd 25  − 3.217  − 58.633  − 0.186
30  − 1.999
35  − 1.263
40  − 0.344
45  − 0.296

Hyd/CB 25  − 7.336  − 104.129  − 0.325
30  − 5.151
35  − 3.373
40  − 2.4
45  − 1.293
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where KD is the equilibrium constant, R (8.314 J/mol.K) 
is the global gas constant, and T (K) is the absolute tem-
perature. The values of ∆H° and ∆S° are computed from 
the slope and intercept of the Van’t Hoff equation (Eq. 11), 
respectively which is plotted in Fig. 7.

The adsorption of MB onto both adsorbents is spontane-
ous and favorable due to negative values of ∆G° and the 
adsorption process occurs physically due to the values of 
∆G° for both adsorbents being in the range of – 20–0 kJ/mol 
[2, 4, 49]. Decrement of the negative values of ΔG° with ris-
ing temperature demonstrates decrement in the spontaneity 
of the decontamination process [35]. The values of ∆H° for 
both adsorbents are negative depicting the exothermic nature 
of the adsorption process. The calculated values of ∆S° for 
both adsorbents are negative so random collisions between 
MB molecules and the surface of adsorbents decrease during 
the decontamination process.

(11)Ln (KD) = −
ΔH◦

RT
+
ΔS◦

R
KD=

qe

Ce

(12)ΔG◦ = −R T Ln ( KD)

Adsorption Mechanism

A proposed adsorption mechanism to Hyd/CB nano-
composite hydrogel is illustrated in Fig. 8. Based on the 
chemical structure of MB and nanocomposite hydrogel, it 
can be concluded that electrostatic attraction between cati-
onic dye and carboxyl groups of adsorbents, H-bonding 
between –OH and –NH2 groups of adsorbent and nitro-
gen of dye, and л–л interaction between aromatic rings of 
MB and CB of adsorbent is the main mechanism of MB 
adsorption.

Conclusion

In the present study, CMC grafted poly(acrylamide) hydro-
gel was synthesized successfully to remediation of MB from 
an aqueous solution. To enhance the performance of syn-
thesized adsorbent, various contents of CB nanoparticles 
were incorporated into the hydrogel matrix and its content 
was optimized carefully. Different analyses such as FTIR, 
TGA, XRD, BET, and SEM were performed to character-
ize the surface and structural properties of adsorbents. The 
results of the TGA analysis indicated that the thermal stabil-
ity of hydrogel improves with the incorporation of CB. The 
kinetic and isotherm study showed that kinetic and isotherm 

Fig. 8   Scheme of MB adsorption mechanism by Hyd/CB nanocomposite hydrogel
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data best fit to quasi-second-order and Langmuir models, 
respectively. The maximum adsorption capacity (qm) of 
MB was calculated to be 26.247 and 27.32 mg/g for Hyd 
and Hyd/CB, respectively revealing that the performance 
of Hyd/CB in MB removal is higher than the hydrogel. The 
thermodynamic study showed that the adsorption process is 
spontaneous, exothermic, and entropy decreased. Finally, 
it can be concluded that the synthesized adsorbents have 
potential application in removing MB from an aqueous solu-
tion. For future work, it can be proposed that the simulta-
neous selective separation of dyes from aqueous solutions 
will investigate because the presence of mixtures of dyes in 
wastewater is the main problem for the industrial application 
of adsorbents.
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