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Abstract
Soy protein isolate (SPI) has the advantages of low cost, easy processing, stable performance and so on. However, the pro-
cessing temperature of SPI is high, the processed products are hard and brittle with high water absorption capacity, so it is 
necessary to modify the soybean protein during processing. Small molecule plasticizer is commonly used globally to plasti-
cize and modify soybean protein. Different plasticizer content has different plasticizing effect on protein, and the properties 
of materials prepared will also vary greatly. The plasticizer can affect the viscosity of the blends morphology and proper-
ties by changing the viscosity of protein phase. In this work, glycerol with the excellent plasticizing effect was selected as 
plasticizer, and SPI was plasticized with glycerol of different contents, and then the plasticized SPI was blended with poly 
(butylene adipate-co-terephthalate)(PBAT) to prepare biodegradable blend materials. The influence of plasticizer content 
on the structure and properties of the blends was explored by observing the microstructure, mechanical and thermal proper-
ties of the blends. The results showed that with the increase of glycerol content, the crystallization temperature and melting 
temperature of the blend system increased, the chain segment was easier to move, and the glass transition temperature(Tg) 
decreased. At the same time, the viscosity of the blending system decreases, which improves the processing fluidity of the 
system.
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Introduction

With the continuous development of the society, environ-
mental pollution and destruction follow, environmental 
protection and prevention become a social hot spot. With 
the rise of the field of polymer materials, polymer materials 
commonly used in nature will cause environmental pollution 
after being discarded, such as plastic bags and greenhouse 
film, which will cause white pollution. Therefore, the devel-
opment and research of biodegradable polymer materials to 
replace the traditional polymer materials which are difficult 
to degrade has become a hot topic of social development 

[1–4]. Soybean protein-based plastic is a kind of efficiently 
biodegradable plastic. As a natural polymer, SPI is easily 
converted into non-polluting carbon dioxide and water by 
microorganisms in nature. Therefore, the development of 
soybean protein-based plastic is one of the effective ways to 
solve the pollution of plastic waste and alleviate the shortage 
of oil resources in the world [5–9].

Soy protein is the main by-product of soybean oil prod-
ucts. Like other plant proteins, soy protein is a storage pro-
tein in soybean. Its monomers are linked by amide bonds to 
form polypeptide chains, which are intertwined into three-
dimensional complex structures by disulfide and hydrogen 
bonds. Most soy proteins are globulins, containing 20 % 
basic amino acids, 20 % hydrophobic amino acids, and 25 % 
acidic amino acids [10–13]. Although protein has the advan-
tages of degradability, easy processing and low cost, protein 
plastic products are easy to absorb water and brittle [14, 
15]. Therefore, it is necessary to modify the protein before 
processing. Chemical modification, physical modification 
and enzyme modification are the main methods of protein 
modification. These modifications mainly alter the protein 
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structure or conformation without altering the amino acid 
sequence that forms the polypeptide chain. The denatura-
tion process of protein mainly refers to the modification of 
the secondary, tertiary or quaternary structures of protein 
molecules [16–18]. After protein denaturation, the spherical 
tight structure of protein is destroyed, the molecular chain is 
reorganized, the intermolecular or intramolecular forces are 
reduced and the molecular chain becomes extended [19, 20].

The methods commonly used to prepare soy protein plas-
tics are hot pressing and extrusion [21, 22]. SPI has good 
biodegradability, but it is sensitive to water and brittle and 
easy to break, which limits the application of SPI material, 
so it needs to be plasticized [23, 24]. Glycerol is the most 
commonly used plasticizer for protein materials. Glycerol 
has a high boiling point and can form strong intermolecular 
hydrogen bonds with protein molecules, so it has a high 
stability in protein materials. The low strength and high 
water absorption of SPI plasticized bioplastics still limit the 
application of SPI. The simplest and most effective way to 
improve the performance of protein materials is to mix soy 
protein with other natural or synthetic polymers.

PBAT has the properties of both polybutyl acrylate(PBA) 
and polybutylene terephthalate(PBT), and is a new biode-
gradable material. PBAT contains flexible aliphatic chain 
and rigid aromatic bond, so it has high toughness and high 
temperature resistance. However, due to the existence of 
ester bond, it has good ductility and elongation at break, 
as well as good heat resistance and impact performance 
[25–28].

At present, the research of SPI/PBAT blend composites 
has attracted more and more favor and attention, In our pre-
vious work, we with SPI and MA-g-PBAT as raw materials, 
prepared by melt blending method the SPI/MA-g-PBAT bio-
degradable blend material, explores SPI content and type of 
plasticizer on the influence of the blending material structure 
and performance. On the basis of previous work, this study 
selected glycerol with better plasticizing effect to plasticize 
SPI by controlling its content, and then blended it with MA-
g-PBAT to prepare biodegradable materials. The addition of 
glycerol as a plasticizer improves the mechanical properties 
as well as thermal stability of the blends, and improves the 
fluidity of the system, which provides a feasible strategy for 
the design and optimization of biodegradable materials in 
the future.

Experiment

Materials

SPI was purchased from Longyun Protein Food Co., Ltd. 
PBAT was purchased from Zhejiang Hangzhou Xinfu Phar-
maceutical Industry. Glycerol was purchased from was 

purchased from Shanghai Aladdin Biochemical Technology 
Co., Ltd. All of these materials were directly used without 
further purification.

Preparation of SPI/ MA‑g‑PBAT Hot‑pressing Films

According to previous studies, pure PBAT and a group of MA-
g-PBAT with the highest grafting rate were selected as the 
raw materials of the blend, and the plasticizer with the best 
effect was glycerol. Before the experiment, pure PBAT, MA-
g-PBAT and SPI (30 %) were dried. The soy protein was plas-
ticized with different content of plasticizer, and the plasticized 
SPI was put in place for one day, then the MA-g-PBAT was 
blended with the plasticized SPI by a mixer, and the product 
was pressed into a film by hot pressing. The preparation pro-
cess is shown in Fig. 1.

Characterization

In order to study the functional groups and their interac-
tions, the sample was scanned from 4000 to 400 cm-1 by 
using Fourier transform infrared spectroscopy (FTIR, Nico-
let Avater-370, USA). The graft sample was mixed with KBr 
powder and pressed into tablets. The morphology of the 
samples was observed using a scanning electron microscope 
(SEM) (S-4300, Hitachi Ltd, JPN). Firstly, SPI/MA-g-PBAT 
blend material was vacuum dried at 90 oC for 1 day, then 
freeze-quenched and freeze-dried in liquid nitrogen. Gold was 
sprayed on the cross section and the working voltage was set 
at 15 kV. Differential scanning calorimetry (DSC) analysis 
was performed by a thermal analyzer (Q100, TA, US). The 
sample weight was 5–10 mg. In the nitrogen atmosphere, the 
temperature was raised to 170 oC to eliminate the thermal his-
tory. Then the temperature was decreased to − 60 oC at 10 oC/
min, and then raised to 170 oC at 10 oC/min. The mechanical 
properties of the samples were tested by microcomputer con-
trolled electronic universal testing machine (CMT6104, Shen-
zhen Xinsaini Design & Measurement Company). According 
to the national standard ISO 1184–1983, the tensile speed was 
100mm/min. Each group of samples was tested with five speci-
mens and then the average value was taken. Before the tensile 
test, the sample was placed in the humidity box for a week, 
so that the prepared spline maintained the same humidity and 
stress was completely released. TGA (Q5000, TA Instrument 
Company) was used to characterize the thermal stability of the 
samples. Nitrogen was used as the purge gas, and the samples 
were heated to 800 oC at a heating rate of 20 oC /min.
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Results and Discussion

The FTIR spectra of the pure SPI and SPI/MA-g-PBAT 
blends with different glycerol plasticizers is shown in 
Fig. 2. The peak near 2800 ~ 2900 cm− 1 corresponds to 
the stretching vibration of –CH3 or –CH2–. The strong 
peak corresponding to 1800 ~ 1600 cm− 1 appears to be the 
stretching vibration of C = O. For pure SPI, the peak near 
1650 cm− 1 is the characteristic peak of the amide I band of 
SPI (C = O stretching vibration in SPI molecule), the peak 
near 1540 cm− 1 is the characteristic band of amide II band 
(N – H bending) [29, 30].

The FTIR spectra of the SPI/MA-g-PBAT blends were 
analyzed by comparing the different content of glycerol plas-
ticizers. It was found that no new peaks were observed, indi-
cating that no new groups were formed after blending. Com-
pared with the pure SPI, the C = O stretching vibration peaks 
and the N-H bending vibration peaks in the blends are blue 
shifted, indicating that the C = O of maleic anhydride(MAH) 
interacts with the amide ll band in SPI by hydrogen bond.

The microstructure of SPI/MA-g-PBAT blend with differ-
ent glycerol content was shown in Fig. 3. The blends showed 
a typical Sea Island structure. Among them, SPI is the island 
structure in the blend. In the blend system, the soy protein 
is a rigid particle without the addition of plasticizer, the 

phase size is large, and the two phase interface is obvious. 
After adding plasticizer, the size of protein phase decreased 
obviously and the compatibility of two phases was improved 
obviously. When the plasticizer content is 10 %, the protein 
phase is lamellar. This is because the plasticizer content is 

Fig. 1   Flow diagram of preparation of hot pressed film material prepared by plasticized SPI/MA-g-PBAT blend

Fig. 2   The FTIR spectra of the SPI/MA-g-PBAT blends with differ-
ent plasticizer contents
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low, the interaction between the protein molecular chains is 
large, the protein viscosity is high and the fluidity is poor, 
so the protein is pulled into lamellar by the shear force dur-
ing the blending. With the increase of the content of plas-
ticizer, the dispersibility of the protein phase in the blend 
system was improved, and the lamellar structure of the SPI 
dispersed photo was more and more obvious. In the pro-
cess of increasing glycerol content, the protein gradually 
evolved from the rigid particle state to the ductile band struc-
ture. Therefore, with the increase of the content of glycerol 
plasticizer, the compatibility of SPI with MA-g-PBAT was 
improved, and the dispersibility of protein was improved.

As shown in Fig. 4a, by comparing the glass transition 
and melting curves of blends prepared under different plas-
ticizer contents, it can be seen that with the increase of glyc-
erol content, the melting peak of the blend moved to high 
temperature. The added glycerol could penetrate into the SPI 
molecules, destroying the force between the protein molecu-
lar chains, which extends the protein molecular chains that 
were originally aggregated and folded, increasing the free 
volume of protein molecules, and reducing the glass transi-
tion temperature (Fig. 4c). The increase of glycerol content 
makes the SPI molecular chain easier to move, so the prob-
ability of contact with the PBAT molecular chain is greatly 
increased, and the interaction between the two phases of the 
blend is improved. As the molecular chain breaking of the 

blend material needs to absorb higher energy, the increase 
of glycerol content increases the melting temperature of the 
blend material.

Figure 4b shows the change of the crystallization curves 
of the blend material. With the increase of the content of 
glycerol plasticizer, the crystallization peaks of the blend 
moved to the high temperature. This may be because the 
addition of glycerol makes the molecular chain of the blend 
material more flexible, and it is easier for the molecular 
chain to extend and crystallize in the cooling process. There-
fore, the addition of glycerol makes the blend material crys-
tallize at higher temperature.

The effect of glycerol plasticizer content on the torque of 
the blend is shown as Fig. 5a and b. When SPI and MA-g-
PBAT blend, the torque increases firstly and then decreases, 
and finally the torque tends to balance. It can be seen from 
the Fig. 5a that with the increase of glycerol content, the 
maximum torque of the blend is 26 Nm from the 36 Nm 
to the glycerol content of 40 % of the SPI content, and the 
torque is significantly reduced. It can be seen from the fig-
ure that with the increase of glycerol content, the maximum 
torque of the blend material decreases from 36Nm without 
plasticizing to 26Nm when glycerol content is 40 %, and the 
torque is significantly reduced. And the equilibrium torque 
(shown in Fig. 5b) decreased rapidly after the addition of 
plasticizer, and then the glycerol content increased and the 

Fig. 3   Micromorphology of SPI/MA-g-PBAT blends with different glycerol content

Fig. 4   The DSC diagram of the influence of different plasticizer content on the blend
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balance torque decreased less and less. Small molecules of 
glycerol penetrate into the SPI molecular chain, hydroxyl 
groups in glycerol form hydrogen bonds with the protein 
molecules, then cohesion energy of protein molecules 
decreases and the folded molecular chains stretch, which 
reduce the interaction between SPI molecules and the inter-
nal friction between SPI molecular chains, thus reducing the 
viscosity and increasing the fluidity of the system. There-
fore, with the increase of glycerol content, the torque of the 
blends decreases.

Blends of different content of glycerol plasticized by the 
stress-strain curve is shown in Fig. 6a. The stress-strain 
curves of the blends with plasticized glycerol of differ-
ent contents are shown in Fig. 6a. Without plasticizer, 
the rigidity of protein phase was high, and brittle fracture 
occurred in the blend material. When the plasticizer was 
added, the rigidity of protein phase was weakened, and the 
yield phenomenon appeared in the tensile process of the 
blend material, but the yield phenomenon was not obvious 

when the plasticizer content was low, and the ductile frac-
ture occurred in the blend material. With the increase of 
glycerol content, the yield phenomenon of the blends is 
obvious. As you can see, Fig. 6b shows the tensile prop-
erties of SPI/MA-g-PBAT blends with different glycerol 
content. It can be seen that the tensile strength and elastic 
modulus of the blends decrease while the elongation at 
break increases. Protein phase is rigid, as a small mol-
ecule polar plasticizer, glycerol can be inserted between 
the protein molecular chain of glycerol on the molecu-
lar chain of hydroxyl and SPI to form strong hydrogen 
bonds, the SPI aggregation folding of peptide chains at full 
stretch, orderly, reduce the SPI cohesive energy, protein 
in blend materials in dispersion increased, which makes 
the tensile strength of blends decreased and the elongation 
increased. Therefore, biodegradable products with certain 
tensile strength, especially the elongation at break, can be 
prepared by adjusting the content of glycerol plasticizer.

Fig. 5   Effect of glycerol plasticizer content on torque of blend

Fig. 6   Mechanical properties of SPI/MA-g-PBAT blends with different glycerol content
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Figure 7 is the decomposition curve (TG) and decomposi-
tion rate curve (DTG) of the sample obtained in the nitrogen 
environment. Thermal decomposition is divided into three 
stages. The first stage is plasticizer volatilization at 220 ~ 260 
oC. In the second stage, the molecular chains of protein 
phase were broken and decomposed at 320 ~ 350 oC, and in 
the third stage, the macromolecular skeleton of PBAT phase 
in the blends was broken and decomposed at 380 ~ 450 oC.

With the increase of glycerol content, blending materials 
have no significant changes in the thermal stability of 400 
oC. Above 450 oC, the carbon residue decreases, because the 
higher the glycerol content of the same quality test sample, 
the corresponding blend quality decreases. Although the 
amount of carbon residue decreases above 450 oC, the ther-
mal decomposition temperature has no significant change.

Conclusions

In summary, using SPI and PBAT as raw materials, we suc-
cessfully prepared a series of SPI/MA-g-PBAT blend film 
materials with different glycerol plasticizer contents by melt 
blending method blend, to explore the impact of different 
glycerol contents on the structure and properties of the blend 
materials. The results showed that when glycerol plasticizes 
the SPI, glycerol can penetrate into the internal structure of 
the protein and form hydrogen bonds with the molecules of 
SPI, which weakens the interaction between the molecules 
of SPI and causes the folded peptide chains in the molecules 
of SPI to stretch out and arrange in an ordered way. As a 
result, the crystallization temperature and melting tempera-
ture of the blend system increased, and the free volume of 
protein molecules increased, meanwhile the chain segment 
moved more easily, and the glass transition Tg decreased. 
With the increase of glycerol content, the maximum decom-
position rate of the blend system decreased, indicating that 
the interaction between the two phases was enhanced, and 

the plasticizing effect of glycerol was obvious. It can be seen 
from the torque test that glycerol can significantly reduce the 
torque of SPI processing, reduce the viscosity of the blend 
system and improve the fluidity of the system.
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