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Abstract

Chitosan is a naturally occurring biological macromolecule and second most abundant polysaccharide next to cellulose,
derived from deacetylation of chitin. Due to its biocompatibility, biodegradability, nontoxic and broad spectrum of antimi-
crobial activity, it has become an important field of drug delivery system study. With the advancement in nanotechnology,
chitosan based nanoformulations have sought considerable attention in agricultural sciences. The first part of this review
focuses on the overview of chitosan and its nanoparticles, its different mode of synthesis and challenges, and controlled
release mechanism of encapsulated molecules. The subsequent section focuses on the uptake and translocation of chitosan
based nanoformulation including plant growth, nutrition and special focus on abiotic stress mitigation strategies. We con-
clude that chitosan based nanoformulation holds great promises in encapsulating bioactive molecules for controlled release
thus reduces environmental hazard, and improves plant growth, yield and subsequently mitigates various biotic and abiotic
stresses. Chitosan based nanoformulations have good controlled release behaviour and long stability of bioactive compounds
encapsulated inside chitosan nanoparticle, and have prosperous future for improving agricultural productivity in the era of

climate change.
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Introduction

Agricultural research has been confronted by many factors
such as incident of diseases, pests, nutrient losses, and low
productivity due to varying environmental stress such as
drought, salinity, temperature and heavy metal stress. Also,
demand for food is increasing due to increasing global pop-
ulation coupled with global climate change, urbanization
and depletion of arable land. These issues have challenged
agricultural researchers to look for option for more natural
and environmental friendly material for use in agriculture.
It has been projected that the global food production would
increase by 70-100% by 2050 [1]. In this context, chitosan
has emerged as the promising alternatives to mitigate these
challenges without compromising soil and agro-ecosystem.
Chitosan has proven to have fascinating properties such as
broad spectrum of antimicrobial properties, anti-inflamatory,
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bio-adhesion, biocompatibility with other compounds, etc.
Chitosan is the deacetylated form of chitin which is the sec-
ond most abundant polymer found next to cellulose. Chitin
is present in marine organisms such as shells of crustaceans,
insect cuticles and fungal cell walls [2]. Chitosan is obtained
from chitin through alkaline deacetylation of chitin which is
composed of linear chain consisting of two subunits, D-glu-
cosamine and N-acetyl-D-glucosamine which are linked by
glycosidic bonds. Compared to chitin, chitosan has amine
group which facilitate functional derivatives formation and
structural modification. In plants, chitosan elicits numerous
defense responses and improves plant growth and yield [3].

Chitosan application in agriculture is gaining world-
wide attention due to its beneficial characteristics such as
biodegradability, biocompatibility, non-toxic and stimulate
plant growth, yield and induced resistance against myr-
iad of biotic and abiotic stresses. There are considerable
reports on chitosan stimulating growth and yield on vari-
ous crops such as in rice [4], soybean [5], maize [6], potato
[7], tomato [8]. The ability may be linked to improved
physiological mechanism, higher nutrient absorption,
cell division and synthesis of protein [9, 10]. Chitosan
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application suppresses many fungal, bacterial, viral and
nematodes. For examples, in fungal namely, Alternaria,
Rhizophus, Bortrytis, Fusarium, etc. have been reported to
significantly suppressed by chitosan treatment [10]. Also,
antibacterial activities have been reported against different
plant pathogenic bacteria such as Xanthomonas spp., Pseu-
domonas spp. [10] and resistance against powdery mil-
dew as well as promote growth in tomato [11]. In tomato,
chitosan conferred resistance against tomato mosaic virus
and improved growth and yield [12]. Chitosan is effec-
tive in controlling many plant pathogenic nematodes such
as Meloidogyne spp. in tomato [13]. The mechanism of
inducing resistance to insect, pest and diseases is primarily
based on the biosynthesis of protective biomolecules and
up-regulation of defense related genes [10, 14].

The rapid advancement in nanotechnology has brought
considerable attention in agricutural science. Encapsulat-
ing active ingredient such as fertilizer, pesticides and other
bioactive agents into chitosan domain has proved to be
effective owing to its slow release mechanism and reduced
environmental contamination on account of reduced evap-
oration and leaching. Nanotechnology offers a wide range
of application in agricultural field such as nano-based
formulation of agrochemicals, elicitors and fertilizers and
nanosensor for smart monitoring of plants’ activities. Nan-
oparticles can penetrate through plant surface membrane
through cuticle, stomata, trichomes, hydathodes, wounds,
stigma and root junction [15, 16]. These characteristics of
nanoparticles could be the reasons behind growing inter-
est in the field of agricultural nanotechnology. Controlled
release of fertilizers with natural biodegradable component
such as chitosan based nanoformulation plays a crucial
role in achieving sustainable agricultural practices [17].
Nanosized chitosan has emerged as an effective polymer
for use in agriculture due to its higher rate of efficacy with
increased mobility, large surface area owing to its nano
size, and lower toxicity as compared to conventional pes-
ticides [18]. Also, fascinating properties such as biocom-
patibility, biodegradability, and film forming properties
of chitosan based nanoparticles have prosperous future
for agricultural application [19].The ability of chitosan to
combine with other bioactive compounds has unravelled
certain drawbacks of nanocomposites preparation such as
hydrophilicity, low encapsulation efficiency, controlled
release mechanism and weak mechanical strength [20].
Recently, foliar application of chitosan nanoparticle has
shown to increase yield, mineral content and enhance
innate immunity in finger millet [21]. Similarly, chitosan
nanoparticle incorporated with salicylic acid improved
wheat growth and grain weight with higher photosyn-
thetic ability [22]. Moreover, chitosan nanoparticle incor-
porated with NPK observed higher yield and harvest index
in wheat [23, 24].

Chitosan application in plant disease protection has been
studied and comprehensively been reviewed elsewhere,
however, there are dearth of published literatures indicating
chitosan’s role in abiotic stress mitigation. Chitosan and its
derivatives have been applied and observed to confer abiotic
stress such as drought, salinity, temperature and heavy metal
toxicity [25]. They influence plant physiological aspect and
gene associated with stress protective metabolite. Also, with
their ability to scavenge ROS, elicit defense responses and
ultimately increase plant growth and development. With
the advancement in nanotechnology, chitosan polymer has
exhibited to be more reliable candidate for synthesizing nan-
oparticles which have proven to be more efficient and more
efficacious than bulk chitosan. Also, as a carrier polymer
of various plant beneficial bioactive compounds and metal
encapsulation approaches, chitosan nanoparticles have great
prospect in meeting sustainable agricultural goal.

Contributing to zero waste economy in food industry
is imperative to sustainable development benefiting both
the economy and the environment. Chitosan production
from marine crustacean is another effective way to utilize
marine biowaste. It is noteworthy that about 6—8 million
tonnes of marine biowaste is produced annually [26] and
production of 1 kg of chitosan utilizes over 1 tonne of water,
however, its positive impact such as nano formulations in
crop management overweight the negative implication of
huge water uses. The slow release mechanism and high bio-
availability along with low toxicity could be beneficial for
sustainable agriculture with lower impact to environmental
and health issues. In agriculture, chitosan has evolved to be
most promising growth enhancer and strong anti-fungal and
bacterial antimicrobial agents [3]. Also, with the advance-
ment in nanotechnology, chitosan based nanoparticle con-
taining agriculturally important bioactive compounds that
have biostimulant ability, sustained release mechanism and
defense inducer in plants have promising results to be used
in agriculture[27].

Overview of Chitosan/Chitosan Nanoparticle

Chitosan is a polycationic polymer that is formed when chi-
tin is deacetylated. Chitin is a structural polymer found in
crustaceans, insects, mollusks, fungus, shrimps and other
marine organism [28-30]. In terms of function and structure,
chitin produced by crustaceans and arthropods in their shells
is extremely similar to cellulose generated by plants in cells.
Chitin is most abundant polysaccharide found next to cel-
lulose. Chitosan is more functional than chitin because of its
amino-based functional groups that stretch along the chain
consisting of 2-deoxy-d-glucosamine (GIcN) and 2-deoxy-
N-acetyl-d-glucosamine (Glc-NAc) units [31]. The source
and extraction process have an impact on the molecular
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weight, biological and physicochemical properties, and
purity of isolated chitosan [32]. In addition, the protona-
tion intensity of amine groups affects chitosan’s functioning.
The major properties include nontoxicity, mucoadhesive-
ness [33], hemostatic, film-forming capability [34], excel-
lent adsorption matrix, antiviral, antibacterial and antifun-
gal [35], and antioxidative [36], making it a very appealing
component for use in a variety of applications. Previous
research has included a number of investigations that are
related to variety of application in the field of biomedical
industry, food technology, agricuture and other vital areas.
In this context, chitosan has potential role in meeting agri-
culture sustainable goal through plethora of application in
the field of nanoscince, encapsulation of agrochemicals and
other potential formulations in mitigating issues of biotic
and abiotic stress.

Previous research has shown that chitosan applica-
tion induce tolerance and alleviates abiotic stress such as
drought, salinity, heavy metal toxicity and low temperature
on various crops. This has been reviewed comprehensively
by Hidangmayum et al. [3].Compared to bulk chitosan,
chitosan nanoparticle exhibit enhanced physicochemical
properties such as smaller particle size, high surface area,
increased efficiency of encapsulated drug, low toxicity, suit-
able for blending with other bioactive compounds. Chitosan
nanoparticle synthesis is obtained through various methods
which are explained in the subsequent section of this paper.
However, the most simple and versatile method is the ionic
gelation without the use of external chemicals which could
produce nano sized chitosan polymer. Polycationic chitosan
is made to mixwith polyanionic molecules such as trip-
olyphosphate (TPP) drop wise under constant stirring to pro-
duce nanosized chitosan colloidal particle (refer to Fig. 1).
Nano chitosan showed improved organic carbon status with
better aggregation stability, both macro and micro, relative
to other natural products such as zeolite for organic carbon
content and aggregation stability [35]. Combination of chi-
tosan nanoparticle and plant growth promoting rhizobacteria

(PGPR) have been reported to increase growth parameters
and plant metabolites as compared to PGPR treated alone
[37]. Application of chitosan nanoparticles on coffee seed-
lings results in higher pigment content, enhanced photo-
synthetic rate and uptake of nutrients [38]. Application of
chitosan and chitosan nanoparticles at 50 and 5 pg/ml in
wheat seed showed significant positive result in seedling
parameters, and other physiological attributes, respectively.
Chitosan nanoparticle (5 pg/ml) treated seeds have shown
higher adsorption capacity as compared to chitosan (50 pg/
ml) alone. This proves that chitosan nanoparticle at low
concentration can stimulate plant growth and development.
Also, the level of IAA content and related gene required for
growth and development were shown to increase in both the
cases [39]. Encapsulation with active agrochemicals or metal
components inside the chitosan domain also proved to have
significant ability in inducing a myriad of defense related
metabolites, antioxidant activities, higher adsorbtion abilites
and promoting growth and development. The slow release
mechanism of drugs provide sustained protection without
affecting environment and ecosystem. The application of
chitosan nanoparticle and its nanoformulations on vari-
ous crops are described in last section of this review. These
findings sparked researchers to further explore the role of
chitosan based nanoparticles in promoting crop protection.

Synthesis of Chitosan Nanoparticle

The preparation of chitosan nanoparticles was first used
in 1994 as a drug carrier via the emulsification and cross-
linking process [40]. Since then, other techniques such as
ionic gelation [41, 42], reverse micellar method [43, 44],
precipitation [45, 46], sieving [45], emulsion droplet coales-
cence [47]and spray drying [27, 48] have been developed.
The production method depends mainly on the application
mode, for example, the mode of operation; the efficiency of
the active ingredient’s encapsulation depends on the hydro-
dynamic size and shape of the prepared nanoparticles, their
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Fig. 1 Schematic diagram for synthesis of chitosan nanoparticle
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thermo-mechanical activity and the degree of toxicity [27,
49].

lonic Gelation

Tonic gelation is the most common and effecient method
for synthesis of stable and non-toxic chitosan nanoparticles.
This technique was first reported by Calvo et al. [41]. It is
based on the electrostatic interaction between the polyca-
tionic amino groups (NH>*) and polyanionic cross linkers.
Firstly, chitosan is dissolved in aqueous weak acidic solu-
tion such as acetic acid, lactic acid, etc. to protonate amine
group. After that the cross linker agent which is commonly
used as TPP (tripolyphosphate) is added drop-wise under
constant stiring. This undergoes ionic gelation due to for-
mation of complex TPP and cationic chitosan by electro-
static forces and precipitates to form nano sized particles.
Kleine-Brueggeney [50] designed and studied the formation
of nanoparticles through inotropic gelation with different
degrees of acetylation ranging from 0 to 47% and molecular
weight of 2.5-282 kDa. Interesting results were obtained
where different DA (Degree of acetylation) behaved differ-
ently and high molecular weight were found to have more
preference in incorporating than low molecular weight ones
as determined by SEC-HPLC.

Emulsion Cross-Linking

First, in this process, chitosan solution is emulsified to pre-
pare the emulsion of water in oil and then aqueous drop-
lets are further stabilized by a suitable surfactant, and then
reacted with a suitable cross linking agent such as glutar-
aldehyde, formaldehyde, genipin, glyoxal, sulphuric acid,
poloxamer, etc. resulting in formation of nanoparticle [51].
The amino groups of chitosan are cross linked with the
aldehyde groups of glutaraldehyde and precipitate to form
particles.

Spray Drying

This method is used for the synthesis of dry powder, pellets
and granules from chitosan solution and suspensions [52].
This technique employed the use of a nanospray dryer where
the acidic aqueous chitosan solution is passed along the
cross linker and active ingredient via a hot air stream nozzle.
Due to atomization, minor droplets are collected. The sol-
vent is, therefore, evaporated at the end of the reaction and a
nano-sized dry form is obtained. The compressed air induces
chitosan to cross-link and decrease in size. However, there
are some critical parameters to be optimized such as parti-
cle size of needle type, air flow rate, degree of crosslinking
and temperature [53]. The process is very flexible and can

be used for thermo sensitive drugs with high or low water
solubility and hydrophilic or hydrophobic polymers [54].

Emulsion Droplet Coalescence Method

In this method, cross linking agents are absent and is based
on the use of emulsion and precipitation principles. Firstly,
a stable emulsion is prepared containing chitosan solution
and drug to be loaded along with liquid paraffin oil. Sec-
ondly, another stable emulsion is prepared using chitosan
solution and sodium hydroxide along with liquid paraffin
oil and, lastly, the two stable emulsions prepared are mixed
under high speed stirring to generate collision between dif-
ferent droplets randomly producing nanosized particles [55].
Since it does not use crosslinkers, chitosan amino groups
are freely available to bind to active ingredients and can
achieve greater encapsulation efficiency with lower nano-
size as compared to the cross-link emulsion method. Using
this method chitosan nanoparticle loaded gadopentetic acid
(452 nm) was synthesized with encapsulation efficiency of
45% [47]. Similarly, synthesis of chitosan nanoparticle using
this method was achieved by loading 5-fluorouracil which
resulted in uniform content and finer droplets [56].

Reverse Micellar Method

This method utilized the basic principle of reverse micelle to
produce thermodynamically stable and monodisperse unit,
and produce small sized nanoparticle without uniform distri-
bution compared with other methods. First, a surfactant and
organic solvent are mixed to form fine, translucent droplet
solution, and acidic aqueous solutions of chitosan are added
to the isotropic reverse micelle with continuous vortexing
along with the desired ingredients to be encapsulated. Then,
in a constant stirring mode overnight, a cross-linking agent
is added which leads to nanosize chitosan. Lastly, organic
solvent is evaporated to obtain the dry matter and surfactant
is removed via salt precipitation. Then, the mixture is
centrifuged and a nanosize particle is obtained. Monodis-
persed, stable and narrow size are important attributes of
this method. However, this method is tedious and labori-
ous requiring a lengthy comprehensive process compared to
other methods reported [39]. Chitosan produced through a
reverse micellar method is beneficial to retain greater control
over the size and distribution of particles.

Sieving Method

This method as its name suggest is only useful for obtain-
ing monodispersed nanoparticles through filtering using the
fixed sieve size. This was inventedby [45] owing to the chal-
lenging issue of stable and monodispersed chitosan nanopar-
ticles by different methods.
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Challenges in Synthesis of Chitosan
Nanoparticles

Chitosan nanoparticles face some challenging issues first
being the insolubility of bulk chitosan in neutral media,
thus hampering the bioactivities of anti-microbial activi-
ties and phytoxicity to plants. Researchers have come up
with different techniques to increase its solubility with-
out compromising bioactivities. Thanks to the presence
of flexible chemical structure which could tune it to our
desired physiochemical properties through incorporation
of different compounds. For example, modified chitosan
such as tri-ethylene diamine dithiocarbamate chitosan and
orthohydroxy-phenylaldehyde thiosemicarbazone chitosan
possess enhanced solubility and antimicrobial activities
than bulk chitosan [57]. Being a polycationic polymer,
it is unstable in variable pH since it is only dissolved in
acidic condition due to protonation of its amine group and
precipitates in basic condition due to de-protonation. So,
the chemical stability is a challenging issue for use in agri-
culture [58].

Chitosan nanoparticle synthesis for agricultural appli-
cation needs a large amount which is quite a sheared task.
In this context, many researchers have reported the syn-
thesis of ionic gelation to be more reliable method for
large scale up synthesis for use in agriculture mainly for
seed priming and foliar application [59, 60]. Further, vari-
ous factors such as degree of polymerization, chitosan and
tripolyphopshate mass ratio, pH, temperature and rate of
mixing influenced the physicochemical properties such as
size, shape, stability and yield of synthesized nanoparti-
cles [61, 62]. Other methods of synthesizing nanoparticles
have been comprehensively reviewed including its pros
and cons by Kashyap et al. [27].

Controlled Release Formulations

Issue of global population coupled with global warming
has threatened our food production and food security due
to use of synthetic agrochemicals which have deleteri-
ous effects on environment and ecosystem. Many inter-
national organizations such as Codex Alimentarius, the
Joint United Nations World Health Organization (WHO)
and the Food Agriculture Organization (FAO), the Euro-
pean Union, and other influential organizations have set
the permissible maximum residual levels of pesticides
(MRLs) to regulate appropriate food quality standards
[63]. In this context, chitosan-based nanoparticles can ben-
efit from synthetic agrochemicals because on the basis of
their biodegradability, they can escape any strict regula-
tion of nanomaterial applications [64]. Roy and co-worker
[65] reported that agrochemicals and pesticides reach the

@ Springer

target site with as low as 0.1% while remaining are lost
through leaching and evaporation leading to environmental
hazards.

In the late 1980 s, the idea of microencapsulation
emerged as research for addressing the issue of stability of
carrier molecules and as an option to liposomes since these
are unstable in biological solution [66]. In the following
years research was focused on exploring dissimilar matrices
for encapsulating and control release of active ingredients.
To this, chitosan stand out to be the most versatile polymer
for encapsulation application.The presence of functional
amine groups can bind with versatile compounds Also, its
flexibility to control our desired formation due to the pres-
ence of deacetylated surfaces and ability to form hydrogels,
scaffolds,films, fibres, micro and nanoparticles are benefits
associated with chitosan [67, 68].

Chitosan Matrix for Controlled Release
and its Mechanism of Action

Control release can be defined as “the permeation-regulated
transfer of an active ingredient from a reservoir to a targeted
surface to maintain a predetermined concentration level for
a specified period of time” [69]. A control release matrix
can produce active ingredients which predetermined its con-
centration and sustain its release for a period of time. The
highly regulated release behaviour associated with continu-
ous release of chitosan encapsulated bioactive compounds
improves bioavailability, mobility with accumulate long time
in plant tissue. Their control release mechanism depends
on the morphology, size, density and physicochemical char-
acteristics and other factors such as pH, solubility and the
enzymes present in the drug encapsulated inside the chitosan
domain [70].

Thus, the sustained release of active ingredients aims to
address the issues of excessive usage of synthetic chemi-
cals and leaching loss by reducing adversities on envi-
ronment. Two types of stimuli can induce the release of
encapsulated chemicals: (1) Biotic stress such as patho-
gens and infestation of insects (2) Abiotic stress such as
change in pH, temperature, salinity, drought, flooding [51,
71]. Several mechanisms of drug release from chitosan
nanoparticles exist, such as chitosan polymer swelling,
polymer diffusion, polymer erosion or degradation, or a
combination of both [27] (Fig. 2). The drug penetrates
through the polymer matrix to the surrounding medium
in the diffusion-controlled release process. The polymer
chains form the membrane barrier, which makes it dif-
ficult for the drug to cross this barrier, acting as the drug
release rate limiting membrane. Polymer swelling happens
as water is absorbed before the polymer dissolves and the
release mechanism of the polymer is characterized by the
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Chitosan matrix Diffusion

Fig.2 Release mechanism of chitosan nanoparticles

solubility of the polymer in water or the surrounding bio-
logical medium. When the chitosan matrix meets the bio-
logical medium and swelling begins, the chitosan polymer
chain begins to disengage, followed by the released drug.
The hydrophilicity of the polymer, the rate of swelling and
the density of the polymer chains usually affect the profile
of drug release [72]. Simultaneously or separately, erosion
and deterioration take place. Degradation of the polymer
as a bond break can cause subsequent physical erosion.
Swelling, diffusion and dissolution are involved. Poly-
mer degradation depends on the pH of the surrounding
medium, the form of drug encapsulated, and the shape and
size of the nanoparticles [73]. Diffusion and degradation
occur in chitosan. The initial burst of particles from the
active ingredient is detected. This is due to the adsorption
of active ingredients in the domain of chitosan. A gradual
and steady release of ingredients until this initial burst
is depleted. Due to the breaking of molecules that were
bound to the surface of the chitosan domain, a rapid burst
of agrochemicals (30 % spinosad and 75 % permethrin) was
observed within 5 h [74]. The release kinetics of chitosan
microspheres loaded with indomethacin were associated
with the surrounding medium’s chitosan concentration
and pH 75]. Dynamic swelling of chitosan nanoparticle
decreases with the increase in cross-linking [45]. Also,
under different conditions such as pH, degree of cross-
linking and polymeric compositions, Khan [76] studied
the swelling mechanism of chitosan hydrogels. They found
that with the rise in poly (vinyl alcohol) hydrogels at
higher pH, increased swelling was seen. Also, crosslinking
ratio was inversely proportional to the swelling of hydro-
gels. Martnex-Ruvalcaba and co-workers [77] described
similar findings where regulated drug release increased
with an increase in drug content, while drug release
decreased as the crosslinking agent ratio increased in the
structure of the hydrogel due to strong polymer interac-
tion. Similar findings have been observed in particles of
chitosan-polyvinyl alcohol (PVA) where drug release has
been observed under various conditions [78].
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Uptake and Translocation of Chitosan Based
Nanoparticles

Nanoparticle’s uptake takes place in two modes, namely
foliar uptake and root uptake (Fig. 3). Many studies have
reported that foliar uptake of nanoparticle is through cuticu-
lar and stomatal pathway. In cuticular mode of entry, it faces
many challenges owing to the presence of waxy cuticle to
prevent water loss and to prevent foreign solutes to pass
through it. Uptake of solutes across the cuticle is gener-
ally limited due to its petite size ranging from 0.6—4.8 nm
[16, 79]. The stomatal uptake of nanoparticles is generally
the only evident pathway from leaf to the internal tissues.
Many studies have observed the movement of nanoparti-
cles through stomatal pathway including in Allium porrum,
Arabidopsis thaliana, Cucurbita pepo, Lactuca sativa and
Citrullus lanatus using CLSM or Micro-XRF and TEM
[16, 80]. Stomatal aperture ranges from 3 to 10 micrometre
in width and 25 micrometre in length [16], however, the
actual size exclusion limit (SEL) of nanoparticle entry is
not known in totality and is dependent on the species of
plant, their leaf morphology, stomatal size and density.
Nanoparticles may be transported through xylem or phloem.
However, the exact mechanism of translocation of nanopar-
ticles is not known in totality. Research done on watermelon
where foliar application of nanoparticle, size ranging from
24—47nm was found to occur through stomatal pathway
which was observed through TEM and translocated from
shoot to roots via phloem sieve tubes [81]. Chitosan loaded
with NPK nanoparticles of different sizes applied through
foliar mode in wheat plants showed that nanoparticles were
localized inside xylem and phloem as observed through
HRTEM image [23]. Interestingly, another set of experiment
applied with the same nanoformulation in bean plant after
30 days of its application reported that nanoparticles were
localized in phloem and not in xylem tissue, using HRTEM
image [82]. Foliar application of chitosan Zn nanoparticle
in wheat plants has shown that nanoparticles enter through
stomatal pore which is evident from the localization of Zn in
the stomata region observed using FESEM and fluorescence
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Fig.3 Schematic diagram of chitosan nanoparticles uptake and translocation

microscopy. Also, high Zn content was observed in the
embryo, endosperm and aleurone layer as detected through
confocal laser scanning microscopy [83]. In root uptake,
nanoparticle exhibiting net positive charge has potential to
adsorb because root hairs exhibit highly negative charge due
to presence of mucilage, organic acids and small molecules.
Here, root cuticlar pathway is generally restricted as that
of foliar pathway. Root epidermis provides nanoparticles to
enter through apoplastic pathway as many studies have sup-
ported this claim inside apoplastic region by TEM or CLSM.
e.g., ZnO nanoparticle size of 20 nm in rye grass [84] and
20-80 nm of Ag nanoparticle in A. thaliana [85].
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Applications of Chitosan/Oligo-Chitosan/
Nano-Chitosan in Regulating Abiotic Stress
in Plants

Salinity stress

Salinity has a significant impact on the worldwide growth of
plants. More than 20% of all agricultural land in the world is
projected to have high salinity [86]. About 800 million hec-
tares of arable land that is around 6% of the total land area is
affected by salinity which results in negative effect on crop
growth and development [87]. Salinity affects whole plant
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system both physiologically and biochemically inhibiting
nutrient uptake and water upatke. Salt stress modulates bio-
chemical reaction and accumulate reactive oxygen species
(ROS) which disrupt cellular machinery and causes oxida-
tive stress. Many studies have reported that salinity induced
accumulation of MDA caused lipid peroxidation of cellular
membrane. However, there are significant reports where
chitosan or chitosan derivatives regulate and alleviate salt
induced stress [3]. Chitosan treatments at low concentration
were able to mitigate osmotic stress caused by salt stress in
safflower (Carthamus tinctorius) and sunflower (Helianthus
annus L.) [88]. In addition, there are reports of chitosan
and oligo-chitosan treatment mitigating salt stress in wheat
[89], chickpea [90], lentils [91], isagbol [92], ajowan [90],
sunflower [88], fenugreek [93] and maize [94]. Previously,
chitosan confering abiotic stress in different crops have con-
cisely been reviewed [3]. However, recent reports have been
updated in Table 1. Nanochitosan may be more successful in
these crops because they have a higher surface area due to
small particle size, greater adsorption ability, nontoxic and
ability to encapsulate with other molecules with good encap-
sulation efficiency. Research done in bean plant (salt sensi-
tive) shows improved seed germination when treated with
chitosan nanoparticle at 0.1%, 0.2% and 0.3% under 100 mM
salt concentration [86]. Nitric oxide encapsulated inside the
chitosan domain has been shown to be more effective in
combating salt stress in maize than free donor NO [95]; they
reported increased bioavailability of NO in the plant, the
encapsulated NO donor improved S-nitrosothiols content in
leaf, enhanced level of photosynthetic rate (PSII) and chloro-
phyll content in all treated plants. Solid matrix priming with
nanochitosan in mungbean seedlings alleviated the negative
effect of salinity and improved growth,chlorophyll content
and protein level of the plants [96]. Tomato plants treated
with chitosan-polyvinyl alcohol hydrogels with or without
copper nanoparticles subjected to salt stress were found to
increase the expression of genes responsible for jasmonic
acid (JA) and superoxide dismutase (SOD), which are essen-
tial for detoxification [97].

Drought Stress

Drought affects many aspects of plant development at
morpho-physiological, biochemical and molecular level
resulting in reduced growth and yields. Drought stress
causes impaired chloroplasts, reduced chlorophyll content
and enzyme activity involved in the calvin cycle of photo-
synthesis. It causes disruption in CO, intake due to closure
of stomata thus leading to reduction of photosynthesis and
plant growth [98]. However, chitosan induces stomatal clo-
sure and follows ABA-dependent pathway. ABA activity
was known to induce stomatal closure and reduce transpira-
tion [99] and mechanism behind chitosan induced stomatal

closure is not known in totality. Chitosan treated bean leaves
have shown to increase ABA activity leading to stomatal
closure [100]. Similarly, foliar applied chitosan in pepper
has antitranspirant activity and reduces water use by 26-43%
via stomatal closure [99]. Similarly, antitranspirant activi-
ties were found in Bean (Phaseolus vulgaris L.) and bar-
ley (Hordeum vulgare) [101, 102]. Chitosan pretreatment
enhanced the production of stress protective metabolites in
white clover which resulted in alleviation of drought stress
[103]. Foliar treatment with chitosan on Thymus daenensis
alleviated drought stress without compromising on essen-
tial oil production and dry matter content [104]. Higher
proline accumulation in plants indicate positive response
which is responsible for stress adaptive mechanism and
reduced water loss by lowering the leaf water potential.
Many researches have reported chitosan induced higher
level of proline content.e.g. in thyme plant [104] and saf-
flower [105]. However, in castor bean (Ricinus communis),
it is reported that proline level has no affect [106]. Similar
results were found in blackberry treated with oligo-chitosan
where no significant level of proline was observed in treated
and control plant [107]. Increase proline accumulation indi-
cated plant stress but maintaining a constant level may also
indicate plant’s adaptation to stress. Thus, it is considered
that chitosan treatment in different plant species follow dif-
ferent mechanisms. Chitosan induces several antioxidative
enzymes and promotes plant growth. This is shown in apple
seedlings where treatment with chitosan increased SOD,
CAT and MDA activity thereby reducing lipid peroxidation
and alleviating drought stress [108]. Chitosan also contrib-
utes to increased soluble sugar content in peas, sugar beets
and black poplars [109]. These sugars such as glucose and
fructose have potential to alleviate drought mitigation strate-
gies through signal transduction, modulate stress response
and increase growth and development. Also, chitosan treat-
ment in white clover upregulated various stress related genes
involved in carbohydrate transport and metabolism which
have potential in mitigating drought stress [103]. Also, chlo-
rophyll content and photosynthetic activity was reported to
increase after chitosan treatment [110]. Additionally, chi-
tosan application in apple explants grown on agar medium
at 40 mg/L concentration was found to lower the deleterious
effect of salt stress [111]. Chitin oligosaccharides treatment
in maize, soybean and beans also found to increase photo-
synthesis level [112, 113].

Chitosan nanoparticles application in barley plant at 60
and 90 ppm concentration through soil and foliar modes
of application resulted in reducing harmful effects of late
season drought stress which is evident with the improve-
ment in relative water content (RWC), plant growth and
yield [114]. Application of nanochitosan through foliar
application improved water status of plants in pearl millet
subjected to salt stress by reducing stomatal conductance
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Table 1 Recent reports of chitosan/oligo-chitosan regulating abiotic stress in some crops

Plant Stress Characteristic/method Effect Refer-
applied ences

Tomato (Solanum Salinity  Foliar Increased morphological traits, photosynthetic pigments, osmolytes, [145]
lycopersicum L.) total phenol and antioxidative activity

Wheat (Triticum Heavy Low molecular weight, Low concentration (0.1 & 0.25 mg/L) alleviated the damage caused  [146]
aestivum L.) metal seed priming by Al toxicity

Wheat (Triticum Heavy DA: 80%, Seed treatment 1 kDa effectively mitigated the Cd toxicity through increased antioxi- [147]
aestivum L.) metal dant activity, soluble protein and soluble sugar

Soybean (Glycine Heavy Seed, soil, foliar application Increase antioxidative enzymes, proline, and physiological triats, [148]
max) metal lower nickel uptake and alleviate nickel toxicity

Maize(Zea mays) Salinity  Soil application Increased antioxidant activities and growth parameters, alleviated [149]

salt induced stress

Barley (Hordeum Drought  Soil application In combination with biochar it increased morpho-physiological [150]
vulgare L.) parameters, and antioxidant activities thus alleviating drought stress

Tea (Camellia sin- Cold Oligo-chitosan Enhanced antioxidant activities, photosynthesis and carbon pro- [122]
ensis) Foliar cesses, activated genes related to stress signalling thus alleviating

cold stress

Chrysanthemum Drought  Oligo-chitosan: deacetyla-  Increased morphophysiological traits, antioxidant activities and [151]
(Dendranthema tion > 95%, Foliar higher expression of stress related genes leading to enhanced toler-
grandiflorum) ance to drought stress

Potato (Solanum Drought  Oligo-chitosan: 82.20 Chitosan (75 mg/L) and oligo-chitosan (50 mg/L) increased plant [152]
tuberosum L.) Chitosan: 337.73, Foliar growth trait and defence mechanism thus mitigating drought stress

Safflower (Cartha- Salinity =~ Molecular weight: 50 kDa, Enhanced production of secondary metabolites and alleviated salt [153]
mustinctorius L.) media supplement induced stress

Marjoram (Origanum Drought  Foliar Increased morpho-physiological traits and antioxidant activities, [154]
majorana L.) higher expression of genes related to stress and oil composition

Milk thistle (Silybum Drought ~MW: 1526.5 g/mol, DA: Increased growth of morpho-physiological, yield and phytochemicals [155]

marianum L.) 75-85%, viscosity:
20-300cP

Foliar

traits, increase in flavonoids (Silybin)

MW molecular weight; DA degree of acetylation

and transpiration [115]. Foliar application of chitosan nan-
oparticle in periwinkle (Cartharanthus roseus) resulted in
mitigation of drought stress through increased proline accu-
mulation and antioxidative activity. Also, it is reported to
increase alkaloid content and activate gene responsible for
defense enzyme production [116]. S-nitrosoglutathione, a
NO donor, encapsulating chitosan nanoparticle has been
shown to mitigate the negative impact of drought stress in
sugarcane plants, which is obvious with a higher root bio-
mass and higher photosynthetic rate as compared to those
with free S-nitrosoglutathione treatment alone [117]. Also,
study in wheat plant treated with chitosan nanoparticle
through soil and foliar application at 90 ppm subjected to
water deficit condition improved physiological and biochem-
ical attributes of the plant [118]. Some of the recent reports
utilizing chitosan nanoparticles in confering abiotic stress
are listed in Table 2.

@ Springer

Temperature and Heavy Metal Stress

Extreme temperature and metal contaminated soil are affect-
ing global agricultural scenario with the rapid change in
global climate and rise in synthetic chemicals use thus
depleting soil quality and health affecting global food pro-
duction. Although research on the application of chitosan
nanoparticles conferring tolerance against temperature and
heavy metal stresses are few, there are various reports on
the use of bulk chitosan. Priming with chitosan nanoparticle
in maize seeds subjected to low temperature at 15 °C has
shown to improve seedling parameters with lower mean ger-
mination time [119]. Recently, similar results were obtained
where chitosan treated ball pepper (Capsicum annum L.)
showed increased germination attributes at low temperature
along with the increased activities of glucanase and chitinase
enzymes which are stress defensive enzymes [120]. Oligo-
chitosan treatment with different DP (Degree of polymeri-
zation) induced protection against chilling stress in wheat
[121]. Similarly, in tea plant oligo-chitosan induced protec-
tion from cold stress through activation of genes related to
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antioxidant, photosynthesis and carbon metabolism [122].
Application of chitosan with varying molecular weight
(5 kDa and 1 kDa) induced protection from cadmium toxic-
ity in hydroponically grown edible rapeseed [123]. Also,
bulk chitosan and zinc application in late sown dry bean
plant (Phaseolus vulgaris L.) reduced the negative impact
of heat stress [124]. Chitosan has proven to effectively form
complexes with metal ions Pb(II), Cu(Il) and Ag(I) in soil
along with other mineral ions like C1~, K* and NO; (Kamari
et al. 2011), due to the presence of amino and hydroxyl
groups which are beneficial for phytoremediation and bio-
fortification programmes [125, 126]. In this context, bulk
chitosan or chitosan nanoparticle alone or encapsulated with
other effective molecules known to induce defense enzymes
or mitigate heavy metal stress/toxicity could be beneficial.
Furthermore, chitosan nanoparticle could be more promi-
nent than bulk form in relation to adsorption, solubility,
translocation and bioactivity of encapsulated active ingre-
dients with controlled release mechanism.

Mechanism of Action to Combat Abiotic Stresses

Plant abiotic stress offers different primary stimuli depend-
ing on the stresses induced. During signaling events, the
primary signal induced by the specific receptor molecules
activates secondary signalling cascade such as reactive oxy-
gen species (ROS) and ionositol phosphate which are then
transduced to release Ca®" in the cells. This event causes
phosphorylation driven alteration of specific protein or tran-
scription factor regulating the expression of specific genes
involved in stress response [127]. Multiple receptors that are
then transduced to secondary events and downstream sign-
aling cascades interpret the primary stress signal at various
times and locations from the primary signaling site [127].
These secondary signalling events are exchanged between
different pathways of stress response that provide plants with
cross protection [127].

There are numerous reports citing chitosan exhibiting
defense response to stress, however, the exact mechanism
of action is not known fully. Plant responds to stress, either
biotic or abiotic, through activation of defense related
metabolites and activation of genes related to stress pro-
tection. When treated with chitosan plant sense stress sig-
nal since they perceived chitin-containing organism [128].
Receptor molecules for chitin binding have been identified in
various crops [129], a glycoprotein (family of lectins) from
mustard (Brassica campestris) [130], in Arabidopsis, using
mutant shows chitosan can induce a receptor like kinase
gene which can bind with chitosan, however, on contrary, in
another research done by Povero [131], chitosan signalling
is perceived independent of chitin elicitor receptor kinase.
Thus, chitosan binding receptor is not elucidated clearly.
Therefore, in these various pathways that communicate with

each other, the involvement of a chitosan as an elicitor that
evoked stress response for distinct abiotic stress mitigation
could be more pronounced in nanosized chitosan.

The essential metabolic process within the plant, such
as photosynthesis and protein synthesis are disrupted by
extreme temperatures, drought and high salinity in the soil,
resulting in reduced growth rate, crop growth and quality
[86, 132]. Photosynthesis carbon fixation and redistribu-
tion are negatively affected by extreme temperature such as
heat; also it disrupts the chloroplast functioning resulting in
impaired electron transport chain [132]. In drought stress,
plant responds by activating stomatal closure and decreased
activity of photosynthetic enzymes such as ribulose-1,5-bi-
sphosphate carboxylase/oxygenase (Rubisco) [132]. Also,
to tolerate drought stress, plant responds by increasing
drought responsive metabolites such as amino acids, sugars
and polyols to regulate the turgor pressure [103]. Higher
level of osmoprotective amino acid proline was found in
barley plant treated with chitosan grown under water deficit
conditon [114].

Salt stress affects the plant developmental process such
as disruption in cell membrane, creating osmotic stress and
accumulation of sodium (Na*) and chloride (CI7) ions thus
causing ionic imbalance. Plant’s response through accumula-
tion of stress protective metabolite like proline is an adaptive
feature of salt stress [89]. Application of nanochitosan in
maize has higher levels of organic compounds such as alde-
hydes, ketones, phenols, etc. that are defensive metabolites
against stresses [37]. Additionally, plant response includes
increased levels of antioxidants and antioxidative enzymes
to confer protection against elevated level of ROS which are
product of a broken electron transport chain, and expresses
unique proteins known to have a defensive role against these
stresses, such as late embryogenesis abundant protein (LEA)
[100, 118]. Enhanced activities of antioxidants like cata-
lase (CAT) and superoxide dismutase (SOD) enzymes are
recorded when treated with nanochitosan in barley subjected
to drought stress [114].

In addition, the application of chitosan has increased pro-
line levels, which are stated to be correlated with enhanced
proteinase enzyme activity [98]. Furthermore, application
of chitosan was reported to induce abscisic acid (ABA)-
dependent antitranspirant activity leading to stomatal clo-
sure [100]. ABA is known to induce stomatal closure upon
stress stimuli and activates the defense related genes [132].
Similarly, oligo-chitosan induces gene expression related to
auxin and gibberellin synthesis and activation of JA (jas-
monate) and ET (ethylene) signalling pathway in rapeseed
[133] which are defence response against biotic and abiotic
stresses.

Interestingly, oligo-chitosan treatment in gravevine is
reported to increase phenolic compounds such as antho-
cyanins which are responsible for protection against biotic
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Table 2 Chitosan nanoparticles and its encapsulated molecules under abiotic stress

Nano-matrix Stress Crop Character-  Effect Reference
istics
Chitosan + Nitric oxide Salinity Maize (Zea mays) MD: 38.81  Alleviated salt stress and increased plant [95]
nm growth
ZP: +17.7
mV
PDI: 0.30
EE: 91.07%
Chitosan/TPP + Nitric Drought  Sugarcane (Saccharum offici- MD: Higher photosynthetic rate, high root/shoot [118]
oxide narum L.) 104.8nm ratio in water deficit condition and slow
PDI: 0.345 release of nitric oxide improved tolerance
ZP: 17.5 to water stress
Chitosan/TPP Salinity Mungbean (Vigna radiata L.) ~ MD: 254nm Overcome the adverse effect of salinity [96]
ZP: 103 mV  stress through increased antioxidant,
PDI: 0.501 increased content of chlorophyll and
growth
Chitosan/TPP Drought  Periwinkle (Catharanthus - Improved drought stress tolerance, Induced [116]
roseus L.) antioxidants activities, Increased alkaloid
content and induced genes expression
related to drought stress
Chitosan Drought  Barley (Hordeumvulgare L.) MD: Significant increase in leaf area, chloro- [114]
>100nm phyll, and number of grain spike and
increased antioxidant activity, mitigated
harmful effect of drought stress
Chitosan/TPP + Salicylic =~ Heavy Isatis cappadoci-ca Desv - Increased Root length, shoot height and [156]
acid metal biomass under arsenic toxicity
Chitosan/TPP+NAC(N-  Ozone Durum wheat (Triticum durum  MD: 178 Increased level of antioxidant activity, [157]
acetyl cysteine) L) PDI:0.397 Ascorbic content, triggered plant defence
ZP: 47.2 against ozone stress
Chitosan Selenium nano-  Salinity Bitter melon (Momordica DA: Increased antioxidative activity, proline, [158]
particle (Cs-Se-Np) charantia) 75-85% relative water content, K*, decreas-
MW: ing MDA, H,0, and Na aggregation,
310-375 increased yield and essential oil

MD mean diameter; DA degree of acetylation; MW molecular weight; ZP zeta potential; PDI polydisperity index; EE encapsulation effeciency

and abiotic stress [134]. Similarly, oligo-chitosan treatment
in blackberry (Robbus spp.) increase total soluble phe-
nolic content. Also, treatment with chitosan in ball pepper
(Capsicum annuum L.) is reported to increase chitinase
and glucanase activities in both seed and seedling [120].
Upregulation of genes for phenolic biosynthesis after chi-
tosan treatment has been reported previously [135, 136].
In addition, enhanced level of carbon and nitrogen metabo-
lism was found in wheat treated with chitosan [137]. Such
involvement of protective secondary metabolites biosyn-
thesis has potential role in resilience to biotic and abiotic
stress [107]. Chitosan and its oligosacharides also induce
growth and development in gravevine [138], orchid [139],
bean [126, 140], potato [141] and wheat [142]. Addition-
ally, chitosan nanoparticle stimulates plant growth and yield
of plants such as wheat [143], coffee [38], chilli [144] and
maize [37]. Some of the recent reports on chitosan nanopar-
ticle with or without encapsulation regulating growth and
development are listed in Table 3.

@ Springer

Chitosan Based Biogenic Nanoparticles

Biogeneic synthesis of nanoparticle is a new approach which
is gaining attention due to its low toxicity as compared to
chemical synthesis. Biological agents such as plant extract
and microbes have been used for synthesis of nanoparti-
cles. Also, plant extracts provide an excellent stabilizing
ability and both reducing and capping agents for synthesis
of nanoparticles [168]. Also, chitosan acts as an excellent
carrier molecules and fabrication flexibility for incorpora-
tion of biogenic nanoparticles. For example Chitosan based
nano-composite films using biogenic silver (Ag) nanoparti-
cles obtained from Nigellea sativa extract exhibit controlled
released of Ag* ions and improved antimicrobial and anti-
oxidative potential of the film [169]. Also, chitosan based
iron nanoparticle incorporating Moringa oleifera leaves
exhibits improved seed germination and growth parameters
in corn [170]. Moreover, chitosan nanoparticle incorporat-
ing green tomato fruit extracts exhibits strong antibacterial
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8 activity against Xanthomonas oryzae pv. Oryzae [171]. Most
g = of the applications of chitosan based biogenic nanoparticles
E = in agriculture have focused on conferring tolerance biotic
. stress due to their immense antimicrobial potential and sus-

g 50 tainability. However, application on conferring tolerance

=< —:5:0 against different abiotic stresses would provide an overall

g é mechanistic outlook of its potential for combined delivery

% % é in agriculture.

%“:é* < Conclusion and Future Perspectives

ES o

g _§ _% The preparation of chitosan based nanoformulations and

% § g5 their various applications related to plant growth and nutri-
- 13 E 3 tion, their uptake mechanism and protection from abiotic
’f; é :» § stresses were outlined in this review. It can be inferred that
21E” = nanostructured chitosans can be used as carriers of various

bioactive ingredients owing to their ability to be carriers
of encapsulation or immobilization.These are also inter-
esting choices as drug delivery carriers and as growth and
defense inducers in plants due to their favorable biological
properties such as nontoxicity, biocompatibility, biodeg-
radability and broad antimicrobial capability. Although
the potential of chitosan-based nanoformulation and nano
chitosan alone are well documented in many published
literature, there are dearth of information related to abiotic
stress management. It is still early to draw conclusions
about chitosan based agronanochemicals and bioactive
agents in plant’s response to biotic and abiotic stress since
data from real field condition is not known in totality. In
fact, it was evident from laboratory study that chitosan
based nanoformulations have good controlled release
behaviour and long stability of bioactive compounds
encapsulated inside chitosan nanoparticle, and have pros-
perous future for plant application. In order to allow the
modification of chitosan-based nanoformulation with the
desired properties, it is important to consider the physico-
chemical properties of chitosan nanoformulation such as
molecular weight, degree of acetylation, compound to be
encapsulated and other variables depending on the method
of preparation, since these can greatly affect the bioactiv-
ity of plant. Chitosan is known to be nontoxic; however,
nanosized chitosan and its encapsulated compounds needs
to be carefully considered since its enhanced ability could
accumulate in non-targeted site posing threat to environ-
ment and health issues. Further, holistic evaluations of
the effects of these factors on morpho-physiological and

Characteristics
MD: 20nm

Tomato (Solanum tuberosum L.)

Crop

MD mean diameter; DA degree of acetylation; MW molecular weight; ZP zeta potential; PDI polydisperity index; EE encapsulation effeciency

Chitosan-polyvinyl alcohol hydrogels (Cs-

= at molecular level are, therefore, needed. In addition,
é E more information is required to establish the mechanism
g | .= § of chitosan-based nanoformulation in a plant, where size
i’ § + of the particle, its morphology, solubility, concentration
L o < and other physico-chemical characteristics will determine
R A the uptake and translocation. Also, to evaluate the actual
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movement of nanoparticle inside plant’s system should be
area of study of research in future.
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