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Abstract
In the present study, exopolysaccharides (EPS) production by Cupriavidus pauculus 1490 was optimized by response surface 
methodology. The results showed that sodium gluconate (4.15 g/L), NH4Cl (0.52 g/L), and Na2HPO4·12H2O (0.04 g/L) were 
the optimal medium components and concentrations. The actual EPS yield of 293.2 m g/L in the optimized medium was 
in close agreement with the predicted value of 283.35 m g/L. Analysis of fourier transform infrared spectroscopy indicated 
the EPS contained abundant functional groups, such as –OH, C=O and C–O–C, and all of them were attributed to the char-
acteristics of polysaccharides. Mannose, glucuronic acid, glucose and xylose were detected as the main monosaccharide 
composition of EPS. Rheological analysis suggested that the rheogram of EPS has similar trend with Xanthan and presented 
the property of non-Newtonian fluid. Moreover, the addition of NaCl and KCl would partly weaken the shear stress of EPS. 
Three in vitro assays were conducted to evaluate the antioxidant potential of the EPS. Results demonstrated that the EPS 
possessed scavenging capacity on hydroxyl radical, DPPH radical and superoxide anion radical in a dose-dependent way. 
As indicated by above results, the EPS isolated from C. pauculus 1490 might serve as a potential antioxidant agent to be 
applied in nutraceutical and pharmaceutical industries.
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Introduction

Microbial exopolysaccharide (EPS) is a kind of extracel-
lular high-molecular-weight polymer excreted into the 
surroundings by microorganisms during growth, such 
as fungi, blue-green algae and bacteria [1, 2]. EPS has 
received considerable attention because of their stabiliz-
ing, gelling and texturizing properties, as well as low tox-
icity and environmental friendliness. Moreover, microbial 
EPS possesses potential biological function in antioxidant, 

anti-inflammatory and antitumor activity [3–6]. Up to now, 
a variety of commercial microbial EPSs, such as Xanthan, 
Gellan, Curdan, Pullan, Dextran and Alginate, have been 
explored in industrial applications [7–9].

Cupriavidus is a gram-negative bacterium of the class 
beta-proteus, which exists widely in the environment [10]. 
Some of Cupriavidus species were reported to have the char-
acteristics of producing EPS [11–13]. Genome analysis of C. 
alkaliphilus ASC-732 suggested it possessed a total of four 
putative gene clusters related to EPS production, including 
epsI, epsII, epsIII and epsIV. Depending on their rheologi-
cal and viscoelastic properties, EPS produced by ASC-732 
strain could be used in various applications, such as emul-
sifiers, food additives thickeners and so on [11]. C. neca-
tor IPT 027 produced novel EPS from glucose and crude 
glycerol, which was mainly constituted of monosaccharides 
(glucose, mannose, arabinose and fucose), uronic acid and 
amine group. It also exhibited pseudoplastic non-Newtonian 
fluid behavior and potential applicability in food industry 
[12]. EPS produced by C. pauculus KPS 201 was positively 
affected by the increase of nitrogen and phosphate in the 
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medium, and it was identified as a homopolymer of rham-
nose [13].

Response surface methodology (RSM) is a widely used 
statistical tool to optimize biomass cultivation, enzymes pro-
duction, spore generation and so on [14, 15]. In this study, 
single factor experiments were conducted firstly to select 
the key medium components affecting EPS production by C. 
pauculus 1490, and further optimization was carried out by 
RSM. Thereafter, Fourier transform infrared spectroscopy 
and monosaccharide composition of EPS were analyzed 
to reveal its basic structure feature. Rheological property 
and antioxidant activity of EPS were also characterized to 
explore its potential application value. This preliminary 
study focused on improving EPS yield and recognizing the 
correlation between structure, rheological property and anti-
oxidant activity. This information will be conductive to the 
subsequent modification at molecular level targeting at EPS 
structure.

Experimental Section

Microorganism and Culture Conditions

Cupriavidus pauculus 1490 used in this work was purchased 
from China General Microbiological Culture Collection 
Center, CGMCC. The strain was originally preserved in 
the form of freeze dried powder and firstly activated in LB 
medium (peptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L, 
pH 7.0). Thereafter the enriched bacterial strain was inoc-
ulated into 100 mL Tris-buffered minimal medium, com-
posed of Tris-base 6.06 g/L, NaCl 4.68 g/L, KCl 1.49 g/L, 
NH4Cl 1.07 g/L, NaSO4 0.43 g/L, MgSO4·6H2O 0.2 g/L, 
CaCl2·2H2O 0.03  g/L, Na2HPO4·12H2O 0.02  g/L and 
sodium gluconate 0.04 g/L, with an initial pH of 7.0 in 
250 mL Erlenmeyer flasks for EPS production. All the flasks 
were incubated in the rotary shaker at 30 °C and 150 rpm.

Single Factor Experiments

To find out the critical medium components affecting EPS 
production, different concentrations of sodium gluconate 
(1, 2, 3, 4, 5, 6, 7, 8 g/L), NH4Cl (0.267, 0.535, 0.802, 
1.07, 1.337, 1.605, 1.872, 2.14 g/L), Na2HPO4·12H2O (0, 
0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2 g/L) and MgSO4·6H2O 
(0.107, 0.215, 0.322, 0.43, 0.537, 0.645, 0.752, 0.86 g/L) 
were selected as carbon source, nitrogen source, phospho-
rus source and sulfur source, respectively, to explore their 
influence in EPS yield. 1% (v/v) of seed culture from Tris-
buffered minimal medium was inoculated into 100 mL fresh 
medium with initial pH of 7.0 in 250 mL Erlenmeyer flasks. 
All the flasks were incubated in the rotary shaker at 30 °C 
and 150 rpm. EPS yield was tested after 72 h.

Central Composite Design (CCD)

The most significant variables from single factor experi-
ments were further optimized by RSM using a CCD to 
maximize EPS yield. Three components (sodium gluconate, 
NH4Cl and Na2HPO4·12H2O) that significantly influenced 
EPS production were optimized by RSM using a 3-factor-
3-level CCD. The actual levels of variables are displayed in 
Table 1. In order to correlate the response variable (i.e., EPS 
yield) to the independent variables, the yield was fit accord-
ing to the following second-order polynomial model Eq. (1):

where Y represents the response variable, b0 is the intercep-
tion coefficient, bi is the coefficient of the linear effect, bii 
is the coefficient of quadratic effect, bij is the coefficient of 
interaction effect when i < j, and k is the numbers of involved 
variables.

Statistical analysis of the data was performed by Design-
Expert software (version 8.0.6.1). The model and the sec-
ond-order polynomial equation were validated by perform-
ing the EPS production under the conditions predicted by 
the model.

Fourier Transform Infrared Spectroscopy (FTIR) 
Analysis

1 mg of dry sample was mixed with 100 mg KBr powder and 
pressed into fine powder for FTIR analysis. FTIR spectrum 
was obtained by a Nicolet Nexus 670 FTIR spectrometer at 
a resolution of 2 cm−1 between the range of 4000–400 cm−1.

Analysis of Monosaccharide Composition

5  mg of EPS was hydrolyzed with 1  mL 2  M TFA at 
121 °C for 2 h. After derivatization by 1-phenyl-3-methyl-
5-pyrazolone (PMP), the product was analyzed by high 
performance liquid chromatography (HPLC). The standard 
monosaccharide did not need acidolysis by TFA, but was 
derivatized directly. The products were analyzed using a 
HPLC (1260 Infinity II, Agilent, America) equipped with 

(1)Y = b0 +
∑k

i=1
bixi +

∑k

i=1
biixi

2 +

k
∑

i=1

k
∑

j=1

bijxixj, i ≠ j

Table 1   Factors  and  level  value  of  central  combination experi-
ment design

Variables Symbol Coded variable level

− 1 0 1

Sodium gluconate (g/L) A 3 4 5
NH4Cl (g/L) B 0.267 0.535 0.802
Na2HPO4·12H2O (g/L) C 0.02 0.04 0.06
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a diode array detector (DAD) and Agilent Eclipse XDB-
C18 column (5 μm, 4.6 × 250 mm). The eluent was com-
posed of 0.1 M phosphate buffer (pH 6.7) and acetonitrile 
at a ratio of 83:17 (v/v, %) with a flow rate of 1.0 mL/min. 
The UV detection wavelength was 254 nm. The monosac-
charide composition was identified by comparing with the 
retention time of standard sugars, including mannose (Man), 
glucuronic acid (GluUA), glucose (Glc), xylose (Xyl), araose 
(Ara) and fucose (Fuc).

Rheological Analysis

For preliminary rheological analysis, 1% (w/v) EPS sample 
was prepared. Shear stress of the sample solution under dif-
ferent shear rates (0–500 s−1) was analyzed at 25 °C by a 
super rotary rheometer (Kinexus Pro MAL1082692, Mal-
vern, England). Commercially available xanthan gum was 
used as a contrast (Aladdin Biochemical Technology Co., 
Ltd., Shanghai, China). The effect of salts (NaCl and KCl) 
on the shear stress of EPS solution was also studied.

Antioxidant Activities Test

Hydroxyl Radical Scavenging Activity

The hydroxyl radical scavenging activity was measured 
according to the reported method [16] with some modifica-
tions. A total of 1 mL of 0.75 mM phenanthroline, 2 mL of 
0.2 M phosphate buffer (pH 7.4) and 1 mL of 9 mM FeSO4 
was added to the sample solution (1 mL). Then 1 mL of 
8.8 mM H2O2 was added, followed by incubation at 40 °C 
for 30 min. The absorbance of the mixture was measured at 
520 nm, with ascorbic acid (Vc) used as positive control. 
The capability to scavenge the hydroxyl radical was calcu-
lated according to the following equation (Eq. (2)):

(2)Hydroxyl radical scavenging ability (%) =
[(

A1 − A0

)

∕
(

A2−A0

)]

× 100%

where A0 is the absorbance of the blank (deionized water 
instead of EPS sample), A1 is the absorbance of the sample 
and A2 is the absorbance of the control solution (deionized 
water instead of H2O2 and sample).

DPPH Radical Scavenging Activity

The DPPH radical scavenging activity was tested based 
on the method reported by Wang et al. [17] with some 
modifications. A total of 2 mL of DPPH ethanol solution 
(0.004%, w/v) was added to 2 mL of EPS sample. The 
mixture was shaken and kept in dark at room temperature 
for 30 min. The absorbance of the supernatant was meas-
ured at 517 nm. Vc was used as a positive control. The 
capability to scavenge the DPPH radical was calculated 
according to the following equation (Eq. (3)):

where A0 is the absorbance of the control (deionized water 
mixed with DPPH solution), A1 is the absorbance of the 
sample mixed with DPPH solution and A2 is the absorb-
ance of the sample with deionized water instead of DPPH 
solution.

Superoxide Anion Radical Scavenging Activity

The superoxide anion radical scavenging activity was 
determined according to the method reported by Li et al. 
[14] with slight modifications. 4.5 mL Tris–HCl buffer 
(0.05 M, pH 8.2) was added into 2 mL EPS sample. The 
mixture was incubated at 37 °C for 10 min and mixed with 
0.2 mL pre-heated pyrogallol (30 mM). The absorbance 
was then measured immediately at 320 nm. Vc was used 

as a positive control. The superoxide radical scavenging 
activity was calculated according to the following equa-
tion (Eq. (4)):

(3)
DPPH scavenging ability (%) =

[

A0 −
(

A1 − A2

)]

∕A0 × 100%

(4)Superoxide anion radical scavenging ability (%) = (1 − A1)∕A0 × 100%
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where A0 is the absorbance without the sample, A1 is the 
absorbance with the sample.

Results and Discussion

Variables Affecting EPS Produced by C. pauculus 
1490

It is supposed that all the medium components will more or 
less affect the cell growth and activity. In this study, single 
factor experiments were carried out to identify critical vari-

ables influencing EPS production by C. pauculus 1490. As 
displayed in Fig. 1, the concentration gradients of sodium 
gluconate (Fig. 1a), NH4Cl (Fig. 1b) and Na2HPO4·12H2O 
(Fig. 1c) all caused remarkable fluctuation in EPS yield. 
While the concentration of MgSO4·6H2O did not obvi-
ously take effect on the production of EPS (Fig. 1d). So the 
optimized concentration of sodium gluconate, NH4Cl and 

Na2HPO4·12H2O was set as 4 g/L, 0.535 g/L and 0.04 g/L, 
respectively, and applied in the subsequent optimization.

Optimization of Screened Variables by RSM

Based on the results of single factor experiments, sodium 
gluconate, NH4Cl and Na2HPO4·12H2O as the signifi-
cant factors were further optimized by RSM. A 3-factor-
3-level CCD with seventeen experiments was conducted 
(Table 2). After regression analysis, the following sec-
ond-order polynomial equation was fit to the experimental 
EPS yield as a function of sodium gluconate, NH4Cl and 
Na2HPO4·12H2O:

where Y is the response (i.e., EPS yield), and A, B and C 
are the concentrations of sodium gluconate, NH4Cl and 
Na2HPO4·12H2O, respectively.

To validate the regression coefficient for EPS produc-
tion, the results of the second-order response surface 
model fitting in the form of ANOVA are given in Table 3. 

(5)Y = 281.81 + 16.43 × A − 6.46 × B − 4.46 × C − 8.72 × AB + 9.72 × AC + 6.30 × BC − 55.05 × A
2 − 47.65 × B

2 − 57.49

Fig. 1   Single factor experiment: 
a sodium gluconate as carbon 
source, b NH4Cl as nitrogen 
source, c Na2HPO4·12H2O 
as phosphorus source, d 
MgSO4·6H2O as sulfur source
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The developed model had an acceptable p value (< 0.0001) 
and R2 value (0.9921), which explained 99.21% of the 
response variability. The high value of the adjusted R2 
(0.9819) further supported the accuracy of the model. As 
shown in Table 3, the model was statistically valid given 
an F-test with a low probability value (Pmodel < 0.0001). 
The lack-of-fit value (0.9022) was not significant, indi-
cating that the equation was adequate for predicting EPS 

yield. The low coefficient of variation (CV = 3.43%) sug-
gested the model was precise and reliable.

Three dimensional response surface plots were drown by 
Design-Expert V8.0.6.1 software to identify the effect of 
medium components on EPS yield. Figure 2a–c illustrate the 
pair-wise interaction of the three variables (sodium gluco-
nate, NH4Cl and Na2HPO4·12H2O). The result from Fig. 1a 
indicated that the interaction between sodium gluconate and 
NH4Cl was significant (P = 0.0432). When sodium gluco-
nate was from 3 to 4.15 g/L and NH4Cl was from 0.267 to 
0.52 g/L at a fixed Na2HPO4·12H2O (0.04 g/L), the yield of 
EPS increased. Figure 2b displays 3D response surface plot 
of the influence of sodium gluconate and Na2HPO4·12H2O 
on EPS yield when NH4Cl concentration was 0.535 g/L. 
When sodium gluconate and Na2HPO4·12H2O were 4.15 
and 0.04 g/L, respectively, the maximum EPS yield was 
obtained. Figure  2c represents the interaction between 
NH4Cl and Na2HPO4·12H2O, which was not significant 
(P = 0.1184) and indicated the N/P ratio did not play a criti-
cal role in producing EPS. According to the established 
second-order response surface model, the optimal concentra-
tion of sodium gluconate, NH4Cl, and Na2HPO4·12H2O was 
4.15 g/L, 0.52 g/L and 0.04 g/L, respectively. The maximum 
EPS production was estimated to be 283.35 mg/L, and the 
actual production obtained in the optimized medium was 
293.2 mg/L, suggesting that the mathematical model could 
predict the experimental results.

Table 2   Design scheme of central combination experiment and 
response value of investigation indicator

No A (g/L) B (g/L) C (g/L) Yield (mg/L)

1 5.00 0.27 0.04 213.44
2 4.00 0.27 0.06 169.54
3 4.00 0.53 0.04 286.06
4 4.00 0.27 0.02 193.67
5 3.00 0.27 0.04 161.56
6 3.00 0.53 0.06 140.74
7 4.00 0.53 0.04 267.58
8 4.00 0.53 0.04 286.49
9 3.00 0.53 0.02 166.50
10 5.00 0.53 0.06 191.48
11 5.00 0.53 0.02 178.34
12 3.00 0.80 0.04 162.23
13 5.00 0.80 0.04 279.22
14 4.00 0.80 0.02 171.21
15 4.00 0.53 0.04 289.56
16 4.00 0.80 0.06 172.28
17 4.00 0.53 0.04 279.37

Table 3   Analysis of 
variance (ANOVA) for the 
fitted quadratic polynomial 
model for optimization of 
exopolysaccharides yield

Source Sum of Squares Degrees of 
freedom

Mean square F-value p-Value

Model 43,975.61 9 4886.16 97.44 < 0.0001
A 2159.10 1 2159.18 43.06 0.0003
B 354.65 1 354.65 7.07 0.0352
C 158.95 1 158.59 3.17 0.1182
AB 304.40 1 304.40 6.07 0.0432
AC 377.91 1 377.91 7.54 0.0278
BC 158.77 1 158.77 3.17 0.1184
A2 12,760.88 1 12,760.88 72.71 < 0.0001
B2 9558.74 1 9558.74 190.62 < 0.0001
C2 13,916.27 1 13,916.27 277.52 < 0.0001
Residual (error) 351.02 7 50.15 – –
Lack of fit 42.54 3 14.18 0.18 0.9022
Pure error 308.47 4 77.22 – –
Total 44,326.63 16 – – –
R2 0.9921
Adj. R2 0.9819
CV 3.43%
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FTIR Spectrum Analysis

The FTIR spectrum of EPS produced by C. pauculus 
1490 was shown in Fig. 3. A strong and broad peak at 
3424.13 cm−1 corresponds to stretching vibration of –OH, 
which was mainly caused by the glycoside hydroxyl in 
polysaccharides [18]. The peak at 2921.81 cm−1 represents 
C–H stretching vibration [19]. The bands in the region of 
1734.20 and 1607.40 cm−1 are assigned to C=O stretch-
ing vibration, implying the existence of uronic acid [20]. 
The peak at 1420.75 cm−1 is attributed to C-H bending 

vibration. The peaks at 1076.23 and 1022.08 cm−1 are 
associated with the dissymmetry stretching vibrations of 
C–O–C from pyranose ring [21]. The C–H bond in β-style 
has an absorption peak nearby 882.66 cm−1 [22].

Monosaccharide Composition

Monosaccharide composition analysis was conducted by 
HPLC–DAD through comparing with standard monosac-
charides. As displayed in Fig. 4, six standard monosac-
charides were separated totally within 30 min. In the same 
condition, the sample from C. pauculus 1490 was analyzed 
by matching their retention time with standard monosac-
charides. The results indicated that EPS were composed 
by Man, GlcUA, Glc and Xyl. Glucose was always found 
to be the most abundant monosaccharide even from dif-
ferent species in literatures [23–25]. Xylose commonly 
existed in plant and fungi, like porphyra haitanensis [15], 
Trichoderma kanganensis [26] and so on. There are still a 
very few reports about xylose appearing in bacteria. For 
example, two purified polysaccharides components from 
Paenibacillus mucilaginosus GIM1.16 both contained 
xylose [27]. These dissimilarities reflect the species spe-
cific production and biotechnological potential of polysac-
charides [28].

Rheological Characterization

The shear stress as a function of the shear rate of 1% Xan-
than gum and EPS solution is shown in Fig. 5a. The rheo-
gram of EPS solution presented a similar trend comparing 
with Xanthan, which was non-Newtonian fluid and displayed 
the characteristics of peudoplastic fluid [29, 30]. While the 
shear stress of EPS solution at all given shear rates was 

Fig. 2   3D response surface plots demonstrating the effect of a NH4Cl 
and sodium gluconate, b Na2HPO4·12H2O and sodium gluconate and 
c Na2HPO4·12H2O and NH4Cl on the exopolysaccharides yield from 
Cupriavidus pauculus 1490
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lower than Xanthan, suggesting the viscosity of EPS solu-
tion was still weaker than Xanthan. The treatment by NaCl 
and KCl both weakened the shear stress of EPS solution, 
that is, its rheological property was affected because of the 
addition of salts (Fig. 5b). According to Diaz’s report, the 
influence of salts depended on the bacterial species, the 
cultivation and the type of salts, for example, the viscosity 
of xanthan increased in some case, in others the viscosity 
decreased [31].

Antioxidant Activities

Hydroxyl radical (OH·) is a highly reactive oxygen-centered 
radical and it attacks all proteins, DNA, polyunsaturated 

fatty acid in membranes, as well as almost any biological 
molecules it touches [32]. Therefore, removing hydroxyl 
radical is important for antioxidant defense. As illustrated 
in Fig. 6a, EPS showed dose-dependent hydroxyl radical 
scavenging activity in the tested concentrations. At the con-
centration of 0.2, 0.4, 0.6, 0.8 and 1 mg/mL, the scavenging 
activity of EPS was 8.2%, 26.4%, 38.4%, 40.9% and 52.3%, 
respectively. The scavenging efficiency of polysaccharides 
from Ganoderma lucidum on hydroxyl radical only reached 
15.79% at 0.5 mg/mL [33]. EPS from Neopestalotiopsis sp. 
strain SKE15 exhibited scavenging effect of 35.45% and 
43.3% at 2 and 4 mg/mL, respectively [34]. The data pre-
sented here imply that EPS produced by C. pauculus 1490 

Fig. 4   The chromatogram 
of PMP derivatives of the 
standards monosaccharide (a) 
and exopolysaccharides from 
Cupriavidus pauculus 1490 (b) 
by HPLC–DAD
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have the potential to be exploited as prospective radical 
scavengers.

DPPH is a stable free radical, which has been widely 
accepted as a tool for estimating the free-radical scavenging 
activities of antioxidants [35]. As displayed in Fig. 6b, the 
scavenging effect of Vc on DPPH radical kept high level 
in all tested concentrations. EPS gradually took effect on 
scavenging DPPH radical with the increase of dosage. The 
maximum DPPH radical scavenging activity was reached at 
0.8 mg/mL for EPS (69%) and Vc (97.9%), respectively. It’s 
speculated that the antioxidant activity of polysaccharides 
may be originated from the ratio of monosaccharide and 
their side chain linkages [36]. A water-soluble polysaccha-
ride (SSPP11) from Schisandra sphenanthera showed 45% 
DPPH radical scavenging activity at the concentration of 
1.5 mg/mL, and consisted of Man, Glu and Gal with molar 
ratio of 1:1.77:1.29 [25], which was very different from our 
EPS component.

Superoxide radical is a highly toxic species generated 
by abundant biological and photochemical reactions [37]. 
Scavenging activities of EPS and Vc on superoxide anion 
radical was shown in Fig. 6c. The scavenging ability of EPS 
increased significantly from 2.4% at 0.4 mg/mL to 55.7% at 
0.8 mg/mL. Vc has reached 93% at 0.4 mg/mL and main-
tained high level throughout the subsequent concentrations. 
EPS secreted by Bacillus sp. S-1 also possessed quenching 
ability on superoxide in a dose-dependent way from 0.5 to 
7 mg/mL [38]. It has been reported that polysaccharides may 

act as hydrogen donor to superoxide anion radicals due to 
weak dissociation energy of O–H bond [39].

Conclusions

Response surface methodology was carried out to optimize 
EPS yield from C. pauculus 1490. Sodium gluconate, NH4Cl 
and Na2HPO4·12H2O were selected as the significant fac-
tors firstly based on single factor experiments. Thereafter, 
the individual optimal concentration was further obtained as 
4.15 g/L, 0.52 g/L and 0.04 g/L, respectively, by a central 
composite design. FTIR spectrum displayed that abundant 
functional groups, such as –OH, C=O and C–O–C, existed 
in EPS. Monosaccharide analysis indicated the EPS mainly 
consisted of mannose, glucuronic acid, glucose and xylose. 
The EPS also exhibited antioxidant activity on hydroxyl, 
DPPH and superoxide anion radicals in vitro in a concen-
tration-dependent manner, implying that EPS secreted by C. 
pauculus 1490 could be regarded as a potential candidate for 
antioxidant agent. Understanding the molecular structure of 
EPS and revealing the relationship between structure and 
activity to further improve its antioxidant capacity will be 
the focus of future work.
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