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Abstract
Chitosan is a naturally occurring biological macromolecule and second most abundant polysaccharide next to cellulose, 
derived from deacetylation of chitin. Due to its biocompatibility, biodegradability, nontoxic and broad spectrum of antimi-
crobial activity, it has become an important field of drug delivery system study. With the advancement in nanotechnology, 
chitosan based nanoformulations have sought considerable attention in agricultural sciences. The first part of this review 
focuses on the overview of chitosan and its nanoparticles, its different mode of synthesis and challenges, and controlled 
release mechanism of encapsulated molecules. The subsequent section focuses on the uptake and translocation of chitosan 
based nanoformulation including plant growth, nutrition and special focus on abiotic stress mitigation strategies. We con-
clude that chitosan based nanoformulation holds great promises in encapsulating bioactive molecules for controlled release 
thus reduces environmental hazard, and improves plant growth, yield and subsequently mitigates various biotic and abiotic 
stresses. Chitosan based nanoformulations have good controlled release behaviour and long stability of bioactive compounds 
encapsulated inside chitosan nanoparticle, and have prosperous future for improving agricultural productivity in the era of 
climate change.
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Introduction

Agricultural research has been confronted by many factors 
such as incident of diseases, pests, nutrient losses, and low 
productivity due to varying environmental stress such as 
drought, salinity, temperature and heavy metal stress. Also, 
demand for food is increasing due to increasing global pop-
ulation coupled with global climate change, urbanization 
and depletion of arable land. These issues have challenged 
agricultural researchers to look for option for more natural 
and environmental friendly material for use in agriculture. 
It has been projected that the global food production would 
increase by 70–100% by 2050 [1]. In this context, chitosan 
has emerged as the promising alternatives to mitigate these 
challenges without compromising soil and agro-ecosystem. 
Chitosan has proven to have fascinating properties such as 
broad spectrum of antimicrobial properties, anti-inflamatory, 

bio-adhesion, biocompatibility with other compounds, etc. 
Chitosan is the deacetylated form of chitin which is the sec-
ond most abundant polymer found next to cellulose. Chitin 
is present in marine organisms such as shells of crustaceans, 
insect cuticles and fungal cell walls [2]. Chitosan is obtained 
from chitin through alkaline deacetylation of chitin which is 
composed of linear chain consisting of two subunits, D-glu-
cosamine and N-acetyl-D-glucosamine which are linked by 
glycosidic bonds. Compared to chitin, chitosan has amine 
group which facilitate functional derivatives formation and 
structural modification. In plants, chitosan elicits numerous 
defense responses and improves plant growth and yield [3].

Chitosan application in agriculture is gaining world-
wide attention due to its beneficial characteristics such as 
biodegradability, biocompatibility, non-toxic and stimulate 
plant growth, yield and induced resistance against myr-
iad of biotic and abiotic stresses. There are considerable 
reports on chitosan stimulating growth and yield on vari-
ous crops such as in rice [4], soybean [5], maize [6], potato 
[7], tomato [8]. The ability may be linked to improved 
physiological mechanism, higher nutrient absorption, 
cell division and synthesis of protein [9, 10]. Chitosan 
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application suppresses many fungal, bacterial, viral and 
nematodes. For examples, in fungal namely, Alternaria, 
Rhizophus, Bortrytis, Fusarium, etc. have been reported to 
significantly suppressed by chitosan treatment [10]. Also, 
antibacterial activities have been reported against different 
plant pathogenic bacteria such as Xanthomonas spp., Pseu-
domonas spp. [10] and resistance against powdery mil-
dew as well as promote growth in tomato [11]. In tomato, 
chitosan conferred resistance against tomato mosaic virus 
and improved growth and yield [12]. Chitosan is effec-
tive in controlling many plant pathogenic nematodes such 
as Meloidogyne spp. in tomato [13]. The mechanism of 
inducing resistance to insect, pest and diseases is primarily 
based on the biosynthesis of protective biomolecules and 
up-regulation of defense related genes [10, 14].

The rapid advancement in nanotechnology has brought 
considerable attention in agricutural science. Encapsulat-
ing active ingredient such as fertilizer, pesticides and other 
bioactive agents into chitosan domain has proved to be 
effective owing to its slow release mechanism and reduced 
environmental contamination on account of reduced evap-
oration and leaching. Nanotechnology offers a wide range 
of application in agricultural field such as nano-based 
formulation of agrochemicals, elicitors and fertilizers and 
nanosensor for smart monitoring of plants’ activities. Nan-
oparticles can penetrate through plant surface membrane 
through cuticle, stomata, trichomes, hydathodes, wounds, 
stigma and root junction [15, 16]. These characteristics of 
nanoparticles could be the reasons behind growing inter-
est in the field of agricultural nanotechnology. Controlled 
release of fertilizers with natural biodegradable component 
such as chitosan based nanoformulation plays a crucial 
role in achieving sustainable agricultural practices [17]. 
Nanosized chitosan has emerged as an effective polymer 
for use in agriculture due to its higher rate of efficacy with 
increased mobility, large surface area owing to its nano 
size, and lower toxicity as compared to conventional pes-
ticides [18]. Also, fascinating properties such as biocom-
patibility, biodegradability, and film forming properties 
of chitosan based nanoparticles have prosperous future 
for agricultural application [19].The ability of chitosan to 
combine with other bioactive compounds has unravelled 
certain drawbacks of nanocomposites preparation such as 
hydrophilicity, low encapsulation efficiency, controlled 
release mechanism and weak mechanical strength [20]. 
Recently, foliar application of chitosan nanoparticle has 
shown to increase yield, mineral content and enhance 
innate immunity in finger millet [21]. Similarly, chitosan 
nanoparticle incorporated with salicylic acid improved 
wheat growth and grain weight with higher photosyn-
thetic ability [22]. Moreover, chitosan nanoparticle incor-
porated with NPK observed higher yield and harvest index 
in wheat [23, 24].

Chitosan application in plant disease protection has been 
studied and comprehensively been reviewed elsewhere, 
however, there are dearth of published literatures indicating 
chitosan’s role in abiotic stress mitigation. Chitosan and its 
derivatives have been applied and observed to confer abiotic 
stress such as drought, salinity, temperature and heavy metal 
toxicity [25]. They influence plant physiological aspect and 
gene associated with stress protective metabolite. Also, with 
their ability to scavenge ROS, elicit defense responses and 
ultimately increase plant growth and development. With 
the advancement in nanotechnology, chitosan polymer has 
exhibited to be more reliable candidate for synthesizing nan-
oparticles which have proven to be more efficient and more 
efficacious than bulk chitosan. Also, as a carrier polymer 
of various plant beneficial bioactive compounds and metal 
encapsulation approaches, chitosan nanoparticles have great 
prospect in meeting sustainable agricultural goal.

Contributing to zero waste economy in food industry 
is imperative to sustainable development benefiting both 
the economy and the environment. Chitosan production 
from marine crustacean is another effective way to utilize 
marine biowaste. It is noteworthy that about 6–8 million 
tonnes of marine biowaste is produced annually [26] and 
production of 1 kg of chitosan utilizes over 1 tonne of water, 
however, its positive impact such as nano formulations in 
crop management overweight the negative implication of 
huge water uses. The slow release mechanism and high bio-
availability along with low toxicity could be beneficial for 
sustainable agriculture with lower impact to environmental 
and health issues. In agriculture, chitosan has evolved to be 
most promising growth enhancer and strong anti-fungal and 
bacterial antimicrobial agents [3]. Also, with the advance-
ment in nanotechnology, chitosan based nanoparticle con-
taining agriculturally important bioactive compounds that 
have biostimulant ability, sustained release mechanism and 
defense inducer in plants have promising results to be used 
in agriculture[27].

Overview of Chitosan/Chitosan Nanoparticle

Chitosan is a polycationic polymer that is formed when chi-
tin is deacetylated. Chitin is a structural polymer found in 
crustaceans, insects, mollusks, fungus, shrimps and other 
marine organism [28–30]. In terms of function and structure, 
chitin produced by crustaceans and arthropods in their shells 
is extremely similar to cellulose generated by plants in cells. 
Chitin is most abundant polysaccharide found next to cel-
lulose. Chitosan is more functional than chitin because of its 
amino-based functional groups that stretch along the chain 
consisting of 2-deoxy-d-glucosamine (GlcN) and 2-deoxy-
N-acetyl-d-glucosamine (Glc-NAc) units [31]. The source 
and extraction process have an impact on the molecular 
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weight, biological and physicochemical properties, and 
purity of isolated chitosan [32]. In addition, the protona-
tion intensity of amine groups affects chitosan’s functioning.
The major properties include nontoxicity, mucoadhesive-
ness [33], hemostatic, film-forming capability [34], excel-
lent adsorption matrix, antiviral, antibacterial and antifun-
gal [35], and antioxidative [36], making it a very appealing 
component for use in a variety of applications. Previous 
research has included a number of investigations that are 
related to variety of application in the field of biomedical 
industry, food technology, agricuture and other vital areas. 
In this context, chitosan has potential role in meeting agri-
culture sustainable goal through plethora of application in 
the field of nanoscince, encapsulation of agrochemicals and 
other potential formulations in mitigating issues of biotic 
and abiotic stress.

Previous research has shown that chitosan applica-
tion induce tolerance and alleviates abiotic stress such as 
drought, salinity, heavy metal toxicity and low temperature 
on various crops. This has been reviewed comprehensively 
by Hidangmayum et al. [3].Compared to bulk chitosan, 
chitosan nanoparticle exhibit enhanced physicochemical 
properties such as smaller particle size, high surface area, 
increased efficiency of encapsulated drug, low toxicity, suit-
able for blending with other bioactive compounds. Chitosan 
nanoparticle synthesis is obtained through various methods 
which are explained in the subsequent section of this paper. 
However, the most simple and versatile method is the ionic 
gelation without the use of external chemicals which could 
produce nano sized chitosan polymer. Polycationic chitosan 
is made to mixwith polyanionic molecules such as trip-
olyphosphate (TPP) drop wise under constant stirring to pro-
duce nanosized chitosan colloidal particle (refer to Fig. 1). 
Nano chitosan showed improved organic carbon status with 
better aggregation stability, both macro and micro, relative 
to other natural products such as zeolite for organic carbon 
content and aggregation stability [35]. Combination of chi-
tosan nanoparticle and plant growth promoting rhizobacteria 

(PGPR) have been reported to increase growth parameters 
and plant metabolites as compared to PGPR treated alone 
[37]. Application of chitosan nanoparticles on coffee seed-
lings results in higher pigment content, enhanced photo-
synthetic rate and uptake of nutrients [38]. Application of 
chitosan and chitosan nanoparticles at 50 and 5 µg/ml in 
wheat seed showed significant positive result in seedling 
parameters, and other physiological attributes, respectively. 
Chitosan nanoparticle (5 µg/ml) treated seeds have shown 
higher adsorption capacity as compared to chitosan (50 µg/
ml) alone. This proves that chitosan nanoparticle at low 
concentration can stimulate plant growth and development. 
Also, the level of IAA content and related gene required for 
growth and development were shown to increase in both the 
cases [39]. Encapsulation with active agrochemicals or metal 
components inside the chitosan domain also proved to have 
significant ability in inducing a myriad of defense related 
metabolites, antioxidant activities, higher adsorbtion abilites 
and promoting growth and development. The slow release 
mechanism of drugs provide sustained protection without 
affecting environment and ecosystem. The application of 
chitosan nanoparticle and its nanoformulations on vari-
ous crops are described in last section of this review. These 
findings sparked researchers to further explore the role of 
chitosan based nanoparticles in promoting crop protection.

Synthesis of Chitosan Nanoparticle

The preparation of chitosan nanoparticles was first used 
in 1994 as a drug carrier via the emulsification and cross-
linking process [40]. Since then, other techniques such as 
ionic gelation [41, 42], reverse micellar method [43, 44], 
precipitation [45, 46], sieving [45], emulsion droplet coales-
cence [47]and spray drying [27, 48] have been developed. 
The production method depends mainly on the application 
mode, for example, the mode of operation; the efficiency of 
the active ingredient’s encapsulation depends on the hydro-
dynamic size and shape of the prepared nanoparticles, their 

Fig. 1   Schematic diagram for synthesis of chitosan nanoparticle
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thermo-mechanical activity and the degree of toxicity [27, 
49].

Ionic Gelation

Ionic gelation is the most common and effecient method 
for synthesis of stable and non-toxic chitosan nanoparticles. 
This technique was first reported by Calvo et al. [41]. It is 
based on the electrostatic interaction between the polyca-
tionic amino groups (NH3+) and polyanionic cross linkers. 
Firstly, chitosan is dissolved in aqueous weak acidic solu-
tion such as acetic acid, lactic acid, etc. to protonate amine 
group. After that the cross linker agent which is commonly 
used as TPP (tripolyphosphate) is added drop-wise under 
constant stiring. This undergoes ionic gelation due to for-
mation of complex TPP and cationic chitosan by electro-
static forces and precipitates to form nano sized particles. 
Kleine-Brueggeney [50] designed and studied the formation 
of nanoparticles through inotropic gelation with different 
degrees of acetylation ranging from 0 to 47% and molecular 
weight of 2.5–282 kDa. Interesting results were obtained 
where different DA (Degree of acetylation) behaved differ-
ently and high molecular weight were found to have more 
preference in incorporating than low molecular weight ones 
as determined by SEC-HPLC.

Emulsion Cross‑Linking

First, in this process, chitosan solution is emulsified to pre-
pare the emulsion of water in oil and then aqueous drop-
lets are further stabilized by a suitable surfactant, and then 
reacted with a suitable cross linking agent such as glutar-
aldehyde, formaldehyde, genipin, glyoxal, sulphuric acid, 
poloxamer, etc. resulting in formation of nanoparticle [51]. 
The amino groups of chitosan are cross linked with the 
aldehyde groups of glutaraldehyde and precipitate to form 
particles.

Spray Drying

This method is used for the synthesis of dry powder, pellets 
and granules from chitosan solution and suspensions [52]. 
This technique employed the use of a nanospray dryer where 
the acidic aqueous chitosan solution is passed along the 
cross linker and active ingredient via a hot air stream nozzle. 
Due to atomization, minor droplets are collected. The sol-
vent is, therefore, evaporated at the end of the reaction and a 
nano-sized dry form is obtained. The compressed air induces 
chitosan to cross-link and decrease in size. However, there 
are some critical parameters to be optimized such as parti-
cle size of needle type, air flow rate, degree of crosslinking 
and temperature [53]. The process is very flexible and can 

be used for thermo sensitive drugs with high or low water 
solubility and hydrophilic or hydrophobic polymers [54].

Emulsion Droplet Coalescence Method

In this method, cross linking agents are absent and is based 
on the use of emulsion and precipitation principles. Firstly, 
a stable emulsion is prepared containing chitosan solution 
and drug to be loaded along with liquid paraffin oil. Sec-
ondly, another stable emulsion is prepared using chitosan 
solution and sodium hydroxide along with liquid paraffin 
oil and, lastly, the two stable emulsions prepared are mixed 
under high speed stirring to generate collision between dif-
ferent droplets randomly producing nanosized particles [55]. 
Since it does not use crosslinkers, chitosan amino groups 
are freely available to bind to active ingredients and can 
achieve greater encapsulation efficiency with lower nano-
size as compared to the cross-link emulsion method. Using 
this method chitosan nanoparticle loaded gadopentetic acid 
(452 nm) was synthesized with encapsulation efficiency of 
45% [47]. Similarly, synthesis of chitosan nanoparticle using 
this method was achieved by loading 5-fluorouracil which 
resulted in uniform content and finer droplets [56].

Reverse Micellar Method

This method utilized the basic principle of reverse micelle to 
produce thermodynamically stable and monodisperse unit, 
and produce small sized nanoparticle without uniform distri-
bution compared with other methods. First, a surfactant and 
organic solvent are mixed to form fine, translucent droplet 
solution, and acidic aqueous solutions of chitosan are added 
to the isotropic reverse micelle with continuous vortexing 
along with the desired ingredients to be encapsulated. Then, 
in a constant stirring mode overnight, a cross-linking agent 
is added which leads to nanosize chitosan. Lastly, organic 
solvent is evaporated to obtain the dry matter and surfactant 
is removed via salt precipitation. Then, the mixture is 
centrifuged and a nanosize particle is obtained. Monodis-
persed, stable and narrow size are important attributes of 
this method. However, this method is tedious and labori-
ous requiring a lengthy comprehensive process compared to 
other methods reported [39]. Chitosan produced through a 
reverse micellar method is beneficial to retain greater control 
over the size and distribution of particles.

Sieving Method

This method as its name suggest is only useful for obtain-
ing monodispersed nanoparticles through filtering using the 
fixed sieve size. This was inventedby [45] owing to the chal-
lenging issue of stable and monodispersed chitosan nanopar-
ticles by different methods.
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Challenges in Synthesis of Chitosan 
Nanoparticles

Chitosan nanoparticles face some challenging issues first 
being the insolubility of bulk chitosan in neutral media, 
thus hampering the bioactivities of anti-microbial activi-
ties and phytoxicity to plants. Researchers have come up 
with different techniques to increase its solubility with-
out compromising bioactivities. Thanks to the presence 
of flexible chemical structure which could tune it to our 
desired physiochemical properties through incorporation 
of different compounds. For example, modified chitosan 
such as tri-ethylene diamine dithiocarbamate chitosan and 
orthohydroxy-phenylaldehyde thiosemicarbazone chitosan 
possess enhanced solubility and antimicrobial activities 
than bulk chitosan [57]. Being a polycationic polymer, 
it is unstable in variable pH since it is only dissolved in 
acidic condition due to protonation of its amine group and 
precipitates in basic condition due to de-protonation. So, 
the chemical stability is a challenging issue for use in agri-
culture [58].

Chitosan nanoparticle synthesis for agricultural appli-
cation needs a large amount which is quite a sheared task. 
In this context, many researchers have reported the syn-
thesis of ionic gelation to be more reliable method for 
large scale up synthesis for use in agriculture mainly for 
seed priming and foliar application [59, 60]. Further, vari-
ous factors such as degree of polymerization, chitosan and 
tripolyphopshate mass ratio, pH, temperature and rate of 
mixing influenced the physicochemical properties such as 
size, shape, stability and yield of synthesized nanoparti-
cles [61, 62]. Other methods of synthesizing nanoparticles 
have been comprehensively reviewed including its pros 
and cons by Kashyap et al. [27].

Controlled Release Formulations

Issue of global population coupled with global warming 
has threatened our food production and food security due 
to use of synthetic agrochemicals which have deleteri-
ous effects on environment and ecosystem. Many inter-
national organizations such as Codex Alimentarius, the 
Joint United Nations World Health Organization (WHO) 
and the Food Agriculture Organization (FAO), the Euro-
pean Union, and other influential organizations have set 
the permissible maximum residual levels of pesticides 
(MRLs) to regulate appropriate food quality standards 
[63]. In this context, chitosan-based nanoparticles can ben-
efit from synthetic agrochemicals because on the basis of 
their biodegradability, they can escape any strict regula-
tion of nanomaterial applications [64]. Roy and co-worker 
[65] reported that agrochemicals and pesticides reach the 

target site with as low as 0.1% while remaining are lost 
through leaching and evaporation leading to environmental 
hazards.

In the late 1980  s, the idea of microencapsulation 
emerged as research for addressing the issue of stability of 
carrier molecules and as an option to liposomes since these 
are unstable in biological solution [66]. In the following 
years research was focused on exploring dissimilar matrices 
for encapsulating and control release of active ingredients. 
To this, chitosan stand out to be the most versatile polymer 
for encapsulation application.The presence of functional 
amine groups can bind with versatile compounds Also, its 
flexibility to control our desired formation due to the pres-
ence of deacetylated surfaces and ability to form hydrogels, 
scaffolds,films, fibres, micro and nanoparticles are benefits 
associated with chitosan [67, 68].

Chitosan Matrix for Controlled Release 
and its Mechanism of Action

Control release can be defined as “the permeation-regulated 
transfer of an active ingredient from a reservoir to a targeted 
surface to maintain a predetermined concentration level for 
a specified period of time” [69]. A control release matrix 
can produce active ingredients which predetermined its con-
centration and sustain its release for a period of time. The 
highly regulated release behaviour associated with continu-
ous release of chitosan encapsulated bioactive compounds 
improves bioavailability, mobility with accumulate long time 
in plant tissue. Their control release mechanism depends 
on the morphology, size, density and physicochemical char-
acteristics and other factors such as pH, solubility and the 
enzymes present in the drug encapsulated inside the chitosan 
domain [70].

Thus, the sustained release of active ingredients aims to 
address the issues of excessive usage of synthetic chemi-
cals and leaching loss by reducing adversities on envi-
ronment. Two types of stimuli can induce the release of 
encapsulated chemicals: (1) Biotic stress such as patho-
gens and infestation of insects (2) Abiotic stress such as 
change in pH, temperature, salinity, drought, flooding [51, 
71]. Several mechanisms of drug release from chitosan 
nanoparticles exist, such as chitosan polymer swelling, 
polymer diffusion, polymer erosion or degradation, or a 
combination of both [27] (Fig. 2). The drug penetrates 
through the polymer matrix to the surrounding medium 
in the diffusion-controlled release process. The polymer 
chains form the membrane barrier, which makes it dif-
ficult for the drug to cross this barrier, acting as the drug 
release rate limiting membrane. Polymer swelling happens 
as water is absorbed before the polymer dissolves and the 
release mechanism of the polymer is characterized by the 
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solubility of the polymer in water or the surrounding bio-
logical medium. When the chitosan matrix meets the bio-
logical medium and swelling begins, the chitosan polymer 
chain begins to disengage, followed by the released drug. 
The hydrophilicity of the polymer, the rate of swelling and 
the density of the polymer chains usually affect the profile 
of drug release [72]. Simultaneously or separately, erosion 
and deterioration take place. Degradation of the polymer 
as a bond break can cause subsequent physical erosion. 
Swelling, diffusion and dissolution are involved. Poly-
mer degradation depends on the pH of the surrounding 
medium, the form of drug encapsulated, and the shape and 
size of the nanoparticles [73]. Diffusion and degradation 
occur in chitosan. The initial burst of particles from the 
active ingredient is detected. This is due to the adsorption 
of active ingredients in the domain of chitosan. A gradual 
and steady release of ingredients until this initial burst 
is depleted. Due to the breaking of molecules that were 
bound to the surface of the chitosan domain, a rapid burst 
of agrochemicals (30 % spinosad and 75 % permethrin) was 
observed within 5 h [74]. The release kinetics of chitosan 
microspheres loaded with indomethacin were associated 
with the surrounding medium’s chitosan concentration 
and pH 75]. Dynamic swelling of chitosan nanoparticle 
decreases with the increase in cross-linking [45]. Also, 
under different conditions such as pH, degree of cross-
linking and polymeric compositions, Khan [76] studied 
the swelling mechanism of chitosan hydrogels. They found 
that with the rise in poly (vinyl alcohol) hydrogels at 
higher pH, increased swelling was seen. Also, crosslinking 
ratio was inversely proportional to the swelling of hydro-
gels. Martnex-Ruvalcaba and co-workers [77] described 
similar findings where regulated drug release increased 
with an increase in drug content, while drug release 
decreased as the crosslinking agent ratio increased in the 
structure of the hydrogel due to strong polymer interac-
tion. Similar findings have been observed in particles of 
chitosan-polyvinyl alcohol (PVA) where drug release has 
been observed under various conditions [78].

Uptake and Translocation of Chitosan Based 
Nanoparticles

Nanoparticle’s uptake takes place in two modes, namely 
foliar uptake and root uptake (Fig. 3). Many studies have 
reported that foliar uptake of nanoparticle is through cuticu-
lar and stomatal pathway. In cuticular mode of entry, it faces 
many challenges owing to the presence of waxy cuticle to 
prevent water loss and to prevent foreign solutes to pass 
through it. Uptake of solutes across the cuticle is gener-
ally limited due to its petite size ranging from 0.6–4.8 nm 
[16, 79]. The stomatal uptake of nanoparticles is generally 
the only evident pathway from leaf to the internal tissues. 
Many studies have observed the movement of nanoparti-
cles through stomatal pathway including in Allium porrum, 
Arabidopsis thaliana, Cucurbita pepo, Lactuca sativa and 
Citrullus lanatus using CLSM or Micro-XRF and TEM 
[16, 80]. Stomatal aperture ranges from 3 to 10 micrometre 
in width and 25 micrometre in length [16], however, the 
actual size exclusion limit (SEL) of nanoparticle entry is 
not known in totality and is dependent on the species of 
plant, their leaf morphology, stomatal size and density. 
Nanoparticles may be transported through xylem or phloem. 
However, the exact mechanism of translocation of nanopar-
ticles is not known in totality. Research done on watermelon 
where foliar application of nanoparticle, size ranging from 
24–47nm was found to occur through stomatal pathway 
which was observed through TEM and translocated from 
shoot to roots via phloem sieve tubes [81]. Chitosan loaded 
with NPK nanoparticles of different sizes applied through 
foliar mode in wheat plants showed that nanoparticles were 
localized inside xylem and phloem as observed through 
HRTEM image [23]. Interestingly, another set of experiment 
applied with the same nanoformulation in bean plant after 
30 days of its application reported that nanoparticles were 
localized in phloem and not in xylem tissue, using HRTEM 
image [82]. Foliar application of chitosan Zn nanoparticle 
in wheat plants has shown that nanoparticles enter through 
stomatal pore which is evident from the localization of Zn in 
the stomata region observed using FESEM and fluorescence 

Fig. 2   Release mechanism of chitosan nanoparticles
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microscopy. Also, high Zn content was observed in the 
embryo, endosperm and aleurone layer as detected through 
confocal laser scanning microscopy [83]. In root uptake, 
nanoparticle exhibiting net positive charge has potential to 
adsorb because root hairs exhibit highly negative charge due 
to presence of mucilage, organic acids and small molecules. 
Here, root cuticlar pathway is generally restricted as that 
of foliar pathway. Root epidermis provides nanoparticles to 
enter through apoplastic pathway as many studies have sup-
ported this claim inside apoplastic region by TEM or CLSM. 
e.g., ZnO nanoparticle size of 20 nm in rye grass [84] and 
20–80 nm of Ag nanoparticle in A. thaliana [85].

Applications of Chitosan/Oligo‑Chitosan/
Nano‑Chitosan in Regulating Abiotic Stress 
in Plants

Salinity stress

Salinity has a significant impact on the worldwide growth of 
plants. More than 20% of all agricultural land in the world is 
projected to have high salinity [86]. About 800 million hec-
tares of arable land that is around 6% of the total land area is 
affected by salinity which results in negative effect on crop 
growth and development [87]. Salinity affects whole plant 

Fig. 3   Schematic diagram of chitosan nanoparticles uptake and translocation
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system both physiologically and biochemically inhibiting 
nutrient uptake and water upatke. Salt stress modulates bio-
chemical reaction and accumulate reactive oxygen species 
(ROS) which disrupt cellular machinery and causes oxida-
tive stress. Many studies have reported that salinity induced 
accumulation of MDA caused lipid peroxidation of cellular 
membrane. However, there are significant reports where 
chitosan or chitosan derivatives regulate and alleviate salt 
induced stress [3]. Chitosan treatments at low concentration 
were able to mitigate osmotic stress caused by salt stress in 
safflower (Carthamus tinctorius) and sunflower (Helianthus 
annus L.) [88]. In addition, there are reports of chitosan 
and oligo-chitosan treatment mitigating salt stress in wheat 
[89], chickpea [90], lentils [91], isagbol [92], ajowan [90], 
sunflower [88], fenugreek [93] and maize [94]. Previously, 
chitosan confering abiotic stress in different crops have con-
cisely been reviewed [3]. However, recent reports have been 
updated in Table 1. Nanochitosan may be more successful in 
these crops because they have a higher surface area due to 
small particle size, greater adsorption ability, nontoxic and 
ability to encapsulate with other molecules with good encap-
sulation efficiency. Research done in bean plant (salt sensi-
tive) shows improved seed germination when treated with 
chitosan nanoparticle at 0.1%, 0.2% and 0.3% under 100 mM 
salt concentration [86]. Nitric oxide encapsulated inside the 
chitosan domain has been shown to be more effective in 
combating salt stress in maize than free donor NO [95]; they 
reported increased bioavailability of NO in the plant, the 
encapsulated NO donor improved S-nitrosothiols content in 
leaf, enhanced level of photosynthetic rate (PSII) and chloro-
phyll content in all treated plants. Solid matrix priming with 
nanochitosan in mungbean seedlings alleviated the negative 
effect of salinity and improved growth,chlorophyll content 
and protein level of the plants [96]. Tomato plants treated 
with chitosan-polyvinyl alcohol hydrogels with or without 
copper nanoparticles subjected to salt stress were found to 
increase the expression of genes responsible for jasmonic 
acid (JA) and superoxide dismutase (SOD), which are essen-
tial for detoxification [97].

Drought Stress

Drought affects many aspects of plant development at 
morpho-physiological, biochemical and molecular level 
resulting in reduced growth and yields. Drought stress 
causes impaired chloroplasts, reduced chlorophyll content 
and enzyme activity involved in the calvin cycle of photo-
synthesis. It causes disruption in CO2 intake due to closure 
of stomata thus leading to reduction of photosynthesis and 
plant growth [98]. However, chitosan induces stomatal clo-
sure and follows ABA-dependent pathway. ABA activity 
was known to induce stomatal closure and reduce transpira-
tion [99] and mechanism behind chitosan induced stomatal 

closure is not known in totality. Chitosan treated bean leaves 
have shown to increase ABA activity leading to stomatal 
closure [100]. Similarly, foliar applied chitosan in pepper 
has antitranspirant activity and reduces water use by 26–43% 
via stomatal closure [99]. Similarly, antitranspirant activi-
ties were found in Bean (Phaseolus vulgaris L.) and bar-
ley (Hordeum vulgare) [101, 102]. Chitosan pretreatment 
enhanced the production of stress protective metabolites in 
white clover which resulted in alleviation of drought stress 
[103]. Foliar treatment with chitosan on Thymus daenensis 
alleviated drought stress without compromising on essen-
tial oil production and dry matter content [104]. Higher 
proline accumulation in plants indicate positive response 
which is responsible for stress adaptive mechanism and 
reduced water loss by lowering the leaf water potential. 
Many researches have reported chitosan induced higher 
level of proline content.e.g. in thyme plant [104] and saf-
flower [105]. However, in castor bean (Ricinus communis), 
it is reported that proline level has no affect [106]. Similar 
results were found in blackberry treated with oligo-chitosan 
where no significant level of proline was observed in treated 
and control plant [107]. Increase proline accumulation indi-
cated plant stress but maintaining a constant level may also 
indicate plant’s adaptation to stress. Thus, it is considered 
that chitosan treatment in different plant species follow dif-
ferent mechanisms. Chitosan induces several antioxidative 
enzymes and promotes plant growth. This is shown in apple 
seedlings where treatment with chitosan increased SOD, 
CAT and MDA activity thereby reducing lipid peroxidation 
and alleviating drought stress [108]. Chitosan also contrib-
utes to increased soluble sugar content in peas, sugar beets 
and black poplars [109]. These sugars such as glucose and 
fructose have potential to alleviate drought mitigation strate-
gies through signal transduction, modulate stress response 
and increase growth and development. Also, chitosan treat-
ment in white clover upregulated various stress related genes 
involved in carbohydrate transport and metabolism which 
have potential in mitigating drought stress [103]. Also, chlo-
rophyll content and photosynthetic activity was reported to 
increase after chitosan treatment [110]. Additionally, chi-
tosan application in apple explants grown on agar medium 
at 40 mg/L concentration was found to lower the deleterious 
effect of salt stress [111]. Chitin oligosaccharides treatment 
in maize, soybean and beans also found to increase photo-
synthesis level [112, 113].

Chitosan nanoparticles application in barley plant at 60 
and 90 ppm concentration through soil and foliar modes 
of application resulted in reducing harmful effects of late 
season drought stress which is evident with the improve-
ment in relative water content (RWC), plant growth and 
yield [114]. Application of nanochitosan through foliar 
application improved water status of plants in pearl millet 
subjected to salt stress by reducing stomatal conductance 
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and transpiration [115]. Foliar application of chitosan nan-
oparticle in periwinkle (Cartharanthus roseus) resulted in 
mitigation of drought stress through increased proline accu-
mulation and antioxidative activity. Also, it is reported to 
increase alkaloid content and activate gene responsible for 
defense enzyme production [116]. S-nitrosoglutathione, a 
NO donor, encapsulating chitosan nanoparticle has been 
shown to mitigate the negative impact of drought stress in 
sugarcane plants, which is obvious with a higher root bio-
mass and higher photosynthetic rate as compared to those 
with free S-nitrosoglutathione treatment alone [117]. Also, 
study in wheat plant treated with chitosan nanoparticle 
through soil and foliar application at 90 ppm subjected to 
water deficit condition improved physiological and biochem-
ical attributes of the plant [118]. Some of the recent reports 
utilizing chitosan nanoparticles in confering abiotic stress 
are listed in Table 2.

Temperature and Heavy Metal Stress

Extreme temperature and metal contaminated soil are affect-
ing global agricultural scenario with the rapid change in 
global climate and rise in synthetic chemicals use thus 
depleting soil quality and health affecting global food pro-
duction. Although research on the application of chitosan 
nanoparticles conferring tolerance against temperature and 
heavy metal stresses are few, there are various reports on 
the use of bulk chitosan. Priming with chitosan nanoparticle 
in maize seeds subjected to low temperature at 15 °C has 
shown to improve seedling parameters with lower mean ger-
mination time [119]. Recently, similar results were obtained 
where chitosan treated ball pepper (Capsicum annum L.) 
showed increased germination attributes at low temperature 
along with the increased activities of glucanase and chitinase 
enzymes which are stress defensive enzymes [120]. Oligo-
chitosan treatment with different DP (Degree of polymeri-
zation) induced protection against chilling stress in wheat 
[121]. Similarly, in tea plant oligo-chitosan induced protec-
tion from cold stress through activation of genes related to 

Table 1   Recent reports of chitosan/oligo-chitosan regulating abiotic stress in some crops

MW molecular weight; DA degree of acetylation

Plant Stress Characteristic/method 
applied

Effect Refer-
ences

Tomato (Solanum 
lycopersicum L.)

Salinity Foliar Increased morphological traits, photosynthetic pigments, osmolytes, 
total phenol and antioxidative activity

[145]

Wheat (Triticum 
aestivum L.)

Heavy 
metal

Low molecular weight, 
seed priming

Low concentration (0.1 & 0.25 mg/L) alleviated the damage caused 
by Al toxicity

[146]

Wheat (Triticum 
aestivum L.)

Heavy 
metal

DA: 80%, Seed treatment 1 kDa effectively mitigated the Cd toxicity through increased antioxi-
dant activity, soluble protein and soluble sugar

[147]

Soybean (Glycine 
max)

Heavy 
metal

Seed, soil, foliar application Increase antioxidative enzymes, proline, and physiological triats, 
lower nickel uptake and alleviate nickel toxicity

[148]

Maize(Zea mays) Salinity Soil application Increased antioxidant activities and growth parameters, alleviated 
salt induced stress

[149]

Barley (Hordeum 
vulgare L.)

Drought Soil application In combination with biochar it increased morpho-physiological 
parameters, and antioxidant activities thus alleviating drought stress

[150]

Tea (Camellia sin-
ensis)

Cold Oligo-chitosan
Foliar

Enhanced antioxidant activities, photosynthesis and carbon pro-
cesses, activated genes related to stress signalling thus alleviating 
cold stress

[122]

Chrysanthemum 
(Dendranthema 
grandiflorum)

Drought Oligo-chitosan: deacetyla-
tion > 95%, Foliar

Increased morphophysiological traits, antioxidant activities and 
higher expression of stress related genes leading to enhanced toler-
ance to drought stress

[151]

Potato (Solanum 
tuberosum L.)

Drought Oligo-chitosan: 82.20
Chitosan: 337.73, Foliar

Chitosan (75 mg/L) and oligo-chitosan (50 mg/L) increased plant 
growth trait and defence mechanism thus mitigating drought stress

[152]

Safflower (Cartha-
mustinctorius L.)

Salinity Molecular weight: 50 kDa, 
media supplement

Enhanced production of secondary metabolites and alleviated salt 
induced stress

[153]

Marjoram (Origanum 
majorana L.)

Drought Foliar Increased morpho-physiological traits and antioxidant activities, 
higher expression of genes related to stress and oil composition

[154]

Milk thistle (Silybum 
marianum L.)

Drought MW: 1526.5 g/mol, DA: 
75–85%, viscosity: 
20–300cP

Foliar

Increased growth of morpho-physiological, yield and phytochemicals 
traits, increase in flavonoids (Silybin)

[155]
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antioxidant, photosynthesis and carbon metabolism [122]. 
Application of chitosan with varying molecular weight 
(5 kDa and 1 kDa) induced protection from cadmium toxic-
ity in hydroponically grown edible rapeseed [123]. Also, 
bulk chitosan and zinc application in late sown dry bean 
plant (Phaseolus vulgaris L.) reduced the negative impact 
of heat stress [124]. Chitosan has proven to effectively form 
complexes with metal ions Pb(II), Cu(II) and Ag(I) in soil 
along with other mineral ions like Cl−, K+ and NO3 (Kamari 
et al. 2011), due to the presence of amino and hydroxyl 
groups which are beneficial for phytoremediation and bio-
fortification programmes [125, 126]. In this context, bulk 
chitosan or chitosan nanoparticle alone or encapsulated with 
other effective molecules known to induce defense enzymes 
or mitigate heavy metal stress/toxicity could be beneficial. 
Furthermore, chitosan nanoparticle could be more promi-
nent than bulk form in relation to adsorption, solubility, 
translocation and bioactivity of encapsulated active ingre-
dients with controlled release mechanism.

Mechanism of Action to Combat Abiotic Stresses

Plant abiotic stress offers different primary stimuli depend-
ing on the stresses induced. During signaling events, the 
primary signal induced by the specific receptor molecules 
activates secondary signalling cascade such as reactive oxy-
gen species (ROS) and ionositol phosphate which are then 
transduced to release Ca2+ in the cells. This event causes 
phosphorylation driven alteration of specific protein or tran-
scription factor regulating the expression of specific genes 
involved in stress response [127]. Multiple receptors that are 
then transduced to secondary events and downstream sign-
aling cascades interpret the primary stress signal at various 
times and locations from the primary signaling site [127]. 
These secondary signalling events are exchanged between 
different pathways of stress response that provide plants with 
cross protection [127].

There are numerous reports citing chitosan exhibiting 
defense response to stress, however, the exact mechanism 
of action is not known fully. Plant responds to stress, either 
biotic or abiotic, through activation of defense related 
metabolites and activation of genes related to stress pro-
tection. When treated with chitosan plant sense stress sig-
nal since they perceived chitin-containing organism [128]. 
Receptor molecules for chitin binding have been identified in 
various crops [129], a glycoprotein (family of lectins) from 
mustard (Brassica campestris) [130], in Arabidopsis, using 
mutant shows chitosan can induce a receptor like kinase 
gene which can bind with chitosan, however, on contrary, in 
another research done by Povero [131], chitosan signalling 
is perceived independent of chitin elicitor receptor kinase. 
Thus, chitosan binding receptor is not elucidated clearly.
Therefore, in these various pathways that communicate with 

each other, the involvement of a chitosan as an elicitor that 
evoked stress response for distinct abiotic stress mitigation 
could be more pronounced in nanosized chitosan.

The essential metabolic process within the plant, such 
as photosynthesis and protein synthesis are disrupted by 
extreme temperatures, drought and high salinity in the soil, 
resulting in reduced growth rate, crop growth and quality 
[86, 132]. Photosynthesis carbon fixation and redistribu-
tion are negatively affected by extreme temperature such as 
heat; also it disrupts the chloroplast functioning resulting in 
impaired electron transport chain [132]. In drought stress, 
plant responds by activating stomatal closure and decreased 
activity of photosynthetic enzymes such as ribulose-1,5-bi-
sphosphate carboxylase/oxygenase (Rubisco) [132]. Also, 
to tolerate drought stress, plant responds by increasing 
drought responsive metabolites such as amino acids, sugars 
and polyols to regulate the turgor pressure [103]. Higher 
level of osmoprotective amino acid proline was found in 
barley plant treated with chitosan grown under water deficit 
conditon [114].

Salt stress affects the plant developmental process such 
as disruption in cell membrane, creating osmotic stress and 
accumulation of sodium (Na+) and chloride (Cl−) ions thus 
causing ionic imbalance. Plant’s response through accumula-
tion of stress protective metabolite like proline is an adaptive 
feature of salt stress [89]. Application of nanochitosan in 
maize has higher levels of organic compounds such as alde-
hydes, ketones, phenols, etc. that are defensive metabolites 
against stresses [37]. Additionally, plant response includes 
increased levels of antioxidants and antioxidative enzymes 
to confer protection against elevated level of ROS which are 
product of a broken electron transport chain, and expresses 
unique proteins known to have a defensive role against these 
stresses, such as late embryogenesis abundant protein (LEA) 
[100, 118]. Enhanced activities of antioxidants like cata-
lase (CAT) and superoxide dismutase (SOD) enzymes are 
recorded when treated with nanochitosan in barley subjected 
to drought stress [114].

In addition, the application of chitosan has increased pro-
line levels, which are stated to be correlated with enhanced 
proteinase enzyme activity [98]. Furthermore, application 
of chitosan was reported to induce abscisic acid (ABA)-
dependent antitranspirant activity leading to stomatal clo-
sure [100]. ABA is known to induce stomatal closure upon 
stress stimuli and activates the defense related genes [132]. 
Similarly, oligo-chitosan induces gene expression related to 
auxin and gibberellin synthesis and activation of JA (jas-
monate) and ET (ethylene) signalling pathway in rapeseed 
[133] which are defence response against biotic and abiotic 
stresses.

Interestingly, oligo-chitosan treatment in gravevine is 
reported to increase phenolic compounds such as antho-
cyanins which are responsible for protection against biotic 
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and abiotic stress [134]. Similarly, oligo-chitosan treatment 
in blackberry (Robbus spp.) increase total soluble phe-
nolic content. Also, treatment with chitosan in ball pepper 
(Capsicum annuum L.) is reported to increase chitinase 
and glucanase activities in both seed and seedling [120]. 
Upregulation of genes for phenolic biosynthesis after chi-
tosan treatment has been reported previously [135, 136]. 
In addition, enhanced level of carbon and nitrogen metabo-
lism was found in wheat treated with chitosan [137]. Such 
involvement of protective secondary metabolites biosyn-
thesis has potential role in resilience to biotic and abiotic 
stress [107]. Chitosan and its oligosacharides also induce 
growth and development in gravevine [138], orchid [139], 
bean [126, 140], potato [141] and wheat [142]. Addition-
ally, chitosan nanoparticle stimulates plant growth and yield 
of plants such as wheat [143], coffee [38], chilli [144] and 
maize [37]. Some of the recent reports on chitosan nanopar-
ticle with or without encapsulation regulating growth and 
development are listed in Table 3.

Chitosan Based Biogenic Nanoparticles

Biogeneic synthesis of nanoparticle is a new approach which 
is gaining attention due to its low toxicity as compared to 
chemical synthesis. Biological agents such as plant extract 
and microbes have been used for synthesis of nanoparti-
cles. Also, plant extracts provide an excellent stabilizing 
ability and both reducing and capping agents for synthesis 
of nanoparticles [168]. Also, chitosan acts as an excellent 
carrier molecules and fabrication flexibility for incorpora-
tion of biogenic nanoparticles. For example Chitosan based 
nano-composite films using biogenic silver (Ag) nanoparti-
cles obtained from Nigellea sativa extract exhibit controlled 
released of Ag+ ions and improved antimicrobial and anti-
oxidative potential of the film [169]. Also, chitosan based 
iron nanoparticle incorporating Moringa oleifera leaves 
exhibits improved seed germination and growth parameters 
in corn [170]. Moreover, chitosan nanoparticle incorporat-
ing green tomato fruit extracts exhibits strong antibacterial 

Table 2   Chitosan nanoparticles and its encapsulated molecules under abiotic stress

MD mean diameter; DA degree of acetylation; MW molecular weight; ZP zeta potential; PDI polydisperity index; EE encapsulation effeciency

Nano-matrix Stress Crop Character-
istics

Effect Reference

Chitosan + Nitric oxide Salinity Maize (Zea mays) MD: 38.81 
nm

ZP: +17.7 
mV

PDI: 0.30
EE: 91.07%

Alleviated salt stress and increased plant 
growth

[95]

Chitosan/TPP + Nitric 
oxide

Drought Sugarcane (Saccharum offici-
narum L.)

MD: 
104.8nm

PDI: 0.345
ZP: 17.5

Higher photosynthetic rate, high root/shoot 
ratio in water deficit condition and slow 
release of nitric oxide improved tolerance 
to water stress

[118]

Chitosan/TPP Salinity Mungbean (Vigna radiata L.) MD: 254nm
ZP: 103 mV
PDI: 0.501

Overcome the adverse effect of salinity 
stress through increased antioxidant, 
increased content of chlorophyll and 
growth

[96]

Chitosan/TPP Drought Periwinkle (Catharanthus 
roseus L.)

– Improved drought stress tolerance, Induced 
antioxidants activities, Increased alkaloid 
content and induced genes expression 
related to drought stress

[116]

Chitosan Drought Barley (Hordeumvulgare L.) MD: 
>100nm

Significant increase in leaf area, chloro-
phyll, and number of grain spike and 
increased antioxidant activity, mitigated 
harmful effect of drought stress

[114]

Chitosan/TPP + Salicylic 
acid

Heavy 
metal

Isatis cappadoci-ca Desv – Increased Root length, shoot height and 
biomass under arsenic toxicity

[156]

Chitosan/TPP + NAC(N-
acetyl cysteine)

Ozone Durum wheat (Triticum durum 
L.)

MD: 178
PDI:0.397
ZP: 47.2

Increased level of antioxidant activity, 
Ascorbic content, triggered plant defence 
against ozone stress

[157]

Chitosan Selenium nano-
particle (Cs-Se-Np)

Salinity Bitter melon (Momordica 
charantia)

DA: 
75–85%

MW: 
310–375

Increased antioxidative activity, proline, 
relative water content, K+, decreas-
ing MDA, H2O2 and Na aggregation, 
increased yield and essential oil

[158]
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activity against Xanthomonas oryzae pv. Oryzae [171]. Most 
of the applications of chitosan based biogenic nanoparticles 
in agriculture have focused on conferring tolerance biotic 
stress due to their immense antimicrobial potential and sus-
tainability. However, application on conferring tolerance 
against different abiotic stresses would provide an overall 
mechanistic outlook of its potential for combined delivery 
in agriculture.

Conclusion and Future Perspectives

The preparation of chitosan based nanoformulations and 
their various applications related to plant growth and nutri-
tion, their uptake mechanism and protection from abiotic 
stresses were outlined in this review. It can be inferred that 
nanostructured chitosans can be used as carriers of various 
bioactive ingredients owing to their ability to be carriers 
of encapsulation or immobilization.These are also inter-
esting choices as drug delivery carriers and as growth and 
defense inducers in plants due to their favorable biological 
properties such as nontoxicity, biocompatibility, biodeg-
radability and broad antimicrobial capability. Although 
the potential of chitosan-based nanoformulation and nano 
chitosan alone are well documented in many published 
literature, there are dearth of information related to abiotic 
stress management. It is still early to draw conclusions 
about chitosan based agronanochemicals and bioactive 
agents in plant’s response to biotic and abiotic stress since 
data from real field condition is not known in totality. In 
fact, it was evident from laboratory study that chitosan 
based nanoformulations have good controlled release 
behaviour and long stability of bioactive compounds 
encapsulated inside chitosan nanoparticle, and have pros-
perous future for plant application. In order to allow the 
modification of chitosan-based nanoformulation with the 
desired properties, it is important to consider the physico-
chemical properties of chitosan nanoformulation such as 
molecular weight, degree of acetylation, compound to be 
encapsulated and other variables depending on the method 
of preparation, since these can greatly affect the bioactiv-
ity of plant. Chitosan is known to be nontoxic; however, 
nanosized chitosan and its encapsulated compounds needs 
to be carefully considered since its enhanced ability could 
accumulate in non-targeted site posing threat to environ-
ment and health issues. Further, holistic evaluations of 
the effects of these factors on morpho-physiological and 
at molecular level are, therefore, needed. In addition, 
more information is required to establish the mechanism 
of chitosan-based nanoformulation in a plant, where size 
of the particle, its morphology, solubility, concentration 
and other physico-chemical characteristics will determine 
the uptake and translocation. Also, to evaluate the actual Ta
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movement of nanoparticle inside plant’s system should be 
area of study of research in future.
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