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Introduction

Plastic pollution arising from petroleum-based non-biode-
gradable polymeric materials presents one of the great chal-
lenges of environmental management [1, 2]. Accordingly, 
biodegradable polymers have gained attention for replacing 
petroleum-based polymers. Polylactic acid (PLA) is a com-
mercial biodegradable thermoplastic polymer derived from 
renewable natural sources, such as starch rich crops [3]. It 
has been commercialised for applications in, for example, 
biomedical implants [4], packaging films [5] and textile 
fibres [6] due to its good processability, biocompatibility, 
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high transparency and good mechanical performance [7]. 
However, its low crystallization rate, thermal stability and 
barrier properties need to be addressed to improve its dura-
bility and widen its application. Blending of natural nanofi-
bres and their derivatives with PLA is a promising approach 
to overcome these drawbacks without compromising biode-
gradability [5].

Microfibrillated cellulose (MFC) consists of nanofibril-
lated cellulose with some micron-scale residual fibrils iso-
lated via mechanical defibrillation of wood or plant fibres 
pulp. MFC has great potential for the fabrication of PLA 
based biocomposites due to its biodegradability, sustain-
ability, non-toxicity and high mechanical performance [8]. 
Its large specific surface area, high aspect ratio and flex-
ible fibril structure lead to interactions between adjacent 
fibrils, forming percolated networks which impart high 
strength to composites [9]. Particularly, solvent casting pro-
cessing technique improve the mechanical performance of 
MFC-PLA biocomposites because slow solvent evaporation 
allows for the rearrangement of microfibrils, promoting the 
formation of a strong percolating network [10].

High lignin containing MFC (MFLC) is a lower-cost 
alternative to MFC, which is isolated from highly puri-
fied lignin-free bleached cellulosic pulp fibres. MFLC has 
attracted attention as it offers the advantages of high yield, 
low production cost and low environmental impact [11]. 
MFLC can be isolated from wood fibres [12–15], plant 
fibres [16–18] and commercial unbleached Kraft [19] and 
mechanical pulp fibres [20–22] without or with partial del-
ignification process. However, the polar nature of MFLC 
causes fibril aggregations in non-polar polymers, resulting 
in a significant decrease in the mechanical performance of 
final composites. This can be overcome through modifica-
tion of the surface of MFLC to decrease its polarity. We 
have shown that such surface modification using acetyla-
tion improves the dispersibility of MFLC in a PLA matrix, 
and hence improve the mechanical performance and ther-
mal properties of the composite [23]. The work we describe 
here considers the same family of PLA-MFLC composites.

The biodegradation of PLA occurs by a two-step mecha-
nism. The first step is abiotic hydrolysis in presence of water 
at high temperature, which leads to a reduction in molec-
ular weight as the result of non-enzymatic polymer chain 
scission of ester groups in PLA [24]. The second step is 
biotic degradation in which microorganisms decompose the 
polymer to the biomass and CO2 under aerobic conditions 
when the molecular weight of PLA reaches about 10000 to 
20000 g mol− 1 [25].

Addition of fibres or fillers in PLA can cause a change in 
its biodegradation behaviours. An important factor affecting 
the biodegradability of PLA based composites is the polar 
nature of the fibres, since hydroxyl groups in the structure 

of fibres increase the polarity of composites, leading to the 
acceleration of water diffusion through the weak fibre-PLA 
interface and consequently abiotic hydrolysis [26]. Because 
natural fibres are widely modified to improve the interface 
between fibres and PLA matrix, understanding the biodeg-
radation behaviour of the modified fibre and PLA com-
posite is important to developing sustainable PLA based 
biocomposites.

In this study, we fabricated MFLC and acetylated MFLC 
(Ac-MFLC) reinforced PLA biocomposites using a solvent 
casting method. The role of acetylation of MFLC on the 
biodegradation behaviours of MFLC-PLA biocomposites 
was investigated by determining the changes in weight loss, 
morphology and viscoelastic properties during the con-
trolled soil burial.

Experimental Section

Materials

PLA (Ingeo™ Biopolymer 4043D) with a density of 1.24 g 
cm− 3 and an average molecular weight of 1.3×105 g mol− 1 
was supplied by NatureWorks LLC (USA). Chemi-thermo-
mechanical pulp (CTMP) was supplied by SCA (Sweden). 
Acetic anhydride and dimethylformamide (DMF) were pur-
chased from Acros Organics (UK). Anhydrous potassium 
carbonate, chloroform, acetone and ethanol were purchased 
from Fischer Scientific (UK). Commercial topsoil was pur-
chased from Westland (UK). All chemicals were reagent 
grade and used without any further purification.

Biocomposites Fabrication

Fabrication of biocomposite films is described fully in a 
previously published procedure [23], so here we provide a 
summary only. MFLC was isolated from CTMP fibres using 
a two-step mechanical treatment, namely high intensity 
laboratory beating (Medway Beater – Reed Paper, UK) for 
30 min, followed by screening and homogenisation (IKA 
T-18) at 20000 rpm for 60 min. The chemical constitution 
of CTMP is provided in [23].

The acetylation of MFLC was performed with con-
tinuous stirring in a three-necked round bottomed flask 
equipped with reflux under N2 flow. Freeze-dried MFLC 
(2 g) in DMF (100 ml) was homogenized for 2 min, and 
transferred to the reaction flask containing acetic anhydride 
(6 ml) and K2CO3 (0.3 g). The suspension was held at 90 °C 
for 1 h. After terminating the reaction by adding de-ionized 
water and removing the excess chemicals using centrifuga-
tion, the solution was rinsed first with deionized water at 60 

1 3

699



Journal of Polymers and the Environment (2023) 31:698–708

°C for 2 h, and then acetone/ethanol (1:1) mixture (200 ml) 
at 60 °C for 2 h.

Biocomposites were fabricated using a solvent casting 
method. Figure 1 shows the processing route of biocompos-
ite fabrication. PLA granules were mixed with chloroform 
(CHCl3) until fully dissolved. The desired amount of freeze-
dried MFLC or acetylated MFLC (Ac-MFLC) in CHCl3 was 
sonicated for 2 min (QSonica – USA), and added into the 
dissolved PLA suspension. The final suspension was mixed 
under magnetic stirring for 4 h, sonicated for 2 min, and 
finally poured into Petri dishes for solvent evaporation at 
room temperature overnight. The biocomposites were dried 
in a vacuum oven at 40 °C for 48 h to remove any residual 
CHCl3. Mechanical characterisation of this family of com-
posites is provided in [23].

Soil Burial of Biocomposites

PLA and biocomposite films (20 × 20 × 0.05 mm) were ster-
ilized with 70 % (v/v) ethanol solution followed by drying 
in vacuum oven at 45 °C for 24 h before the soil burial. 
Then, they were buried in commercial topsoil (Westland, 
UK) at 3–4 cm depth in perforated plastic boxes allowing 
aerobic conditions, and incubated at 45 °C for 30 days. The 
moisture content of soil was 40 %. The water loss of soil 
through evaporation was determined gravimetrically twice 
a week, and rewet to 40 % moisture content by adding dis-
tilled water. After a month in the incubator, samples were 
removed from the soil, washed with distilled water and 
70 % (v/v) ethanol solution, and dried in vacuum oven at 45 
°C for 24 h. The weight loss of the samples was calculated 
using Eq. 1 [27];

 
Wloss(%) =

W0 − W1

W0
× 100 (1)

where; W0 is the weight of the dried samples before soil 
burial, W1 is the weight of the samples after soil burial.

Dynamic Mechanical Analysis

The viscoelastic behaviour of biocomposite films was deter-
mined using a dynamic mechanical analyser (DMA Q800, 
TA Instruments) before and after soil burial. DMA was per-
formed in tension mode under N2 atmosphere. Rectangu-
lar biocomposite films (30 mm × 6 mm × 0.05 mm) were 
analysed in the temperature range 0 to 130 °C at a heating 
rate of 3 °C min− 1 at a frequency of 1 Hz. The amplitude of 
oscillation was 15 μm.

Antimicrobial Testing

The antimicrobial tests of PLA and biocomposites were per-
formed using the standard disk diffusion method [28]. In 
this test, E. coli and S. aureus were used as model Gram-
positive and Gram-negative bacteria, respectively. Nutri-
ent agar medium was prepared using Mannitol salt agar 
(Sigma Aldrich, UK). The agar suspension was then poured 
into Petri dishes, and left to completely solidify at room 
temperature.

The bacteria were grown in Mueller-Hinton broth (Sigma 
Aldrich, UK) suspension for 24 h at 37 °C, and then the 
suspension concentration was adjusted to 0.5 McFarland 
standard using mass spectrophotometry at 600 nm, which is 
equivalent to approximately 1.5 × 108 colony forming units 

Fig. 1 Biocomposite fabrication process
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white and fluffy aggregations through the films, which is 
consistent with poor compatibility between MFLC and 
PLA. However, the Ac-MFLC/biocomposites showed no 
observable aggregation, indicating that surface acetylation 
significantly improved the dispersibility of MFLC in PLA 
matrix. We observed that drying samples to determine their 
dry weight before soil burial did not change the physical 
appearance of PLA and biocomposites. After the soil burial, 
all samples became white and opaque. This could be the 
result of changes in the refractive index due to the water 
absorption during soil burial and/or the formation of low 
molecular weight compounds, resulted from the hydrolytic 
degradation of PLA matrix [29–33]. It is clear that biocom-
posites with high Ac-MFLC content (above 1.5 %) were 
more translucent than those of MFLC/biocomposites due to 
the uniform dispersion of Ac-MFLC. The white and fluffy 
MFLC aggregations were visible through the MFLC/bio-
composites after soil burial. Neat PLA and biocomposites 
maintained their structural integrities and exhibited no for-
mation of any observable hole or crack, which indicates a 

(CFU ml− 1). The final suspension containing bacteria was 
spread on the solidified agar surface. PLA and biocompos-
ite film discs (5.5 mm diameter) were placed onto bacteria 
inoculated agar plates. Four sample discs were placed on 
each agar plate and incubated for 24 h at 37 °C. After 24 h 
of incubation, bacterial growth on PLA and biocomposite 
films was recorded.

Results and Discussion

Physical Changes of Biocomposites

The influence of soil burial on the physical appearance of 
PLA and biocomposite films is shown in Fig. 2. The dig-
ital photo of samples was taken against a standard back-
ground using a Leica Summilux-H lens. Compared to 
transparent neat PLA film, all biocomposite films showed 
translucent structure. Increasing MFLC and Ac-MFLC 
contents increased the opacity of biocomposites. MFLC/
biocomposites (above 1 %) exhibited extensive visible 

Fig. 2 Physical appearance of PLA and biocomposites before and after soil burial. The dimensions of each samples are 20 × 20 mm
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morphology, and no void structure was observed before the 
degradation. However, all biocomposites showed rough sur-
face due to the microfibril network. The microfibril clusters 
were more visible at high microfibril concentrations. After 
soil burial, clear surface erosion appeared on neat PLA 
without any visible crack and hole formations, indicating 
that the hydrolysis of low molecular weight PLA occurred 
on the surface of film. Further, high incubation temperature 
(45 °C) increases the chain mobility facilitating the surface 
erosion in PLA. However, the addition of MFLC and Ac-
MFLC significantly influenced the degradation behaviour 
of PLA. Biocomposites exhibited more localised surface 
erosion than PLA, which could imply that their degrada-
tion mostly occurs in regions with lower local microfibrils 
volume fraction. The surface of MFLC-0.5 biocomposites 
exhibited small channels, which are likely to be crack ini-
tiations facilitating the diffusion of water molecules and 

slow degradation process of the materials under the testing 
conditions.

Morphological Changes of Biocomposites

The change in the surface morphologies of PLA and bio-
composites after soil burial was observed using SEM to 
determine the effect of biodegradation. Figures 3 and 4 
show the SEM images of PLA and biocomposites before 
and after soil burial. Low magnification images can be seen 
in Fig. 1 S and Fig. 2 S. Neat PLA exhibited smooth surface 

Fig. 4 SEM images of the surface morphology of Ac-MFLC/biocom-
posites before and after soil burial

 

Fig. 3 SEM images of the surface morphology of PLA and MFLC/
biocomposites before and after soil burial
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biocomposites as the result of faster water diffusion effect 
rather than hydrolytic chain scission in PLA [38]. This sug-
gest that water penetration might be increased by microfibrils 
which absorbed the water molecules via hydroxyl groups in 
MFLC/biocomposites. In addition, the poor dispersion of 
MFLC into PLA leads to the formation of aggregates result-
ing in more water absorption, which could promote the 
hydrolysis of PLA. Further, absorbed water by microfibrils 
around the porous formations creates a moist environment 
at the microfibril-PLA interface, leading to polymer hydro-
lysis and loosening the interface [39]. This loosening effect 
can cause a channel formation between microfibril and PLA 
matrix at the internal structure of MFLC/biocomposites 

microorganism through the biocomposites [34]; similar 
channels and cracks were reported in previous studies [35, 
36]. Micron-scale porous formations were observed at the 
surface of biocomposites with high MFLC and Ac-MFLC 
contents. The porous formations are marked by red arrows 
in Figs. 3 and 4, and they are illustrated with a schematic 
diagram in Fig. 5a. It is likely that these porous formations 
were the pathway to the internal structure of biocomposites, 
and they increase the rate of water diffusion and promote 
the polymer hydrolysis at the inner part of biocomposites 
[37]. In this case, the insignificant morphologic change 
on the surface of biocomposites after soil burial indicates 
bulk degradation, which is the degradation of inner core of 

Fig. 5 Schematic illustration of 
the degradation characteristic 
of PLA and biocomposites (a). 
Weight loss of soil buried PLA 
and biocomposites (b)
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Viscoelastic Properties of Biocomposites

The effect of MFLC and Ac-MFLC on the viscoelastic 
properties of PLA was determined using DMA testing. Stor-
age modulus (E’) as functions of temperature for PLA and 
biocomposites are shown in Fig. 6a-b. Neat PLA exhib-
ited typical semi-crystalline thermoplastic behaviour, high 
E’ was observed in glassy region (< 47 °C) after which it 
decreased sharply due to relaxation in amorphous sections 
of PLA in glass transition region. The addition of MFLC 
slightly increased the E’ of PLA in glassy region; however, 
5 % MFLC-containing biocomposite displayed a consid-
erably low E’ compared to PLA and other biocomposites. 
This might be due to microfibril aggregations resulting in 
a weaker interface between MFLC and PLA. On the other 
hand, the addition of Ac-MFLC led to a significant increase 
in E’, which may be due to the reinforcing effect of Ac-
MFLC [41]. This can be attributed to the uniform disper-
sion of Ac-MFLC in PLA, and good stress-transfer at the 
interface with PLA [42]. In the glass transition region, both 
MFLC and Ac-MFLC biocomposites exhibited higher E’ 
than neat polymer. Further, the onset drop point of E’ shifted 
to a higher temperature with the addition of MFLC and Ac-
MFLC. This indicates that the microfibril network protected 
the structural integrity of PLA [43–45]. Figure 6c-d show 
the plots of tan δ for PLA and biocomposites, indicating 
chain relaxation and microfibril-PLA interactions [46]. The 
intensity of tan δ for PLA decreased with the addition of 

which have a poor interface due to the polar nature of 
MFLC. In Ac-MFLC/biocomposites; however, the loosen-
ing effect could be lower due to the strong interface between 
Ac-MFLC and PLA as the result of surface acetylation. Fur-
ther, the uniform dispersion of Ac-MFLC may increase the 
barrier properties of PLA, which could decrease the water 
penetration through the biocomposites.

Weight Loss of Biocomposites

The degradation rate of PLA and biocomposite films was 
determined by weight loss calculation (Fig. 5b). The weight 
loss of neat PLA was around 4.2 % after soil burial, indicat-
ing a slow degradation rate. MFLC/biocomposites exhib-
ited slightly higher weight losses than neat PLA. Further, 
the weight loss increased with increasing MFLC content. 
This acceleration trend in the degradation rate of PLA could 
be due to the polar structure of MFLC which increases 
water absorption, promoting hydrolytic degradation at the 
MFLC-PLA interface where water molecules and micro-
organisms can diffuse into the composite materials [40]. 
However, the addition of Ac-MFLC did not significantly 
influence the weight loss of PLA. This could suggest that 
limited water penetration took place through the Ac-MFLC/
biocomposites compared to MFLC/biocomposites, result-
ing in a low PLA hydrolysis at the inner core of Ac-MFLC/
biocomposites.

Fig. 6 Storage modulus before 
soil burial of MFLC/biocom-
posites (a), and Ac-MFLC/bio-
composites (b). Tan δ before soil 
burial of MFLC/biocomposites 
(c), and Ac-MFLC/biocomposites 
(d)
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occurred gradually, which could be attributed to the anneal-
ing effect of the incubation temperature at 45 °C during deg-
radation. This leads to the increase in the crystallinity of 
PLA, restricting segmental mobility in polymer chain [49, 
50]. The changes of tan δ for PLA and biocomposites after 
soil burial are shown in Fig. 7c-d. The peak location of tan 
δ maximum shifted to a higher temperature and the peak 
intensity decreased considerably in PLA and biocomposites, 
indicating decreased chain mobility of polymer matrix due 
to increased polymer crystallinity as the amorphous phase 
of PLA hydrolysed during the soil burial [51]. It shows 
that the biodegradation under soil conditions significantly 
affects the viscoelastic properties of PLA and its biocom-
posites. Similar viscoelastic changes were reported in the 
literature for PLA and its blends, buried at outdoor condi-
tions in which the soil temperature increases via sunlight, 
and hence increases the crystallinity of PLA [52, 53].

Antimicrobial Properties of Biocomposites

The antimicrobial activities of PLA and biocomposites were 
qualitatively investigated against specific Gram-negative 
(E. coli) and Gram-positive (S. aureus) bacteria using the 
disk diffusion method. Figure 3 S shows the photographs 
of PLA and biocomposites taken after antimicrobial testing. 
PLA and biocomposites exhibited no visible exhibition zone 
against both E. coli and S. aureus, indicating no antimicro-
bial activities for all samples and bacterial colonies can 

MFLC. Further, the location of tan δ maximum for MFLC/
biocomposites was 1 to 2 °C higher than for neat PLA. How-
ever, the peak shifting and decrease in the peak intensities 
were more visible in Ac-MFLC/biocomposites. These indi-
cate the restriction of segmental mobility of PLA matrix 
with the addition of Ac-MFLC [47].

The effect of soil burial on the viscoelastic properties of 
PLA and biocomposites is shown in Fig. 7. It is clear that 
soil burial led to decreases in E’ of PLA and biocompos-
ites. E’ of PLA at 30 °C decreased by around 10 % after 
soil burial, which might be due to surface erosion result-
ing from polymer hydrolysis. The decrease in E’ for Ac-
MFLC/biocomposites at the same temperature was lower 
than for neat PLA (Fig. 7a-b). In particular, high Ac-MFLC 
containing biocomposites exhibited the lowest E’ decrease 
of between 4 and 6 %. This may indicate that limited loos-
ening occurred at the interface between Ac-MFLC and 
PLA. Further, the uniform dispersion of Ac-MFLC in PLA 
matrix could decrease the water penetration, resulting in a 
low decrease in E’ for biocomposites after soil burial [48]. 
However, the decrease in E’ for MFLC/biocomposites at 30 
°C ranged from 12 to 25 %, which were considerably higher 
than for Ac-MFLC/biocomposites. This can be attributed 
to the fact that MFLC-PLA interface loosened significantly 
during the soil degradation due to the polar nature of MFLC 
which leads to increased the water penetration, hydrolys-
ing the polymer matrix at the interface. In glass transi-
tion region, the decrease in E’ for PLA and biocomposites 

Fig. 7 Storage modulus after soil 
burial of MFLC/biocomposites 
(a), and Ac-MFLC/biocompos-
ites (b). Tan δ after soil burial of 
MFLC/biocomposites (c), and 
Ac-MFLC/biocomposites (d)
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