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Abstract
Cellulose is a natural polymer that has a lot of potentials. Cellulose gained more interest owing to its renewability, non-
toxicity, economic value, biodegradability, high mechanical properties, high surface area, and biocompatibility. New sources, 
new isolation processes, and new treatments are currently under development to satisfy the increasing demand for producing 
new types of bio-based materials on an industrial scale. This article discusses the fundamentals and latest breakthroughs in 
cellulose biopolymer materials used in the fabrication of composite films owing to the cellulose forming films. Bio-polymers 
are finding wide applications due to their intrinsic properties such as low density, low thermal conductivity, corrosion resist-
ance, and ease of manufacturing complex shapes. Cellulose possesses a highly crystallized structure, hence it is insoluble 
in typical organic solvents. Environmental restrictions are increasingly stringent, which is a key element leading to the 
growth of studies on this subject. These hydrocolloids have been modified by taking advantage of their valuable features; the 
mechanical strength and water resistance of cellulose make it being used as a thickener for large-scale applications such as 
cellulose composite films can extend the shelf life of a product while maintaining its biodegradability. New materials with 
high values are a hot topic for future research with commercial interest. These composite film potentials are contributing to 
the bio-economy. Here, the emphasis on the potential application of bio-composites of cellulose in various industries has 
been discussed.
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Introduction

Polymers are generated from renewable (polysaccharides) and 
edible (proteins) materials. It attracted vast attention, espe-
cially cellulose polymer used as a reinforcing agent in poly-
mer matrices of composites and most importantly, they can 
bio-degrade easier and faster than non-renewable polymers 
[1–5]. Their bio-degradable potentials, preservation character-
istics, cost-effectiveness, bio-compatibility, and environmen-
tally friendly behavior have encouraged their consumption 
as food packaging materials, films, coatings, and wrappings. 
The polysaccharide is a promising edible polymer [6–8]. 
Cellulose and starch are the natural renewable resources of 
polysaccharides, which are widely used in agricultural prod-
ucts as edible film because they can extend the shelf life of 
fresh fruits and preserve flavor [9, 10]. Thus, the hydrocol-
loids have been modified to take advantage of their valuable 
features. Cellulose is a biopolymer demonstrating mechani-
cal and water-repelling properties and has been evaluated as 
a biodegradable material [11–13], while inorganic materials 
pose a great threat to the environment and leave persistent 
pollutants such as dyes and heavy metals ions in water bodies 
[14, 15]. Thus, bio-polymer cellulose attracted attention in 

food, biosensors, and drug applications. [16, 17] It also shares 
similarities with other polysaccharide materials, which are 
abundantly available and commercially affordable [18]. In a 
proper solvent environment, cellulose can produce hydrocol-
loids, which can be used in the preparation of excellent film-
building material. Additionally, cellulose films demonstrated 
good resistance to water and heat generated by microwave 
appliances [19, 20]. Mixing cellulose biopolymer with other 
hydrocolloids has been found to expand its application range 
[21]. It has been observed that the incorporation of original 
cellulose and its derivatives into a polymeric matrix con-
tributes to the improvement in film’s strength of tensile and 
stiffness [22–24]. In general, edible films are created from a 
single type of natural film-forming polymer that adds to the 
positive and negative characteristics [25, 26]. To improve the 
properties of edible films, an alternative strategy is combining 
biopolymers with bio-composite materials [27, 28]. Despite 
the development of new technologies and organizational 
measures up to the implementation of relevant laws, environ-
mental pollution attracts severe concern worldwide [29, 30]. 
Certain attempts have been initiated to address the concerns. 
The creation of cellulosic materials with long operating life 
with an ideal covering of the operational unit is working for 
an entire period [31, 32]. The utilization of such cellulosic 
materials as a fuel for new industries following their regen-
eration. In the natural environment, the modified cellulose 
degrades rapidly [33]. Several technologies have been put into 
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operation under the influence of sunlight, water, air, oxygen, 
bacteria, and other natural forces and degrade the cellulosic 
material’s relatively innocuous compounds [34]. Nowadays, 
technological advancement triggers researchers to invent syn-
thetic biopolymers with improved chemical, mechanical, mor-
phological, and barrier properties, which not only overcome 
the drawbacks of natural polymers but also include other prop-
erties that help to enhance food safety, quality, and shelf-life. 
Moreover, due to environmental sustainability issues, a good 
hand of research work has Bio-composites reinforced with 
renewable bioplastic (cellulose plastic) has been seen in the 
use of bio-composites over the past few decades. There are a 
great number of achievements in eco-friendly technology in 
the field of materials science through the preparation of bio-
composites like in automotive and decking markets, but the 
applications of these composites in other sectors have been 
seen as limited. However, with suitable developmental tech-
niques and utilizing knowledge of science, the potential exists 
for bio-composites to be used in new markets.

This article emphasizes in detail of cellulose-based edible 
composite films’ fundamental understanding, structures, and 
characteristics. It also further explains their compatibility 
with the environment and economic aspects.

Biodegradable Materials

Biodegradable materials are made from renewable resources. 
They are popular for their unique and fascinating properties: 
non-toxicity, biocompatibility, and biodegradability. Bio-
degradable materials decompose over time in natural cir-
cumstance without generating dangerous substances. Such 
materials are ideal alternatives to petroleum-based materials 
and contribute to environmental protection, for they can cut 
carbon dioxide emissions and reduce the use of fossil-based 
raw resources. These materials decomposing faster than tra-
ditional materials, are gaining popularity. Bio-surfactants 
and biopolymers are the most common biodegradable com-
pounds utilized in the sample preparation process [35].

Bio‑Surfactants

Bio-surfactants were found as extracellular amphiphilic mol-
ecules in hydrocarbon fermentation in the late 1960s. They 
were considered to be green materials due to their natural 
source and biodegradability. Bio-surfactants are biological 
products made of hydrophobic and hydrophilic moieties with 
varying polarity and a variety of functional groups with unique 
structural qualities and mostly isolated from microorganisms, 
fungi, and yeast. They are considered the most important and 
diverse families of biodegradable materials utilized in various 
types of applications such as agriculture and industry [36]. 

These materials demonstrate a strong sorption capacity, bio-
logical activity, and great tolerance to severe environments. 
Glycolipids, fatty acids, and polymeric bio-surfactants are the 
four types of microbial surfactants classified following their 
molecular structures [37, 38]. Bio-surfactants are molecules 
that are either low or high molecular weight materials that can 
reduce interfacial tension. It also acts as an effective stabilizing 
agent and attained the potential to be employed in liquid-phase 
micro-extraction to aid in the extraction of organic molecules 
from environmental samples [39].

Biodegradable polymer Film

A film of biodegradable polymer is a homogenous layer 
made of a single or combined biopolymer (polysaccharides, 
proteins, and lipids) [40]. Polysaccharide is the most promis-
ing polymer among edible and degradable polymers, which 
is affordable, widely available, biocompatible, and ecologi-
cally benign [41]. The cellulose, starch, and chitosan are 
naturally renewable polysaccharides that have been used to 
make edible films because of their hydro-colloidal properties 
as shown in Figure 1. In the world of food packaging, natu-
ral & biodegradable, and bioavailable polymers are gaining 
appeal owing to the hard film formed by synthetic material, 
which is hard to be broken [42, 43]. The current research 
is concentrated on generating biodegradable polymer films 
[44]. Microorganisms in the natural environment can dis-
integrate biodegradable polymers and eventually catabo-
lize them to carbon dioxide and water. Polysaccharide is a 
natural biodegradable polymer that has been widely studied 
[45]. Apart from chemical and photochemical degradation 
mechanisms, the micro-organisms present in air, water, and 
soil may easily decompose cellulose and its derivatives [46, 
47]. Cellulase enzyme can degrade cellulose into glucose, 
and glucose can be used to prepare bioethanol. The rate of 
cellulose biodegradation is determined by its crystallin-
ity [48]. Low crystallinity cellulose degrades faster than 
high crystallinity cellulose. In comparison to the dissolved 
pulps, micro/nanoscale cellulose, and cellulose derivatives 
are found less crystalline [49]. Thus, cellulose derivatives 
have substantially attained better biodegradability than other 
types of celluloses. Due to its uniform dispersion and hydro-
phobicity, cellulose has substantially extended the shelf life 
of films [50].

Biodegradable Cellulosic Polymer 
as a Reinforcement Component

Cellulose can form films [51, 52] because of the crystal-
line structure and hydrogen bonding. It cannot be melted or 
dissolved in water or typical organic solvents. It is unable 
to form a gel or film in a normal state. Instead, it is usually 
modified to water-soluble compounds known as cellulose 
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derivatives [53–56]. Due to the intrinsic hydrophilic nature 
of polysaccharides, the cellulose derivative films offer strong 
oxygen and aroma barrier but poor water vapor barrier and 
low mechanical properties [57]. One strategy is to dem-
onstrate a moisture barrier by incorporating hydrophobic 
compounds. The fatty acids and essential oils with cellulose 
derivative matrix make a composite film [58]. It is very dif-
ficult to produce a homogeneous composite film containing 
both hydrophobic and hydrophilic chemicals [59]. A chemi-
cal modification of cellulose to water-soluble derivatives via 
cross-linking with citric acid has been found effective to 
enhance the moisture barrier characteristics, which excelled 
the thickness, molecular weight, and mechanical proper-
ties [60]. However, as the plasticizer content increases, the 
mechanical characteristics of fabricated films decreases, 
except for elongation at break. The latest research has dis-
covered that adding a reinforcing substance such as nano-
materials (i.e. nano-clay/particles) to cellulose-derivative 
films can effectively improve their strength. Aside from 
employing the chemically modified cellulose as a film pre-
cursor, but its derivatives have sparked interest as reinforce-
ment materials in biodegradable polymers both in academia 
and industry [61]. Cellulose reinforcement is primarily used 
to strengthen the polymer matrix structure, but it also creates 
a new composite material with a variety of unique physical 
properties and fascinating attributes [62]. When compared to 
non-biodegradable polymers manufactured from petroleum. 
The biodegradable polymer films typically have displayed 
poor mechanical, thermal, and barrier qualities [63, 64]. The 
inclusion of cellulose derivatives into a degradable poly-
mer film is well known for reducing such limitations and 
the resulting materials are mixed with desirable function-
alities and qualities [65]. Due to the chemical similarities 

of the hydrocolloids, which create positive interactions to 
considerably improve the film values. Biodegradable com-
posite films are made by utilizing a mixture of hydrocol-
loids widely explored [66, 67]. Previous research has also 
demonstrated that cellulose combined with other polysac-
charides can make a uniform bio-composite film [68, 69]. 
Recently, cellulosic materials have been employed as rein-
forcing elements in polysaccharide-based films [70]. Due 
to its excellent mechanical and water resistance, the micro/
nanoscale cellulose has sparked a lot of interest in its use as 
a bio-composite material reinforcement [71, 72].

Polymers From Biomass

Polymers are most typically found in marine and agricultural 
environments, such as polysaccharides, cellulose, protein, 
and lipids. These are the basic materials being used to make 
polysaccharide films. Starch application in the synthesis 
of bio-plastic is a main focus. Cellulose is a plant-based 
biopolymer integrated by lysozyme into cellulose acetate 
(CA) films. The CA films are used in antimicrobial pack-
aging materials. The film with the maximum release rate 
and antibacterial activity was made of 5% CA solution with 
1.5% lysozyme. The increase in CA content has lowered 
the porosity of the film. It also lowered the release rate with 
the maximum release of lysozyme activities. The tensile 
strength of the films and the immobilized lysozyme activ-
ity were both boosted. The addition of lysozyme did not 
reduce the tensile strength of the films except for 15% CA-
containing films. Asymmetric CA films have been found to 
possess a higher potential for achieving controlled release in 
antimicrobial packaging [73, 74]. Using N, N-dimethylacet-
amide/lithium chloride as a common solvent was effective 

Fig. 1   Cellulose, Chitosan, and 
Alginate. (Copyright Permis-
sion Elsevier-2022)
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in the fabrication of all-cellulose nanocomposite (ACNC) 
films from sugarcane bagasse nanofibers. A disk grinding 
technique was used for reducing the diameter. X-ray dif-
fraction (XRD) revealed that crystal size was reduced as the 
duration of dissolution time has been increased such as a 
dissolution time of 10 min has led to the tensile strength of 
fiber sheet, nanofiber, and ACNC as 8, 101, and 140 MPa, 
respectively. The ACNC film water-vapor permeability 
increased as the dissolving time was increased. The ACNC 
has a great potential for use in cellulose-based food packag-
ing owing to its positive characteristics [75]. During the pro-
duction of biomass-based poly(l-lactic acid) PLA. Various 
epoxy-functional reactive oligomers have been developed 
and incorporated. The degraded fragments of chain extend-
ers minimize the effects of hydrolytic degradation and main-
tain the acceptable viscosity of PLA. The molecular weight 
of PLA grew as the reactive oligomers’ functionality has 
been increased. This is due to the carboxylic acid preferred 
reaction with the epoxy groups vs. the hydroxyl groups. The 
minimal reaction with the epoxy groups at the deteriorated 
PLA chains. The two ends have also been demonstrated in 
instances where PLA chains are severely degraded. Higher 
functionality and concentration of reactive oligomers are 
necessary to provide a substantial increase in molecular 
weight and enhance hydrolytic stability [76]. Biomass, the 
only source of renewable organic carbon on Earth, offers an 
efficient substrate for bio-based organic acid production as 
an alternative to the leading petrochemical industry based 
on non-renewable resources. Itaconic acid (IA) is one of 
the most important organic acids that can be obtained from 
lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a 
promising platform chemical with extensive applications. IA 
production can take place through fermentation with fungi 
like Aspergillus terreus and Ustilago maydis strains or with 

metabolically engineered bacteria like Escherichia coli and 
Corynebacterium glutamicum. Bio-based IA represents a 
feasible substitute for petrochemically produced acrylic acid, 
paints, varnishes, biodegradable polymers, and other differ-
ent organic compounds. IA and its derivatives, due to their 
trifunctional structure, support the synthesis of a wide range 
of innovative polymers through crosslinking, with applica-
tions in special hydrogels for water decontamination, smart 
nanohydrogels in food applications, coatings, and elastomers 
as shown in Figure 2 [77].

Bacterial cellulose

Aerobic bacteria synthesized cellulose is known as 
microbial cellulose or bio-cellulose (i.e., Acetobacter 
xylinum) [78, 79]. Bacterial Cellulose (BC) is a poly-
mer alone, which does not require any chemical treat-
ments for cellulose isolation. It’s a unique and intrigu-
ing substance compared to green plant cellulose offering 
superior mechanical strength and degradability [80]. BC 
also features ribbon-shaped fibrils that are 20–100 nm in 
diameter and are made up of considerably smaller 2–4 nm 
nanofibrils and known as bacterial nanocellulose (BNC). 
Furthermore, unlike the methods used for obtaining nano-
cellulose through mechanical processes. BNC is mostly 
created by bacteria through the biosynthesis process as 
shown in Scheme 1 [81]. The elastic modulus of these 
microfibril bundles is 78 GPa and has a high crystallin-
ity (84–89%). These microfibrils hold a larger moisture-
holding capacity, a higher polymerization degree, and a 
finer web-like network. The BC’s outstanding characteris-
tics have widespread applications from food to functional 
materials like diaphragms in speakers, electronic gadgets, 
paper additives, membrane filters, and cosmetics [82–84] 

Fig. 2   Biomass-Derived 
Production of Itaconic Acid as 
a Building Block in Specialty 
Polymers (Copyright Permis-
sion MDPI-2022)



2278	 Journal of Polymers and the Environment (2023) 31:2273–2284

1 3

attributed to its extreme crystalline structure, where dry 
cellulose is neither easily soluble in water nor organic sol-
vents. Cellulose-based gels/films have limited applicabil-
ity [85, 86]. Chemical alteration of the cellulose surface 
is necessary to produce soluble cellulose. Esterification 
is a typical method of converting dry cellulose to a water-
soluble solution. This modified cellulose is an environ-
mentally benign product that can be used in a variety 
of applications [87]. Methylcellulose (MC), hydroxypro-
pyl methylcellulose (HPMC), and carboxymethyl cellu-
lose (CMC) are water-insoluble materials produced by 
etherification with methyl chloride, propylene oxide, or 
mono-chloroacetate. Furthermore, cellulose acetate (CA), 
hydroxypropyl methylcellulose phthalate (HPMCP), etc. 
are popular derivatives employed in commercial items or 
pharmacological research [88]. Ionic liquids (ILs), which 
are sophisticated green solvents have also been widely 
used as the media in cellulose modification. In previ-
ous studies, it is discovered that cellulose may dissolve 
in ionic liquids, which encourages the development of 
novel cellulose solvent solutions. Organic salts consist 
of cations and anions that result in ionic liquids. Dur-
ing cellulose dissolution in ionic liquids, the OH group 
of cellulose forms compounds with the ionic liquid. The 
oxygen atoms in cellulose act as electron donors, while 
the hydrogen atoms act as electron acceptors [89]. During 
the reaction between cellulose-OH and the ionic liquid, 
the hydrogen bonding network of cellulose is disrupted, 
which results in the dissociation of hydrogen bonds 
between the molecular chains of cellulose. Among other 
applications, this novel cellulose material can be utilized 
to generate cellulose composites for thin films supporting 
reaction media, and cellulose-based ions gel in fuel cells 
[90]. Electrospinning of cellulosic fibers for biological 
applications, biosensors, and separating membranes [91]. 
The biosynthesis and [92] the formation of microfibril 
bundles have opposed to mechanical or chemo-mechani-
cal approaches for obtaining nanocellulose [93, 94].

Future Development of Cellulose 
Composites

Throughout the review, cellulose composite offer several 
advantages, which are of great potential to food, medical 
and high-end industries [95]. However, the development 
of these composites is still in the preliminary stages due 
to their undetermined functions, quality, and cost [96]. 
To expand the application of cellulose bio-composites 
across various industries [97], several aspects must be 
considered for future developments and applications. 
Cellulose has been recognized as a good film-forming 
material [98]. However, several studies reported the uti-
lization of its derivatives instead of its original form for 
biodegradable film production. For cellulose derivatives 
exhibit better transparency, mechanical and water vapor 
barrier properties [99]. Cellulose derivatives can sat-
isfy electrical applications such as polymer electrolytes, 
wound dressings, scaffolds, hydrogel for cell and drug 
delivery, biomedical [100], as well as soft gel capsules as 
pharmaceutical devices. The production of these deriva-
tives is environment friendly during the extraction or iso-
lation process. Hence, the production of the edible film 
from the original cellulose should be focused and devel-
oped for future applications. Although the edible film 
produced from untreated cellulose is relatively simple, 
environment friendly, and cheaper than cellulose deriva-
tives. But on the other side, cellulose in its original form 
has poor physicochemical properties, which limited its 
extensive applications. It is believed that the develop-
ment of cellulose composites may attain equal or even 
better performance than the derivatives’ films. In the food 
industry, cellulose derivatives are widely used as a gel-
ling agent for processed foods. This polysaccharide also 
has significant potential for development as a source of 
biodegradable [101] or edible film in packaging appli-
cations. Nevertheless, cellulose derivatives exhibit some 
poor physical and thermal properties that are needed for 

Scheme 1   Bacterial cellulose 
luminophore paper prepared 
by impregnation and ambient 
drying, (Copyright Permission 
MDPI-2022)
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the food packaging process [102, 103]. In this regard, 
cellulose especially in its nano-size has been proposed 
as a reinforcing agent in derivatives film owing to its 
high adhesive strength and tensile modulus [104]. Thus, 
the bio nano-composite-based film revealed remarkable 
improvement in its properties as compared to pure deriva-
tives films. Nevertheless, this nanocomposite-based film 
has limited usage in some food packaging applications, 
wherein it cannot be classified as edible food wrapper 
due to cellulose being considered non-edible material, 
although cellulose is found in all plants and most preva-
lent carbohydrate on the planet. Humans are unable to 
consume it since no vertebrate has the enzymes neces-
sary for its breakdown. Herbivores, on the other hand, 
have symbiotic bacteria in their intestines, which help 
in cellulose digestion. To increase the use of cellulose 
composite film in this food industry, the recent progress 
in research has effectively turned cellulose into an edible 
form of material to use in food and food wrappers that 
may be digested by the consumer [105]. This incredible 
accomplishment has paved the way for the future develop-
ment of modified cellulose in degradable materials [106] 
as well as food packaging that can be consumed. The 
cellulose or its derivative may be blended with modified 
cellulose to obtain new exciting products [107], novel and 
multifunctional composite films, which may be utilized 
and developed for advanced applications.

The bio-composites derived from renewable resources 
have been the subject of attention. The abundant and 
cheap availability of petroleum-based materials restricted 
the earnest efforts for the development of eco-friendly 
materials. Presently, increasing environmental concerns 
and regulations have put a deliberate interest in this direc-
tion. The very important advantages of natural fibers as 
filler over traditional carbon and glass fibers are their eco-
friendly nature. In most cases, unfortunately, the natural 
fiber composite does not reach the same strength level as 
glass fiber composites mainly because of incompatibility 
between generally hydrophobic host polymer matrix and 
hydrophilic natural fiber, combined with a lower ther-
mal resistance of the cellulosic material. In the last cou-
ple of years, it has been observed that highly crystalline 
cellulose has some unique and outstanding potential to 
increase the composite material properties at lower filler 
concentration, in comparison to unfilled polymer matrix 
counterparts. Cellulose has to overcome many obstacles 
against industrial practices due to time-consuming prepa-
ration procedure with very low yield, highly hydrophilic 
surface, commercial unavailability, poor dispersion due to 
high agglomeration tendency, low thermal stability, and 
most importantly, in general, comparatively higher cost 
through the expensive source [108, 109].

Biodegradation of Cellulose

The primary objective to fill the polymer matrix with cel-
lulose is to develop eco-friendly green composites with 
the potential of degradation in the biocycle by the action 
of different microbes, leaving behind unharmful residue 
biomass with the emission of carbon dioxide (CO2) and 
water. Therefore, the evaluation of the environmental bio-
degradability of cellulose-based composites is a highly 
important factor in order to expand their applicability. 
Cellulose is not uniform in structure and there are some 
imperfections, mostly due to the various chain disloca-
tions and ends [110, 111]. It is known to degrade by the 
action of exoglucanases initiated through the action from 
the end. There is limited research conducted in the area of 
biodegradation of cellulose-based composites. In a report 
on the biodegradation study of cellulose-reinforced rubber, 
the biodegradability of the sample was enhanced with the 
amount of filler, where the results indicated that crystal-
linity caused important effects in promoting the biodeg-
radability of rubber. Similarly, the presence of bagasse 
whiskers resulted in an increase in moisture sorption of 
rubber films where the highest weight loss in soil was 
observed at 12.5% whisker content fueling the conclusion 
that the presence of cellulose whiskers increased the rate 
of degradation of rubber in soil. Poly(lactic acid) (PCL) 
reinforced with cellulose whiskers highly dispersed with 
poly(ethylene glycol) were examined for biodegradation in 
simulated body fluid, where an improvement in the water 
absorption and biodegradation of the nanocomposites was 
observed. Cellulose whiskers isolated from bagasse have 
been filled in polycaprolactone after modification with 
n-octadecyl isocyanate and nanocomposites were fabri-
cated by a casting/evaporation technique. Bio-disintegra-
tion studies of the PCL/cellulose in soil were carried out 
and an increase in the bio disintegration was found after 
the addition of 7.5% modified whiskers. At higher loadings 
of modified cellulose whiskers, the weight loss tended to 
decrease, but it was still higher than that of neat PCL [112, 
113]. The effect of compatibility on the biodegradation of 
cellulose reinforced composites has not been quantified till 
now in relation to the mechanical performances. However, 
the reports on the macro natural fiber-filled composites 
indicated a role of compatibilization in the degradation 
of resulting composites, and there was a significant effect 
of the method of preparation on the degradability of the 
composites. The composites prepared by direct reactive 
mixing were found more degradable. It has been proposed 
that compatibility may increase the properties and biodeg-
radation of the host matrix [114, 115].
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Conclusions

This review emphasizes cellulose film generation, which 
offers great compatibility, biodegradability, and potential 
contribution to the established economy. It is suitable for the 
production of biodegradable and cost-effective mix films for 
a variety of applications. The current state and future pos-
sibilities of the most promising natural polymer cellulose, 
and its derivatives, such as hydrogels, films, and composites 
are elaborated here in detail. Cellulose is the most abundant 
renewable material in the biosphere, for it is cost-effective, 
non-toxic, and biodegradable. Thus, it’s worth looking into 
the newly synthesized composite materials for the prepara-
tion of goods that are sustainable, useful, and cost-effective. 
This incredible accomplishment has paved the way for the 
future development of modified cellulose in degradable 
materials in food packaging that can be consumed. The cel-
lulose or its derivative blended with modified cellulose will 
be a new exciting product that can form novel and multifunc-
tional composite films and should be investigated further for 
future development and advanced applications.
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