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Abstract
Although polyvinyl alcohol (PVA) membranes are commonly used for CO2 separation, there is still large development space 
in mechanical properties and high selectivity of the gas separation process. In this study, the gas separation performance and 
mechanical properties of the (PVA/Cu2+) substrate membranes were improved by introducing polyamidoamine (PAMAM). 
PAMAM had an important effect on the gas adsorption and separation performance of the membrane. In addition, the gas 
adsorption and separation properties of the PVA/Cu2+/PAMAM membrane (PPCm) were analyzed and studied when the inlet 
gas pressure and the species of mixed gases were variable. The results showed that the crystallinity and mechanical properties 
of the membrane with the PAMAM had been significantly improved. Young’s modulus of PPCm with 30% PAMAM was 
132% higher than that of the PVA/Cu2+ composite membrane without PAMAM. In addition, efficient separation efficiency 
and high selectivity of the gas separation process were observed. The separation factors of the PPCm for CO2/H2 and CO2/N2 
were about three times higher than that of the PVA/Cu2+ substrate membranes. These results suggested that the introduction 
of PAMAM was promising for CO2 separation and permeance.
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Introduction

With the increasingly severe climate change, the separation of 
carbon dioxide from its emission sources has attracted global 
attention. Efforts have been made to find economic separation 
techniques to capture and separate CO2 [1–5]. Many CO2 cap-
ture technologies have been developed, among which mem-
brane separation is one of the most effective technologies. 
Compared with the traditional method of solvent absorption, 
membrane separation technology has the advantages of low 
investment cost, compact structure and no secondary pollution 
[6–8]. Polyvinyl alcohol (PVA) membrane is generally used in 
the mixed gas separation, because it has the large amount of 
the hydroxyl groups on its surface, which is conducive to the 
formation of a large diffusion rate difference in the membrane 
[9–13]. Nevertheless, the separation efficiency and mechani-
cal properties of the membrane are still poor, and it cannot be 
commercially applied. The in-depth study of PVA membranes 
found that some metal ions with PVA could form macromo-
lecular complexes [14–19]. Therefore, the mechanical prop-
erties of the PVA based membrane were further improved by 
introducing Cu2+ into the PVA membrane [10]. But its gas 
separation efficiency still needs to be improved.
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Besides, there is a constraint trade-off between permeability 
and selectivity of commonly used polymer membranes. Poly-
mer membranes with high permeability are usually less selec-
tive [20–23]. The promotion transfer membrane is to introduce 
the carrier inside the membrane, which is connected to the 
base membrane in the form of covalent bond. And then to 
promote the transfer of the component by reversible interaction 
between the carrier and a specific gas component in the mixed 
gases to be separated. Moreover, it may be mentioned that the 
carrier in the membrane is connected to the substrate in the 
form of covalent bond, which effectively solves the immobili-
zation problem of the carrier [24, 25].

Polyamidoamine (PAMAM) is one of the most widely 
studied and mature tree-like molecules. It has high branching 
degree, symmetrical radial structure, high group density of 
surface amine groups. PAMAM can provide a large number 
of primary and secondary amine reaction active points, and 
has good hydrodynamic properties, easy membrane formation, 
good compatibility with PVA and so on [26–28].

In this work, based on the high permeability and selectivity 
of CO2, PAMAM was introduced into PVA/Cu2+ membranes 
to prepare the PVA/PAMAM/Cu2+ promoting transfer mem-
brane (PPCm) for further exploration. PAMAM could provide 
a large number of reversible reaction points with carbon diox-
ide. It was found that without affecting the permeability, the 
selection of CO2 was highly improved. It provided a solution 
for the membrane to weaken the constraint trade-off between 
permeability and selectivity of it.

Experiment

Materials

PVA (117) was purchased from Kuraray Co.Ltd. CuSO4·5H2O 
(Analytical Reagent) was from Beijing Sinopharm Chemical 
Reagent Co., Ltd. Polyethersulfone (PES005) was from Bei-
jing Vontron Technology Co., Ltd. PAMAM (zero-generation) 
was self-made in laboratory.

Preparation of the PPCm

PVA aqueous solution with solid content of 5% was prepared. 
Then different contents of PAMAM were added into PVA 
solution by stirring 4 h at room temperature. The calculation 
formula of PAMAM content (wPAMAM) is as follows:

The mPAMAM, mPVA, mCu
2+ are the mass of PAMAM, 

PVA, Cu2+.

wPAMAM =
mPAMAM × 100%

mpamam + mPVA + mCu2+

Whereafter, 5% Cu2+ was added into PVA/PAMAM solu-
tion by stirring 2 h at room temperature. Then the solution 
was allowed to stand for a period of time to remove the 
bubbles. The PVA/PAMAM/Cu2+ membrane-forming solu-
tion was poured horizontally into the glass mold to get the 
PVA/PAMAM/Cu2+ promoting transfer membrane (PPCm). 
Finally, the PPCm was dried at 60 ℃ for 24 h.

Characterization

The structure of the PPCm was determined by Fourier trans-
form infrared spectrometer (FTIR). The infrared scanning 
test was carried out by potassium bromide pressing method 
and Nicolet iN10MX (Thermo Electron, US) infrared tester. 
The scanning range was 4000–500 cm−1.

The structure of dried PPCm was observed and photo-
graphed with scanning electron microscope (SEM) (Quanta 
FEG-250, FEI Nanoports, US) operating at an acceleration 
voltage of 10 kV.

The dried samples were tested with Different Scanning 
Calorimety (DSC) (Q2500 TA Instruments) in the N2 atmos-
phere. And the sample weight was about 5–10 mg.

The mechanical properties test, the splines were placed 
24 h before testing. And it tested by the tensile speed of 
50 mm/min at room temperature. During the experiment, 
each group of samples was tested 5 times, and the average 
value was taken.

Gas permeability and separation performance test: effec-
tive sample size: Φ97 mm, transmission area: 38.48 cm2 
and gas test pressure: 0.5 MPa for the single gases CO2, N2 
and H2. Effective transmission area: 19.26 cm2 and gas test 
pressure: 0.1 MPa–0.5 MPa for mixed gases CO2/N2 with a 
volume radio of 85/15 and CO2/H2 with a volume radio of 
50/50. The adsorption separation chamber was sealed with a 
sealing ring to ensure that the gas on the permeace side did 
not diffuse with the air during the test.

2. Results and Discussion

Figure 1 illustrated the schematic for the preparation of the 
PVA/Cu2+/PAMAM membranes (PPCm) and the process of 
gases separation. PAMAM has high concentrations of amine 
groups which can enable the membrane to increase the selec-
tivity of CO2. Therefore, PAMAM was introduced into the 
PVA/Cu2+ membranes. Cu2+ and PAMAM complexed with 
PVA polymer chains to form the PPCm with significantly 
enhanced mechanical properties and separation efficiency 
[7, 8]. Generally, small molecular gases such as CO2, N2 
and H2 permeated through the membrane by the physical 
solution-diffusion mechanism. However, when PAMAM was 
introduced into the membrane, the amine groups in PAMAM 



4195Journal of Polymers and the Environment (2022) 30:4193–4200	

1 3

could react reversibly with CO2, so as to promote the perme-
ance and separation of CO2.

Structure Characterization

Figure 2 showed the FTIR spectra of PPCm with differ-
ent PAMAM contents. For the PVA/Cu2+ base membranes 
without PAMAM, there was 3416 cm−1 stretching vibra-
tion attributed to -OH, 2919 cm−1 stretching vibration 
attributed to -C-H, the stretching vibration of 1434 cm−1 
was H–C–H, 912  cm−1 and 842  cm−1 belonged to the 
stretching vibration of C–O–H and C–C respectively. 
But for the PPCm two new absorption peaks position 
at 1645 cm−1 and 1565 cm−1 belonged to the stretching 
vibration of –C–O– and bending vibration of –N–H in 
PAMAM. With the increase of PAMAM, they shifted to 
1655 cm−1 and 1555 cm−1. At this time, the peak posi-
tion of –OH gradually moved to a lower wave number. 
The shift of these functional group peaks was mainly due 

to the hydrogen bond interaction between the –NH–CO- 
group in the PAMAM and the –OH group in the PVA. The 
strong hydrogen bonding interaction could act as physical 
crosslinking agents, which would enhance the mechanical 
performances of the matrix.

Figure 2(b) showed the surface and cross-section SEM 
images of PPCM with different PAMAM contents. When 
the content of PAMAM was 0% and 5%, the cross-sec-
tion and surface of the membrane were smooth, and no 
obvious PAMAM agglomeration was observed. However, 
when the content of PAMAM exceeds 10%, it was obvi-
ous that the agglomeration phenomenon was more and 
more obvious on the surface, and the aggregate was also 
larger and larger. The cross section of the membrane was 
also rougher. The results showed that with the increase 
of PAMAM content, the surface roughness of PPCM 
increases, resulting in the decrease of membrane homog-
enization. This also led to a decrease in the tensile strength 
of the membrane.

Fig. 1   The schematic for preparation of the PPCm and the process of gases separation

Fig. 2   a the FTIR spectra and b the surface and cross-section SEM images of PPCm with different PAMAM contents
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DSC Analysis

Figure 3 showed the DSC curves and crystallinity of PPCm 
with different PAMAM contents. From the endothermic 
curves of the PPCm, PVA crystallization peak at ca. 180 ℃ 
could be observed. With the introduction of PAMAM, the 
crystallization onset temperature and the crystallization peak 
temperature decreased with the increase of PAMAM. The 
crystallinity of PPCm could be calculated from the follows:

ΔH0 is the melting enthalpy of the PVA membrane at 
100% crystallinity; the ΔHc is the melting enthalpy of the 
transfer membrane; and the f is the mass fraction of the poly-
mer matrix.

It could be concluded that the crystallinity of PPCm was 
obviously higher than that of PVA/Cu2+ based membrane 
without PAMAM, as shown in Fig. 3(c). With the increase 
of PAMAM, the crystallinity of PPCm increased obviously. 
The results showed that the PAMAM with high degree of 
branching exhibited heterogeneous nucleation effect in the 
PVA matrix, which could increase the crystallinity.

Mechanical Properties

Figure 4 illustrated tensile strength, Young's modulus and 
elongation at break of the PPCm with different PAMAM 
contents. Figure 4 showed that the tensile strength of 5% 
PAMAM increased to the maximum. And then the tensile 
strength of PPCm decreased continuously with the increase 
of PAMAM content. PAMAM exhibited reinforcing effect 
in the matrix, and increased the rigidity of the membrane. 
With the increase of PAMAM, the Young’s modulus of 
PPCm increased obviously. When the content of PAMAM 

Xc =
ΔHc

f × ΔH
0

× 100%

in the membrane was 30%, the Young’s modulus reached 
648.6 MPa. The Young’s modulus of the film without 
PAMAM was only 279.5 MPa. The Young’s modulus of 
the transfer promoting membrane with the 30% PAMAM 
content increased by 132% compared with the PVA/
Cu2 + base membrane without PAMAM. The main rea-
son was that the crystallinity of the membranes increased 
with the increasing of PAMAM. As the crystallinity of the 
membrane increased, its Young’s modulus will increase 
accordingly. The fracture elongation of PPCm decreased 
significantly with the increase of PAMAM content. When 
the existence of PAMAM was too much, it destroyed the 
structure of the membrane, resulting in the decrease of ten-
sile strength and elongation at break. Besides, the results 
of Young’s modulus and tensile strength were mainly due 
to the increase of crystallinity of the PPCm, as well as 
the strong hydrogen bonding interactions. The raise of 
intermolecular force leaded to the promotion of Young’s 
modulus and the decline of tensile strength.

Fig. 3   DSC a heating curves b cooling curves and c Crystallinity of PPCm with different PAMAM contents

Fig. 4   Tensile strength, Young’s Modulus and Elongation at break of 
the PPCm with different PAMAM contents
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Gas Permeance Properties

Separation Properties for a Single Gas

The gas permeance unit (GPU) of three single gases, CO2, 
H2 and N2, were measured, as shown in the Fig. 5. The CO2 
GPU of the PPCm increased with the increase of PAMAM. 
The gas permeance unit of CO2 was as high as 120 GPU 
when the PAMAM concentration was 30%. It was much 
greater than that of N2 and H2. Even with the increase of 
PAMAM concentration, the gas permeance unit slightly 
decreased. The small decrease of gas permeance of N2 and 
H2 was related to the increase of PAMAM content. It was 
mainly due to the reduction of physical solution-diffusion 
in the process of gas permeance. The crystallinity of the 
membrane increased and the molecular chain arrangement 
orientation made the membrane more compact, so the small 
molecules that could be physically penetrated were reduced. 
Therefore, the physical solution-diffusion of the membrane 
decreased with the PAMAM content increasing. However, 
in the course of CO2 permeance through PPCm with amine 
carriers, there was not only physical solution-diffusion 
mechanism, but also facilitated transport mechanism. This 
fully illustrated that the introduction of PAMAM would have 
an efficient effect on the separation of mixed gases.

Separation Properties of the Mixed Gas

As shown in Fig. 6, the gas permeance unit of CO2/N2 with a 
volume ratio of 15/85 was measured under different inlet gas 
pressures. The GPU of CO2 and N2 increased significantly 
with the increase of PAMAM contents. And the CO2 and 
N2 permeance unit increased at higher inlet gas pressure. 
When the PAMAM was 10% and the inlet gas pressure was 

0.5 MPa, the CO2 permeance unit was 7.3 GPU and the N2 
permeance unit was 1.6 GPU, as illustrated in Fig. 6 (a, b). 
Separation factor was an important parameter to measure 
the separation ability of membranes. The separation factors 
for the CO2/N2 gas mixture of PPCm were calculated, as 
shown in Fig. 6(c). The separation factors of PPCm could 
be calculated from the follows:

yA is the volume fraction of component A in the detection 
gas (including permeability and purge gas); yB is the vol-
ume fraction of component B in the detection gas (including 
permeability and purge gas); XA is the volume fraction of 
component A in the feed gas; XB is the volume fraction of 
component B in the feed gas.

As the PAMAM content increasing, the separation factor 
of CO2/N2 increased obviously. When the content of amine 
was too much, its steric resistance increases, resulting in the 
decrease of air filtration efficiency.

The permeance of small molecular gases such as CO2 and 
N2 through the membrane was the physical-diffusion mecha-
nism. Beyond that, there was another facilitated transport 
mechanism for CO2 permeance through the PPCm. There-
fore, the gas permeance unit of CO2 was obviously larger 
than that of the N2. And with the increase of PAMAM con-
tents, the separation factor increased. Because it increased 
the density of effective amine groups which were capable 
of interacting with CO2. The CO2 and N2 permeance unit 
increased at higher inlet gas pressure, because of the cou-
pling of two gases in the mixture. In general, the separation 
factors of PPCm increased with the increase of PAMAM.

The general trade-off between polymer permeability and 
selectivity was first quantified by Robeson when he identi-
fied 16 s in plots of log (Px/Py) versus log (Px). Robeson 
updated all of the upper bounds in 2008 using initial data for 
two spirobisindane-based Polymers of Intrinsic Microporos-
ity. Among them, the upper limit of CO2/N2 was updated 
again by McKeown et al. in 2019. Fitting parameters for 
the 2008 and proposed CO2/N2 and CO2/H2 upper bounds 
using the formula:

where Px is permeability of the most permeable x-gas, k 
is the front factor, αxy is the selectivity for x/y gas pair, and 
n is the slope.

In Fig. 6(d), under the same 1 bar = 0.1 MPa, the com-
parison of the CO2 separation performance in this work with 
the upper bounds in the literature [11, 20] was showed. The 
PCO2/PN2 in the work was numerically close to the upper 
bounds in the literatures. Therefore, as the gas separation 
membrane was qualified.

� =
yA∕yB

XA∕XB

px = k�n
xy

Fig. 5   The gas permeance unit of the PPCms with different PAMAM 
contents
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Under different inlet gas pressures, the gas permeance 
unit of CO2/H2 with a volume ratio of 50/50 was illustrated 
in Fig. 7(a, b). The CO2 permeance unit generally decreased 
and then stabilized with the increase of PAMAM content, 
while the H2 permeance unit generally decreased with the 
increase of PAMAM content. The CO2/H2 separation fac-
tors of the PVA/PAMAM/Cu2+ transfer membranes were 
calculated, as shown in Fig. 7(c). And when the PAMAM 
was 20% and the inlet gas pressure was 0.5 MPa, the sepa-
ration factor of the PPCm was 1.3, reaching the maximum. 
It was in the upper part of diffusivity coefficient CO2/N2 lie 
between 0.9 and 1.5 proposed by McKeown et al. The sepa-
ration factor of CO2/H2 increased steadily, with the increase 
of PAMAM contents. When the PAMAM content exceeded 
20%, the separation factor of PPCm for CO2/H2 decreased.

Since the dynamic diameter of the H2 molecule is smaller 
than that of the CO2 molecule [29]. The small size of H2 
molecule was easier to permeate through the membrane than 
CO2 and N2 molecules by the dissolution-diffusion mecha-
nism, when the PAMAM content increased, the tightness 
of the membrane increased, resulting in the decline of H2 

permeance unit. However, CO2 mainly permeated through 
the PPCm by the facilitated transport mechanism. Therefore, 
the separation factor of the PPCm for the CO2/H2 mixture 
was much smaller than that for CO2/N2. When the PAMAM 
content was too much, the effective amine density decreased. 
And it had resulted in the decline of the separation factors.

In Fig. 7(d), under the same 1 bar = 0.1 MPa, the com-
parison of the CO2 separation performance in this work was 
compared with the upper bound in the literature 20. And the 
numerical gap between the CO2/H2 separation performance 
of the membranes in this work and the upper bound was 
bigger than that between the CO2/N2 separation performance 
of the membranes in this work and the upper bound in the 
literature.

Conclusion

In this study, PAMAM was successfully introduced into 
the PVA/Cu2+ base membrane, and the uniformly transpar-
ent PPCm was successfully prepared. PAMAM could act 

Fig. 6   CO2/N2 mixture separation performance of the membranes 
with different PAMAM concentrations. a CO2 permeance, b N2 per-
meance, and c the separation factors of the CO2 /N2; d comparison of 

the membranes with 5%, 10%, 15% and 20% PAMAM performance 
in this work with literature data 11, 20 for CO2/N2. Feed gas: CO2/N2 
(15/85 by volume) mixture
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as heterogeneous nucleation agents in the PVA/Cu2+ base 
membrane to improve the crystalstallization of the transfer 
membrane. The introduction of the mechanical properties 
of PAMAM reduced the fracture elongation and increased 
the elastic modulus. The introduction of PAMAM has little 
effect on the gas permeance unit (GPU) of N2 and H2. But 
it significantly improved the GPU of CO2. As the content 
of PAMAM increased, the separation factor of PPCm of 
CO2/N2 and CO2/H2 were increased. The separation factor 
of PPCm of CO2/N2 was much larger than that of CO2/H2. 
This membrane can be used for CO2 capture and separa-
tion, and it will make an important contribution to the 
greenhouse effect.
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