
Vol.:(0123456789)1 3

Journal of Polymers and the Environment (2022) 30:19–50 
https://doi.org/10.1007/s10924-021-02180-9

REVIEW

An Overview on Starch‑Based Sustainable Hydrogels: Potential 
Applications and Aspects

Md. Qamruzzaman1 · Firoz Ahmed1,2 · Md. Ibrahim H. Mondal1

Accepted: 11 May 2021 / Published online: 7 June 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Hydrogels are a kind of three dimensional polymeric network system which has a significant amount of water imbibing 
capacity despite being soluble in it. Because of the potential applications of hydrogels in different fields such as biomedical, 
pharmaceutical, personal care products, biosensors, and cosmetics, it has become a very popular area of research in recent 
decades. Hydrogels, prepared from synthetic polymers and petrochemicals are not ecofriendly. For preparing biodegradable 
hydrogels, most available plant polysaccharides like starch are utilized. In its structure, starch has a large number of hydroxyl 
groups that aid in hydrogel networking. For their easy availability and applications, starch-based hydrogels (SHs) have 
gained huge attention. Moreover, SHs are non-toxic, biocompatible, and cheap. For these reasons, SHs can be an alternative 
to synthetic hydrogels. The main focus of this review is to provide a comprehensive summary of the structure and charac-
teristics of starch, preparation, and characterization of SHs. This review also addresses several potential multidimensional 
applications of SHs and shows some future aspects in accordance.
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Abbreviations
SHs  Starch based hydrogels
PLA  Poly lactic acid
PGA  Poly glycolic acid
AA  Acrylic acid
KC  Kappa-carrageenan
PVA  Polyvinyl alcohol
AM  Acrylamide
MBA  N,N′-Methylenebisacrylamide
DMDAAC   Dimethyl diallyl ammonium chloride
EG  Ethylene glycol
MAA  Methacrylic acid
PCL  Polycaprolactone
AMPS  2-Acrylamido-2-methylpropane-1-sulphonic 

acid
DMAEMA  Dimethylaminoethyl methacrylate
AFM  Atomic force microscopy
FTIR  Fourier transform infrared spectroscopy
XRD  X-ray diffraction
TGA   Thermogravimetric analysis
DTA  Differential thermal analysis

DTG  Differential thermogravimetry
DSC  Differential scanning calorimetry
GMA  Glycidyl methacrylate
LDPE  Low-density polyethylene
APS  Ammonium persulphate
TEMED  N,N,N,N-Tetramethylethylene diamine
LRD  Laponite RD
HEMA  2-Hydroxyethyl methacrylate
HES  Hydroxyethyl starch
CB  Coomassie brilliant
MB  Methylene blue
MV  Methyl violet
MO  Methyl orange
AMPS  2-Acrylamido-2-methylpropanesulfoacid

Introduction

Hydrogels are called hydrophilic polymeric networks with 
huge water absorption capability (up to thousand times their 
dry weight) [1–3]. Hydrogels can be prepared from both 
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synthetic and natural materials. The key feature of hydrogels 
is their large amount of solvent (e.g., water, biological flu-
ids) retaining ability under different conditions. Like living 
tissue, hydrogels are soft and flexible which makes them 
a very suitable material for various potential applications 
[4]. In recent decades, hydrogels have been used in vari-
ous important areas such as in tissue engineering [5–7], in 
delivery of drugs [8, 9], wound treatment [10, 11], for the 
purification of water [12–14], in biomedical sectors [15, 16], 
in production of personal care items [17–19] and agricul-
ture [20, 21]. Another significant character of hydrogels is 
their responding ability to different environmental condi-
tions such as the change of temperature, pH, variation in 
magnetic fields, and some electric stimuli. Due to having 
the ability to quickly respond to the environment, they are 
called smart polymers (e.g., stimuli-responsive hydrogels). 
Hydrogels are also termed as novel biomaterials of this era 
because of some unique properties like (I) ability of bio-
degradation, (II) stability in chemicals and bio-fluids, (III) 
stable shape, (IV) biocompatible and ecofriendly, (V) large 
absorption capability of metabolites and nutrients which are 
soluble in water [22]. The use of hydrogels as bio-material 
is also well-known because of their permeability of small 
molecules, soft consistency, low interfacial tension like the 
properties of living tissues [23]. The use of hydrogels is 
growing steadily because of their unique properties [24–26].

In the polymeric structure of hydrogel networks, cova-
lent bonds are involved due to the reaction between the co-
monomers and hydrogen bonds and the interaction of van 
der Waals force between the chains and physical crosslinking 
can be associated [17]. The cross-linked structure of hydro-
gels prohibits them from disintegration at the time of water-
retaining. Generally, crosslinking agents are used along with 
the polymers for the initiation of chemical crosslinking in 
hydrogel networks. In hydrogels, there is the presence of 
different hydrophilic groups like –COOH, –SO3H, –OH, and 
–NH2 which increase the hydrophilic property of the net-
works [27]. The water retention ability of hydrogels depends 
on two main factors—interactions of polymeric chains with 
water and temperature. A number of steps are involved in the 
water retention process of hydrogels—(I) hydrophilic groups 
present in hydrogels are hydrated, (II) interaction of water 
with the hydrophobic groups in hydrogels, (III) dilution of 
the hydrogels are stopped by crosslinks present in hydrogel 
networks, so the additional water can be absorbed [28].

Synthetic polymers are heavily used to manufacture 
hydrogels that are currently available on the market because 
they show some outstanding mechanical, physical, and 
chemical properties. They also have some drawbacks too. 
They are not ecofriendly, production is not cost-effective, 
nonrenewable and bio-degradation is difficult [8]. For 
these reasons hydrogels produced from naturally produced 
polysaccharides like starch and cellulose are getting more 

attention from researchers [29–34]. In starch, hydrophilic 
groups (e.g., –OH) are distributed in the molecular chains 
[35, 36]. These groups increase the hydrophilic character 
and biodegradability of the resulting hydrogels [37]. An 
abundant amount of starch is naturally produced in plants by 
the photosynthesis process by using  CO2 and water [38–40]. 
Plants are an abundant source of starch polysaccharides in 
which chloroplasts of the green leaves and amyloplasts of the 
tubers and seeds contain a large amount of starch as granules 
[41–43]. Potatoes, wheat, corn, and rice are the main pro-
duction source of commercial starch [44]. Mainly by three 
steps of hydration–plasticization starch, turns into gelatin. 
Hydrophilic starch granules adsorb water and swell in the 
first step. The granule structure destructed when the starch 
is dissolved in water and form gelatin in the second step. The 
final step consists of starch hydrogel network formation by 
cooling and aging and the structure of polysaccharide get 
reorganized. This step is also called the step of retrograda-
tion. Hydrogel formation primarily depends on the amount 
of amylose present in starch and the temperature of gelatin 
formation [45, 46]. For these characteristics and easy avail-
ability, hydrogel formation by starch has become popular 
from the 1970s [47, 48]. In addition, starch-based hydrogel 
products have gained attention for reducing the impact on 
the environment and more potential applicability [49–51].

To prepare SHs, various chemical methods can be uti-
lized such as etherification and grafting method of starch. 
In etherified starches, various ether groups like carboxy-
methyl starch substitute the –OH groups from the starch 
structure. On the contrary, hydrogels are produced by 
grafting different vinyl monomers on starch in the grafted 
starch method. The use of SHs in different fields has both 
merits and demerits. Some merits of the use of SHs are—
(I) ample in nature, (II) available all over the world, (III) 
cheap and attractive, (IV) preparation methods are com-
paratively easier, (V) eco-friendly, (VI) solvent absorption 
capacity is higher, (VII) usable in different process [52]. 
Some drawbacks of SHs are—(I) surface area is low, (II) 
for enhancing the sorption capacity chemical derivatiza-
tion is needed, (III) low durability, etc. [53, 54]. Although 
being completely biodegradable, the use of SHs is quite a 
few in different fields like drug delivery systems [55]. But 
other polymers like poly (lactic acid) (PLA), poly (glycolic 
acid) (PGA) are being used in this field [56–59]. Hence 
more study should be continued on SHs.

Henceforth, this review aims to provide a brief over-
view of the characteristics and structure of starch and 
SHs with an emphasis on their recent developments. In 
addition, properties and different potential applications of 
SHs have been discussed. Specifically, this review pro-
vides a summary of several synthesis pathways of SHs, 
and finally, some of the gaps future research directions 
have also been suggested.
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Characteristics and Structure of Starch

Starches are polysaccharides. Monosaccharides (glucose 
units) are bonded together by α-D-(1–4) and α-D-(1–6) 
linkages in starch structure [60–62]. In the starch struc-
ture, there are primarily two types of polysaccharides, 
which are amylose and amylopectin representing about 
98–99% dry weight of starch [63, 64]. Amylose (molecular 
weight approximately 1 ×  105–1 ×  106) and amylopectin 
(molecular weight approximately 1 ×  107–1 ×  109) have 
different structures [44, 65–68]. Amylose has a linear 
structure whereas amylopectin is composed of branched 
linkage [61, 63]. The structure of starch is shown in Fig. 1. 
The amount of amylose and amylopectin present in starch 
mainly depends on two factors which are—(I) source of 
the starch (potato, wheat, corn) and (II) polysaccharide 
crystallinity [69]. The proportion of the amorphous and 
crystalline mass in starch is about 70% and 30% respec-
tively [70].

The main component of the amorphous region in starch 
is amylose. Although a very small amount of amylopectin 
is available in the amorphous part, the crystalline region 
mainly consists of amylopectin [71]. In water, amylose 
solubility is high and a helical structure is formed [72]. 
Starches occur as a form of granular structure in the plant’s 
body and amylopectin can form a helical structure and 
crystallized. The hydrogen bonds occurred by the –OH 
groups present in the starch surface are the main reason for 
exhibiting hydrophilic property and strong inter-molecular 
attraction by starch granules [30, 64]. Starches contain a 
huge amount of –OH groups in their structure. In each 
glucose unit of starch, there are two types of –OH groups 
present. One is secondary –OH group (at carbon 2 and 3 
positions) and another is primary –OH group (carbon 6 
position when it is not linked). The reactivity of starch 
is highly dependent on these –OH groups. Starch can be 
oxidized or reduced and form hydrogen bonds, esters, and 
ethers [73].

As starch is hydrophilic in nature, water molecules 
can change the internal interaction and morphological 

Fig. 1  Structure of amylose and 
amylopectin and in starch [30]



23Journal of Polymers and the Environment (2022) 30:19–50 

1 3

arrangements of starch. For this reason various properties 
of starch such as physical and mechanical properties and 
glass transition temperature (Tg) dependent on water content 
[74]. One of the important properties of starch is complete 
biodegradability in different environments. Using microor-
ganism or enzymatic reaction, glucose can be found from 
starch by hydrolysis process. Further, it can be metabolized 
into  CO2 and water [75]. Starch is biocompatible, non-toxic, 
cheap, shows good mechanical properties, and easily avail-
able [76, 77]. Although starches are found abundantly in 
nature, it has some drawbacks such as dimensional stabil-
ity is low in native starch, comparatively poor gel content, 
mechanical properties, and processability are also poor 
for the end products [78–80]. For this reason, using native 
starch is not feasible. Thus, by using chemical or/and physi-
cal interaction, starches need to be modified [81, 82]. In this 
regard, SHs can be good starch based product for various 
potential applications.

Classifications of Hydrogels

There are various types of hydrogel depending on differ-
ent properties, such as (I) swelling property, (II) physical 
characteristics, (III) preparation technique, (IV) source, 
(V) biodegradation property, and (VI) crosslinking nature 
[4, 8, 83–85]. Different types of hydrogels are shown in 
Fig. 2. Physical crosslinking techniques are utilized in 
the physical gels (reversible for conformational changes) 
achieved by chain aggregation, the complexion of poly-
mer chain, and hydrogen bonding. In chemical hydrogels 
process like covalent crosslinking is used. But chemical 
hydrogels are irreversible in nature for their configura-
tional changes. On the other hand, both the chemical and 
physical hydrogels are combined in dual-network hydro-
gels. Dual-network hydrogels are more advantageous 
than the physical and chemical hydrogels because they 

Fig. 2  Classifications of 
hydrogels according to different 
properties [4]
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can retain a comparatively large amount of liquid and 
their sensitivity in different pH range is higher than the 
chemical or physical hydrogels alone. Recently, Cong et al. 
[86] and Yalpani [87] introduced a dual-network hydrogel 
with comparatively higher mechanical characteristics by 
combining graphene–polymer composites. Hydrogels can 
be either natural or synthetic depending on their origins 
[88]. Depending on the monomers used in the preparation 
of hydrogels, they can be homopolymeric or copolymeric 
hydrogels. In the hemolytic hydrogels, a single type of 
monomer is used [89]. On the other hand, two or more 
types of monomers are utilized for the preparation of 
copolymeric hydrogels [90]. They are arranged in differ-
ent ways in the polymeric chain such as random, block, 
or alternating configurations. Another important class of 
hydrogel is interpenetrating polymeric hydrogel (IPN). 
Both the cross-linked and non-cross-linked polymers are 
present in the semi IPN hydrogels [91, 92].

Responsive hydrogels are also an important type of hydro-
gel because they are sensitive to different environmental 
conditions like temperature, pressure, pH, etc. [93]. Stimuli-
responsive hydrogels are smart hydrogels that are sensitive to 
environmental stimuli [94–97]. Molecular interactions change 
due to the change in chemical (pH, ionic factors, chemical 
agents) and physical (light, pressure, temperature, electric 
fields, magnetic fields, mechanical stress) stimuli change [4]. 
In biomedical and pharmaceutical and biomedical sectors 
stimuli-responsive hydrogels are very popular [98].

With the alteration of surrounding temperature, swelling 
and shrinkage of the hydrogels change in thermo-responsive 
hydrogels [99]. Dai et al. [100] prepared thermo-responsive 
hydrogel by the copolymerization of polyacrylamide and 
poly(acrylic acid) for controlled drug delivery system. They 
can be both positive and negative temperature-responsive 
hydrogels [101].

pH responsive hydrogels are another important type of 
hydrogels that can response to the change of the pH of the 
environment and for this property, this type of hydrogels are 
widely used in drug delivery systems [102–106]. The degree 
of ionization in pH sensitive hydrogels change instantly for 
the change in medium pH [107]. pH responsive hydrogels 
can be anionic (contains carboxylic or sulfonic acid pen-
dent groups) and cationic type (amine pendant groups) 
[108–111]. Han et al. (2020) prepared dual pH-responsive 
hydrogel actuator and successfully used in lipophilic drug 
delivery system [112].

Hydrogel Preparation Techniques

Hydrogels are hydrophilic polymer networks. According to 
the different application aspects, hydrogels are prepared by 
different methods using both hydrophilic and hydrophobic 

monomers. Either synthetic polymers or natural polymers 
are used in hydrogel preparation. Although hydrogels pre-
pared from synthetic polymers are mechanically much 
stronger than the natural ones, they are less biodegradable 
[113, 114]. The main task during the hydrogel production 
is creating crosslinking between the monomers using dif-
ferent types of crosslinkers. Copolymerization/cross-linking 
free-radical polymerizations are commonly used methods for 
hydrogel production. Mainly hydrogels are prepared from 
the monomers considering the bond forming principles 
below [92, 115]:

a. Physical interaction between the monomers,
b. Linking polymer chains via chemical reaction,
c. Using ionizing radiation.

Monomer, initiator, and cross-linker are three major parts 
of hydrogel production. Diluents are used for controlling the 
hydrogel properties. Different polymerization techniques for 
hydrogel preparation are described below.

Bulk Polymerization

Bulk polymerization is one of the simplest methods of 
hydrogel preparation. This method mainly consists of differ-
ent monomers, initiators, and a suitable amount of crosslink-
ing agents. Vinyl monomers are highly used in this tech-
nique. A wide variety of monomers are used for altering 
the physical characteristics of final hydrogel products [92]. 
Chemical catalysts and radiation is used for initiating the 
reaction. Initiators are selected according to the monomers 
and solvents. The degree of polymerization and polymeriza-
tion rate are high in this method. Rods, particles, films and 
membranes, as well as emulsions, are all possible forms for 
the bulk polymerized hydrogels [115].

Solution Polymerization

In this technique, copolymerization occurs between the 
monomers with the help of crosslinkers. UV-irradiation or 
redox initiator initiates the reactions. The solvents used in 
the polymerization work as a heating bath for the reaction 
which is the main advantage of this method compared to the 
bulk polymerization. This process is much preferred because 
of cost-effectiveness, easy preparation and heat control. At 
the beginning of this method concentration of monomers are 
kept high and low concentration of initiators and crosslink-
ers are utilized [116]. For removing the impurities and unre-
acted monomers the prepared hydrogels are washed with 
distilled water. Different types of solvents are used in this 
polymerization method such as water, ethanol, and benzyl 
alcohol, etc. [115]. Hydroxyethylcellulose (HEC) and car-
boxymethylcellulose sodium salt hydrogels were prepared by 
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Sannino et al. [117–120] using this polymerization method. 
Keeping water as a common solvent they prepared hydrogels 
altering different crosslinkers and catalysts.

Free Radical Polymerization

Free radical polymerization is a common chain-growth 
polymerization technique [121]. The main advantages of 
this technique are—it is a fast technique, can be carried out 
as bulk, solution (also in water), emulsion, and suspension 
polymerization. Acrylates, vinyl lactams, and amides mono-
mers are highly used in this process. Free radical polymeri-
zation technique include different steps such as propagation, 
chain transfer, initiation, and termination [115]. This process 
starts with the decay of initiators and free radicals gener-
ate which attack the monomers to make them active [122]. 
Polymerization stops during the termination stage with the 
deactivation of the active center.

Suspension Polymerization

Suspension polymerization is a technique in which mono-
mers and initiators are dispersed in the organic phase and 
create a homogeneous mixture. The reacting molecules are 
dispersed as minute droplets in the continuous phase. The 
heat is transferred from the droplets to the water, which has 
a large heat capacity and a low viscosity. Preparation of 
hydrogels by this method is dependent on different condi-
tions such as monomer viscosity, speed of the agitation, and 
rotor design [123–125]. One advantage of this method is that 
additional grinding is not necessary for the prepared hydro-
gel product because hydrogels are obtained in the powder 
or beads form. A low hydrophilic–lipophilic-balance (HLB) 
suspending agent is required to be added in the dispersion 
because of the thermal instability of the dispersion [92].

Physical Cross‑linking

Physical cross-linking is one of the easiest ways of hydro-
gel formation by crosslinking the polymers. This process 
is gaining popularity because of its ease of production and 
an additional cross-linking agent is not required. Physical 
hydrogels are also called self-assembled hydrogels. Different 
types of interactions occurred between the macromolecules 
such as hydrophobic, polyelectrolyte complexation, elec-
trostatic, and H-bonding [126]. These physical interactions 
prevent the dilution of the product hydrogels. These interac-
tions are reversible and can be altered by changing physical 
conditions [127]. As toxic cross-linkers are not used in this 
method, it is much usable in the biomedical applications like 
drug delivery systems. In preparation of hydrogels by physi-
cal crosslinking, different methods like heating/cooling of 

polymer solution, complex coacervation, ionic interaction, 
hydrogen bonding are utilized [115].

Chemical Cross‑linking

For the production of mechanically stable hydrogels, the 
chemical cross-linking method is highly used. For grafting 
the monomers and cross-link the polymers, different types 
of cross-linkers are used. Cross-linking is produced by the 
reaction between the functional groups (e.g., –OH, –COOH, 
and –NH2) of the monomers and cross-linking agents (e.g., 
-glutaraldehyde, adipic acid dihydrazide) [128]. Mainly 
covalent bonds are developed between the polymer chains 
[129]. Sometimes toxic cross-linking agents are used which 
need to be extracted before using the gel for different pur-
poses [126]. For instance, there are huge number of hydroxyl 
groups present in starch and PVA structures. PVA–starch 
based hydrogels can be prepared using glutaraldehyde as 
cross-linking agent where glutaraldehyde replaces the –OH 
groups and intermolecular bridges are formed [2].

Hydrophilic Nature of Hydrogel

Depending on the techniques of absorbing water, hygroscopic 
materials are mainly two types—(I) Chemical absorbers and 
(II) Physical absorbers. Chemical reaction is occurred when 
chemical absorbers (e.g. metal hydrides) absorb water and 
the properties of the absorbers are completely altered. On the 
other hand, different mechanisms work behind the absorp-
tion of water in physical absorber which are—(I) reversible 
changes in crystal structure, (II) physical water entanglement 
in the porous framework, (III) combining with second mecha-
nism hydration of functional groups and (IV) thermodynamic 
expansion and dissolution of polymeric chains are prohibited 
by crosslinking with combining second and third mechanism 
[130]. Two types of water can be present in hydrogels which 
are free water and bound water. Most of the polar and hydro-
philic groups present in the hydrogel are hydrated during the 
absorption of water molecules by dry hydrogel which results in 
the “primary bound water”. Further, “secondary bound water 
or hydrophobically-bound water” results when the swelling 
of the polymeric network starts and hydrophobic groups are 
exposed interacting with the water molecule. The combination 
of the primary and secondary bound water is termed as “total 
bound water” [17]. The hydrogel networks start to gain more 
water molecules when the bound water is interacted with the 
hydrophilic and hydrophobic parts of the networks because of 
the osmotic driving forces for complete dilution. Physical and 
covalent cross-linkages present in the hydrogel network restrict 
the additional swelling which results in an elastic polymeric 
network. For this reason, infinite dilution cannot be occurred in 
hydrogel and reaches an equilibrium swelling. Various groups 
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such as polar groups, ionic groups, and hydrophobic groups 
absorb the additional water and are saturated with bound water 
which is termed as “free water”. Big pores and voids along 
with the gaps between the polymeric chains of hydrogels can 
be filled by free water [3].

Different Crosslinking Strategies 
of Starch‑Based Hydrogels

Hydrogels possess three dimensional networks in their 
structure. The formation of crosslinking between the 
chains of macromolecules is the main aim during the 

Fig. 3  Formation of starch-
based hydrogels. Reused 
with permission from [143]. 
Copyright 2012, John Wiley 
and Sons
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synthesis of hydrogel which finally develops three dimen-
sional networks [131]. At the primary stage of the network 
structure development, branched polymers are formed 
first. The size of these branched polymers gradually 
develops and finally forms the structure of gel networks. 
This gel network formation process is called gelation or 
sol–gel transition. Different processes can be utilized for 
the development of these crosslinking networks. Proper-
ties of hydrogels including swelling and several physical 
characteristics mainly depend on the degree of crosslink-
ing [132, 133]. This crosslinking either can be physical 
[134] or chemical [131, 135] (Fig. 3). Researchers have 
utilized different synthesis routes for the development of 
polysaccharide-based hydrogels (e.g., cellulose, starch, 
chitin) [22, 136]. The stability of the hydrogels prepared 
by physical blending is not very good although they are 
insoluble in aqueous media. These types of hydrogels are 
reversible in nature [137, 138]. Oppositely, chemically 
crosslinked hydrogels are more stable forming covalent 
crosslinking [139].

Chemical cross-linking in hydrogels can be achieved in 
different ways such as—(I) different reagents (bi or multi-
functional) can be reacted with polymers, (II) polymerize 
end functional macromonomers, and (III) click reactions 
between different polymeric groups [140–142].

By functionalizing, reactive groups can be added with 
polymers or they can exist in polymer precursors. Differ-
ent crosslinking agents (glutaraldehyde, formaldehyde, 
epoxy compounds, dialdehyde) are used which are low or 
high molecular weight [144–147]. In physical crosslinking, 
hydrogen bonding or interaction between the opposite charge 
macromolecules are incorporated [148]. Although crosslink-
ing structure and composition are more perfect in chemical 
crosslinking, sometimes crosslinking agents used in this pro-
cess are toxic. But in physical crosslinking, comparatively 
mild conditions are utilized. For this reason, they could be 
utilized in drugs or other biomaterials for encapsulation [3]. 
In situ techniques are utilized in quick crosslinking (both 
physical and chemical crosslinking). Different parameters 
govern this process like-macromolecular structure (amount 
of crystalline or amorphous region, presence of functional 
groups) and environmental parameters (temperature, pH) 
[143].

Physical Blend

Although chemical cross-linking is more advantageous than 
other mechanisms due to its wide versatility, it has some 
drawbacks too. The reagents used for chemical crosslink-
ing in this process are usually toxic and high temperature 
is needed for the reaction which is not very suitable for 
the bio-active materials [149]. In this regard, the physical 

cross-linking process has advantages for using in life science 
(e.g., tissue engineering) and bio-medical sectors (e.g., drug 
delivery) [143].

In physically blended hydrogel, different forces (hydro-
phobic interaction, hydrogen bonding, and ionic interaction) 
act for the cross-linking of the networks, and cross-linking 
agents are not necessary. For SHs production, different tech-
niques have been used such as heat-induced aggregation, 
freeze-drying, and complex coacervation [22]. Hydrogel is 
formed along with the formation of helix and junction jones 
when the hot solution of polysaccharides is cooled. For the 
development of carrageen hydrogels from the hot solution, 
the cooling process was used [150]. Produced hydrogels 
become more stable if  K+,  Na+ like salts are present. A new 
technology for the formation of physically blended hydro-
gel is stereocomplex in which lactic acid and methyl meth-
acrylate oligomers are used. Coupling is formed between 
polymer chains and oligomers. De Jong et al. 152] synthe-
sized self-assembled hydrogels by stereocomplex by grafting 
enantiomeric lactic oligomers in dextran.

Gelation of native starch is easy [151]. By thermal treat-
ment, hydration starts in starch resulting in gelation [152, 
153]. For starch aerogel formation, gelating behavior is com-
bined with emulsion [153]. By retrogradation, heating the 
starch solution and finally drying starch aerogel is formed 
[154]. Different characteristics (e.g., swelling and release 
properties) of starch hydrogels are changeable by modify-
ing the non-ionic components [155, 156]. By utilizing the 
freezing/thawing process repeatedly, physical PVA based 
ecofriendly hydrogel can be easily developed [157, 158]. 
Using the graft copolymerization process PVA–starch based 
hydrogels are synthesized by radical copolymerization and 
alcoholysis [159, 160]. Starch-based networks are highly 
improved blending with PVA [161]. By utilizing the freez-
ing and thawing method starch-g-PVA hydrogel is prepared 
[162, 163]. A nano-precipitation method is utilized for pre-
paring SHs which are pH-sensitive [164].

Blend with Synthetic Degradable Polymers

Previously, starch carbon–carbon backbone was utilized for 
making vinyl polymers biodegradable [165]. Due to the use 
of starch, the total surface area increases which enhance the 
attack of microorganisms. By this process, the biodegra-
dability increased slightly but was not totally eco-friendly 
[30]. Biodegradable polymers can be utilized to prepare 
completely biodegradable hydrogel blending with starch. 
Aliphatic polyesters, polyvinyl alcohol (PVA), and biopoly-
mers are highly utilized for blending with starch [166–168]. 
Enhancing biodegradability along with maintaining cost-
effectiveness and other characteristics are the main aim of 
this blending [169, 170]. In respect of biodegradability, PLA 
(polyacetic acid) is a good polyester and has wide use in 
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biomedical sectors. Some of the excellent features of PLA 
are high biocompatibility, high strength, and modulus. PLA 
has some drawbacks too—comparatively costly, shows 
physical aging when applied (brittle under load) [3, 171]. 
For increasing their compatibility poly (hydroxyester ether) 
and poly(vinyl alcohol) are used [172, 173]. Researches have 
been attempted to produce hydrogel by blending starch poly-
saccharides and PLA [171, 174]. Starch granules are hydro-
philic in nature and PLA is hydrophobic. For this reason, the 
interfacial interaction between them is low resulting in poor 
mechanical properties of the blend [175]. To overcome this 
drawback, different plasticizers have been utilized such as 
glycerol, sorbitol, and formamide, etc. [176] Suitable com-
patibilizers can also be used for enhancing the compatibility 
between starch and PLA. Gelatinization is another technique 
that increases the interfacial affinity. This method helps in 
easy dissolve of the starch granules and dispersion is also 
good [177, 178]. Polycaprolactone (PCL) is an eco-friendly 
and biodegradable polymer that was also used for blending 
with starch. PCL/starch blends were formed by reinforcing 
with nano-clay and fiber etc. which showed improved bio-
degradability, hydrolytic stability [179, 180].

Polyvinyl alcohol (PVA) is a water-soluble synthetic 
polymer with good biodegradability. It is compatible with 
starch and shows good mechanical characteristics. For this 
reason, PVA is most widely used for blending with starch 
[36]. In different microbial conditions, both the starch and 
PVA are degradable which resulting in a completely bio-
degradable PVS/starch blend polymer [171, 181]. Isolated 
microorganisms from landfill and municipal sewage line 
were used for the biodegradability test which shows the 
complete biodegradable nature of the blend [182]. Process-
ability and mechanical properties are also excellent because 
of the bonding between the –OH groups of PVA and the 
chain of starch [183, 184]. With rising PVA concentration, 
tensile strength also improved [182]. For increasing the com-
patibility of other starch-based blends such as starch/PLA, 
PVA is utilized. A continuous phase is developed between 
the starch and PVA during blending because both of them 
are polyols [173]. The interfacial interaction of starch and 
PLA is poor where starch works as a filler and is loaded in 
PLA matrix without PVA.

Blend with Biopolymers

Due to biodegradability and other characteristics of differ-
ent polysaccharides like cellulose and chitosan, they are 
investigated for blending with starch. Another reason is the 
easy availability of starch and chitosan polysaccharides in 
nature, they are inexpensive, non-toxic, and renewable as 
well [185]. Starch has a huge amount of –OH groups and 
chitosan has –OH and –NH3 groups in their structure. The 
main mechanism behind this blending is the formation of 

hydrogen bonds between the hydroxyl and amino groups. 
The blended hydrogels show excellent mechanical and film 
formation properties. Depending on the ratio of chitosan 
and starch, properties of hydrogels like mechanical prop-
erties and biodegradability varies [168]. Several authors 
have studied starch-based biodegradable films and chitosan 
blend with biopolymers [186–190]. Different plasticizers 
(e.g., glycerol) are also utilized for edible film production 
[191]. Strength rupture of hydrogel is enhanced with the 
increase of cellulose amount. On the other hand vapor per-
meability decrease with the increase of cellulose content in 
SHs. Derivatives of cellulose like carboxymethylcellulose 
form thermodynamically compatible hydrogel with starch 
and exhibit biodegradable property [192]. Nano-cellulose 
with plasticized starch is cast for SHs composite film pro-
duction which shows improved mechanical properties. Large 
changes in mechanical properties like tensile strength are 
experienced improvement in nanocomposite hydrogel. Ten-
sile strength increases from 11.9 MPa in the unreinforced 
hydrogel to 498.2 in the nanocomposite hydrogel [193].

Chemical Blend

Covalent bonds are present in the hydrogels which are pro-
duced by chemical crosslinking. The equilibrium swell-
ing capacity of these hydrogels depends on the density 
of crosslinking and water polymer interaction. Different 
approaches can be utilized for chemical crosslinking such 
as—(I) polymerization using cross-linkers, (II) polymer–pol-
ymer cross-linking, (III) chain-growth polymerization, (IV) 
addition and condensation polymerization, and (V) gamma 
and electron beam polymerization etc. [22, 194, 195]. There 
are some drawbacks to starch–polymer blend hydrogel pro-
duction. Most of the different polymers are immiscible with 
starch resulting in unstable physical characteristics of pro-
duced hydrogels. For this reason, the chemical crosslinking 
technique is widely used. A large number of –OH groups are 
present in the starch structure. Typically, these –OH groups 
react (substituted with other groups or chains) during the 
chemical functionalization of the starch molecules [196, 
197]. The characteristics of native starch and modified starch 
are different. But modified starch is biodegradable as well 
as the parent starch. Chemical crosslinking can be achieved 
in different ways in SHs.

Graft Copolymerization Method

At the beginning of the graft copolymerization method, 
reaction between an initiator and polysaccharides (starch) 
starts. This reaction can proceed in two methods. In the first 
method, a complex (redox pair) is formed when the hydroxyl 
group present in the starch monomer reacts with the initiator 
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(e.g.,  Ce4+). Free radicals are formed on the polymer back-
bone due to the dissociation of the evolved complex. Dur-
ing the dissociation, C–C bonds experience homogeneous 
cleavage.

Next, the graft polymerization of vinyl monomers and 
cross-linker starts on the chain by the produced free radicals. 
Athawale and Lele [199] prepared SHs by the first method 
of graft copolymerization of acrylic acid on maize starch 
in which the initiator was  Ce4+. Dragan and Apopei [198] 
proposed graft polymerization of acrylamide on starch with 
the same initiator. The mechanism is represented in Fig. 4. 
By this method properties of the starch can be easily modi-
fied and produce SHs [200–202].

Another method consists of the formation of free radi-
cals on the polymer backbone by the removal of hydrogen 
radicals from the –OH groups with  S2O8

2− initiator. This 

method is more temperature dependent than the first one 
because a thermal initiator has been used here. Pourjavadi 
et al. [203] used N,N′-methylene-bis-acrylamide (MBA) 
as a cross-linker for grafting acrylic acid (AA) on kappa-
carrageenan (KC) during the production of the hydrogel. 
Here ammonium persulfate was used as the initiator. This 
mechanism is shown in Fig. 5. First of all, sulfate anion-
radical is produced by the decomposition of the  S2O8

2− ini-
tiator, and hydrogen is removed from –OH groups of KC 
by this radical to produce alkoxy radical. Then the grafting 
of acrylic acid started because of the presence of active 
centers in the persulfate–saccharide redox system. Graft 
copolymerization can be utilized in natural or synthetic 
polymers and the combination of both [133, 204, 205].

Fig. 4  Grafting mechanism of acrylic acid on starch with  Ce4+ as free-radical initiator. Reused with permission from [198]. Copyright 2011, 
Elsevier
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Direct Crosslinking Method

Polyfunctional compounds like glycerol, glyoxal, or 
polyvinyl compounds such as polyvinyl alcohol (PVA), 
polylactic acid (PLA), and divinyl sulphone are generally 

utilized in the direct crosslinking method of polymeriza-
tion of hydrogel [130]. As crosslinking agents, glutaral-
dehyde, citric acid, glyceraldehyde are commonly used 
[124, 206, 207]. Hydrogel membrane was prepared by 
Pal et al. [208] by direct crosslinking of polyvinyl alcohol 

Fig. 5  Mechanism for graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (KC) [17]

Fig. 6  Crosslinking mechanism of PVA–starch with glutaraldehyde [211]
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(PVA) with starch using glutaraldehyde crosslinker. The 
mechanism is represented in Fig. 6. Acetyl bonds are 
formed when the glutaraldehyde reacts with the hydroxyl 
groups present in polyvinyl alcohol [209, 210]. Glu-
taraldehyde is a reagent which provides multifunctional 
property. Glutaraldehyde crosslinks starch with PVA by 
reacting with the hydroxyl groups present in starch. As a 
result, an intermolecular bridge between PVA and starch 
chains are formed.

In chemical functionalizing, starches are transformed 
into anionic polysaccharides [212]. For example, by ester-
ifying starch with maleic anhydride, maleic starch half-
ester acid is produced which is an anionic polyelectrolyte 
[143]. Sangseethong et al. [213] showed the mechanism 
of crosslinking between starch and citric acid during the 
preparation of rice starch-based superabsorbent hydrogel. 
This mechanism of the reaction is based on the anhydride 
intermediate formation of citric acid [214, 215]. A reac-
tive cyclic anhydride is formed when the citric acid is 
dehydrated under controlled heating. An ester linkage is 
formed when the reactive anhydride reacts with starch 
by the esterification reaction. By this mechanism further 
crosslinking is achieved.

Radiation Induced Crosslinking Method

To fabricate SHs by chemical crosslinking method, some-
times different types of high energy radiations such as 
gamma radiation and electron beam irradiation are used 
[216–219]. The efficiency of this method is high and fur-
ther contamination is not occurred [220]. Homolytic scis-
sion of C–H bonds of starch is occurred during this process. 
Hydroxyl radicals are generated from the water molecules 
due to irradiation. Starch radicals are formed when these 
hydroxyl radicals remove hydrogen from the starch chain 
[221, 222]. Final crosslinked network structures are devel-
oped by the covalent bonding of starch radicals and differ-
ent chains. Starch radicals quickly react with oxygen. For 
this reason, an inert environment is required for crosslinking 
reaction [62]. Lv et al. [223] grafted acrylamide (AM) and 
dimethyl diallyl ammonium chloride (DMDAAC) onto corn 
starch using the gamma irradiation method (Fig. 7).

The development of SHs by the process of high energy 
irradiation has been studied by numerous authors. For 
instance, Zhai et al. [218] synthesized PVA/starch grafted 
hydrogel by inducing gamma and electron beam radiation 
at room temperature. 60Co-gamma radiation-induced graft 
polymerization method was used by Geresh et al. [224] 

Fig. 7  Gamma radiation graft copolymerization mechanism of AM and DMDAAC onto corn starch [223]
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to develop bioadhesive grafted starch. Acrylic monomers 
(acrylonitrile, acrylic acid) were used for grafting on mul-
tiple kinds of starch (potato, corn, and rice starches). The 
crosslinking formation was indicated by the insoluble nature 
of prepared polymer in water and NaOH solution of differ-
ent pH range.

Abd El-Mohdy et al. [225] synthesized SHs (EG-co-
MAA) by the copolymerization of ethylene glycol (EG) with 
methacrylic acid (MAA) which grafted on starch gamma 
initiated radiation. It was found that with increasing MAA 
content, temperature, and pH, swelling of the hydrogel is 
increased. The nature of crosslinking is affected by starch 
concentration and radiation. The degree of swelling reduces 
with increasing starch content and dose of irradiation.

A Combined Strategy

In a recent study, tunable SHs are proposed by Huang and 
Xiao [226] combining five different techniques—(I) addi-
tion–fragmentation chain transfer polymerization, (II) 
saponification, (III) esterification, (IV) addition, and (V) 
click reaction. First, both starch and PVA are utilized to 
prepare macromonomers. Potassium persulfate was used as 
an initiator. After that two reaction mechanisms (concurrent 
electrophilic addition and thiol-ene reactions) are utilized to 
synthesize SHs. Thiol-ene is a very rapid and efficient reac-
tion mechanism for generating polymer networks [227, 228]. 
Here toxic  H2S is used for SHs preparation (Fig. 8) [226].

From Fig. 8, it is clear that SHs are formed by different 
reactions among the functional groups. In this regard old tra-
ditional techniques, new techniques, or the combining effort 
can be utilized for the development of crosslinking between 
the chains for SHs formation.

Comparing to the other chemical methods, the direct 
cross-linking method, drastic conditions have to be main-
tained like low pH, high temperature, and addition of 
quencher [229, 230]. The cross-linking agents used in this 
method are sometimes toxic (e.g., low concentration of glu-
taraldehyde is toxic showing cell growth inhibition) [231]. 
Hence they can’t be directly used in biomedical applications 
[232, 233]. These hydrogels have good mechanical proper-
ties also and the characteristics can be modified by altering 
the concentration of the dissolved polymer and cross-linking 
agents. In the radiation-induced cross-linking technique, 
high energy irradiation (gamma and electron beam) is used 
for hydrogel production. Free radicals are formed on the 
polymer chain due to the radiation [234]. Different prop-
erties of prepared hydrogels such as the swelling property 
is dependent on radiation dose and polymer concentration. 
This process is advantageous than the direct cross-linking 
method because mild conditions (room temperature and 
physiological pH) can be used here. On the other hand 
addition of toxic cross-linkers are not necessary. For this 
reason, prepared hydrogels can be quickly used in drug 
delivery systems [131]. The thermal stability of hydrogel is 
dependent on the types of monomer being used and meth-
ods of crosslinking. Literature studies showed that thermal 
degradation of chemically crosslinked hydrogels starts at 

Fig. 8  A combined method of SHs (tunable) formation. Reused with permission from [226]. Copyright 2012, John Wiley and Sons
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180 °C. For increasing the thermal stability of hydrogels, 
cross-linking strategy plays a vital role [235–237].

Starch‑Based Hydrogel Characterization 
Techniques

To know about various properties of hydrogels such as 
mechanical, structural, morphological, chemical, and phys-
icochemical properties, characterization of hydrogels are 
necessary. Different characterization methods are employed 
according to the application of the hydrogels. There are vari-
ous established characterization methods are available to 
study biodegradability, antimicrobial property, water uptake 
ability, mechanical properties, etc. [238].

Generally, to investigate the characteristics of SHs at 
micro and nanoscale, microscopic studies are utilized. For 
instance, the surface morphology of SHs can be exam-
ined and compared by using SEM (scanning electron 

microscope). For instance, Sangseethong et al. [213] synthe-
sized superabsorbent carboxymethyl starch hydrogel using 
citric acid crosslinker. The internal morphology of native 
starch and prepared SHs were determined using scanning 
electron microscope (SEM, Quanta 450, FEI, Oregon, USA). 
It is found from the SEM image that three-dimensional 
interconnected porous structures are present in the prepared 
hydrogel (Fig. 9a, b). Chemical modification by graft copo-
lymerization of the hydrogel surface can be observed from 
SEM images. In another study, Farag et al. [239] prepared 
bifunctional hydrogel by grafting AMPS (2-acrylamido-
2-methylpropane-1-sulphonic acid) and DMAEMA (dime-
thyl aminoethyl methacrylate) on starch. Figure 9c shows 
the SEM image of starch and Fig. 9d shows the SEM of 
grafted SHs. The difference in the morphology of the SHs 
surface after the crosslinking can be marked from the SEM 
images. Homogeneous surface can be seen in the native 
starch whereas rough surface is observed in the crosslinked 
hydrogel.

Fig. 9  SEM images for SHs characterization. a and b Reused with permission from [213]. Copyright 2018, John Wiley and Sons; c and d reused 
with permission from [239]. Copyright 2018, Elsevier
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AFM (atomic force microscopy) is an important tech-
nique for hydrogel characterization. Quantitative informa-
tion about the topography of the hydrogel and smooth gel 
surface with nanometer sized protrusions can be studied 
with AFM. Information regarding the mechanical and elas-
tic properties of hydrogel can also be studied with AFM 
[240].

For observing the modification nature of hydrogels and 
identifying interactions between polymeric chains, Fourier 
transform infrared spectroscopy (FTIR) is utilized [241]. 
Hydroxyl group’s presence in a hydrogel can be detected by 
FTIR analysis. For example, Chin et al. [242] prepared SHs 
by crosslinking of starch citrate, poly(vinyl alcohol) (PVA), 
polyethylene glycol (PEG) and studied the FTIR spectra of 
native starch (Fig. 10a), starch-citrate (Fig. 10b) and starch-
citrate hydrogel (Fig. 10c). From the FTIR spectrum of 
starch-citrate, peaks at 1724  cm−1 and 1156  cm−1 indicate 
the ester carbonyl (C=O) group and C–O–C stretching of the 
ester group respectively. Peaks of 854  cm−1, 917  cm−1 and 
1018  cm−1 attributed to C–O–C glycosidic bond in starch, 
starch-citrate, and hydrogels respectively. OH-stretching 
peak at 1668  cm−1 in starch was decreased to 1640  cm−1 
in the hydrogel. The absorption peak at 3317   cm−1 and 
3256  cm−1 indicates the presence of –OH groups in starch-
citrate and prepared hydrogel. It is known that the water 
retention capacity of the hydrogels mainly relies on the 
availability of free –OH groups [3, 243]. Hence from the 
FTIR spectrum, the water holding ability of the hydrogel 
can also be predicted.

The amount of crystallinity in SHs can be determined 
by XRD [208, 244]. Different characterization techniques 
such as TGA, DTA, DTG, and DSC are utilized for study-
ing thermal characteristics and stability of hydrogels. The 
weight loss of the hydrogels with increasing temperature is 
analyzed by these thermogravimetric methods [245]. One 
of the significant properties of hydrogels is their mechanical 
properties which can be measured by tensile strength study 
[208]. Different types of tensile strength testers are available 
for this study [5, 246].

Water retention capability is the most important feature 
of SHs. Swelling behavior can be measure against different 
solutions such as water, sodium chloride (NaCl), and mag-
nesium chloride  (MgCl2) [247]. Generally, cut pieces of the 
hydrogel are immersed in the solution and kept for 24 h, and 
swelled hydrogel is weighted. Finally, the swelling ratio can 
be determined by the following equation [2, 248]:

Here, Ws is the weight of swelled membrane and Wd is 
the weight of dry membrane.

For evaluating the antimicrobial properties of hydrogels, 
anti-bacterial activity measurement is important. Disk diffu-
sion technique is a popular method for antimicrobial test of 
starch-based hydrogels [243, 249]. Different types of gram-
negative (e.g., Escherichia coli) and gram-positive (e.g., 
Staphylococcus aureus) bacteria are used in this method. 
From the zone of inhibition in the agar plate, antibacterial 
activity can be evaluated [250, 251].

Biocompatibility is an important property of starch-based 
hydrogels. Hence hydrogels need to undergo biodegradabil-
ity test. Two highly used degradation tests are—(I) direct 
microbial studies, and (II) soil burial test. Hydrogel is buried 
in soil for a period of time. Then the sample is washed and 

Swelling ratio (%) = (−Ws−Wd)∕Wd × 100.

Fig. 10  FTIR images of (a) starch, (b) starch-citrate, and (c) starch-
citrate hydrogel. Reused with permission from [242]. Copyright 
2019, Elsevier

Fig. 11  Potential applications of starch-based hydrogels
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weighted. Weight loss percentage is the result of degrada-
tion. The direct microbial study is a similar process to the 
soil burial test. Additionally, cultured microorganisms are 
used here for the degradation of SHs [252, 253].

Applications of Starch‑Based Hydrogel

The popularity of SHs is increasing day by day because of 
their characteristics such as biodegradability and dynamic 
mechanical properties. SHs have different applications 
in biomedical sectors (e.g., drug delivery system, con-
tact lenses), agricultural sectors (e.g., controlled pesticide 
release, water storage), food industries (e.g., food packag-
ing), and so on. SHs have various industrial applications. In 
the cosmetic industry, electrophoresis, and food industries, 
SHs are widely used [22, 254, 255]. Different applications 
of SHs are represented in Fig. 11.

Biomedical Applications

In the biomedical sectors, the use of SHs have several advan-
tages due to having some unique properties like the biologi-
cal systems [256–262] which are—(I) biocompatible nature, 
(II) higher biodegradability, (III) good mechanical charac-
teristics, (IV) hydrophobic property, (V) permeability and 
so on. For giving the patients quick structural support nowa-
days bone cement is utilized which is starch-based and grad-
ually degrade from the placement site. In addition, different 
bio-active materials are used with starch-based bone cement 
resulting in the growth of bone at the cement–bone inter-
face and unnecessary portion degrade naturally [263]. Along 
with water absorbing capacity SHs show good mechanical 
properties which enhances their applicability in biomedi-
cal sectors. Hassan et al. [2] developed PVA/starch-based 
antibacterial hydrogel membrane for wound dressing. For 
the first time, they used turmeric as an antimicrobial agent 
in SHs. Batool et al. [243] synthesized starch-based anti-
microbial nanocomposite hydrogels for wound dressing by 
incorporating Ag nanoparticles. Artificial skin had been fab-
ricated from corn starch-based hydrogels by Pal et al. [264].

Tissue Engineering

SHs are soft and flexible like living tissues and can retain a 
huge amount of water. For this reason, in tissue engineering, 
the use of SHs are becoming popular [265]. Starch-based 
scaffolds are an excellent innovation in tissue engineering. 
They represent similar characteristics to the body matrix of 
the human tissue which are mainly different amino acids and 
sugar-based macromolecules. SHs can mimic the properties 
of body matrices being completely biocompatible [266]. The 

ability of starch to create pores in ceramics and membranes 
can be utilized in scaffold bone tissue engineering [77, 267, 
268].

Several types of SHs such as chitosan-starch hydrogels 
are utilized in tissue engineering applications [59, 265]. Sal-
gado et al. [269] synthesized novel scaffolds based on starch 
particularly for bone tissue engineering. Prepared scaffolds 
are completely nontoxic, have good mechanical proper-
ties (compressive modulus and compressive strengths are 
117.50 ± 3.7 MPa and 20.8 ± 2.4 respectively), don’t inhibit 
cell growth, and increase the growth of human osteoblast 
like cells. Kamoun [270] prepared SHs based on dialdehyde 
starch (DAS) and N-succinyl chitosan (SCS) without using 
any traditional chemical crosslinking agents. The synthe-
sized hydrogel is injectable, non-toxic, biodegradable, bio-
compatible, and showed good mechanical properties. The 
use of prepared hydrogel in tissue engineering and cartilage 
repairing is proposed.

Another important characteristic of starch-based materi-
als is their different configurations. Available configurations 
of starch-based materials are fibers, films, and beads etc. 
[271–274]. Different authors have used several techniques 
to prepare starch-based scaffolds such as—(I) Fiber bonding 
method [275–277], (II) Particulate leaching methods [275, 
278], (III) Phase separation method [279–281], (IV) Micro-
wave backing method, etc. [282]. But utilization of SHs in 
tissue engineering is studied by few authors. For instance, 
Gomes et al. [278] prepared starch-based polymeric scaf-
folds and studied their configurations, mechanical proper-
ties, morphology, and degradation behavior. Tunable SHs 
were fabricated by Noè et al. [283] from maize starch by 
photocuring process. The prepared SHs were light process-
able and showed good mechanical properties along with 
biocompatibility. As the hydrogel showed good human 
cell viability it can be utilized in human tissue engineering 
and cell carriers. Thermosensitive SHs have been prepared 
by blending starch and chitosan by Viyoch and colleagues 
[284]. They have potential applications in cartilage tissue 
engineering and chondrocyte delivery through injection. The 
pore size and hydrophobicity of the fabricated hydrogel are 
enhanced because of using starch which is more advanta-
geous for tissue engineering [285].

Drug Delivery Systems

The use of SHs in drug delivery devices is one of the suc-
cessful biomedical applications of SHs and they are already 
used at the industrial level. Delivering the site-specific 
drug in the body with the highest efficiency and minimal 
side-effects are the main purpose of creating a drug car-
rier system. Different hydrogels based on polysaccharides 
(e.g., dextran, chitosan, pectin) is used for site-specific drug 
carrier of the colon [286–288]. These types of site-specific 
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drugs show higher efficiency because the drug molecules 
are out of contact with other tissues and organs of the body 
[289]. SHs possess some unique and modifiable physical 
characteristics which are very much useful for using them 
in the drug delivery system. The surface of SHs are porous 
resulting in great affinity for liquid environment and swollen. 
The porosity of SHs is controllable by altering the density 
of crosslinking. Porosity is an important property because it 
assists in the quick and easy loading of drug molecules into 
hydrogels and helps in releasing the drug in a specific area 
[148]. Some studies on SHs in drug delivery systems showed 
very good results. For instance, Ketoprofen drug loaded SHs 
based on starch-methacrylic acid (MAAc) copolymer was 
prepared by Ali et al. [288]. The study showed very good 
results in retaining the drug at a very low pH (pH 1) and 
released the loaded drug at pH 7. Prepared drug loaded SHs 
showed excellent pH sensitivity and they can also be utilized 
in the site-specific drug of the colon. For the treatment of 
colon disease like Crohn’s disease, SHs prepared from starch 
(starch-M hydrogel) with GMA (Glycidyl methacrylate) 
was studied by Reis et al. [290]. This SH showed excellent 
behavior in preserving and transporting corticoids which is 
an acid-responsive drug. For controlled released drug deliv-
ery system, xanthan gum hydrogels can be a good alternative 
because it shows selective permeability on ionizable drug 
loading. Shalviri et al. [291] studied SH (starch–xanthan 
gum hydrogels) for drug delivery system. Their study sug-
gests that prepared novel SHs can be used in drug delivery 
systems for different types of drugs because of their selective 
permeability property.

Agricultural Applications

Agriculture is one of the most important industries. Good 
agriculture mostly relies on an adequate quantity of water 
and nutrients (enhanced by fertilizers). Plants can absorb 
about 30–60% of the  N2 from fertilizers and the rest is 
leached into groundwater and river water causing extreme 
environmental pollutions [292–295]. For reducing this prob-
lem controlled-release fertilizers can be a good choice in 
which fertilizers will be released slowly preventing the loss 
of the valuable amount of fertilizers [296, 297]. Currently, 
scarcity of water is a global issue. An enormous amount of 
water is needed for irrigation. In summer seasons, a short-
age of water is seen and in some desert areas, rainfall is not 
available. In this regard, hydrogels with high water absorb-
ing capacity can be used. Hydrogels can retain water for 
extended periods and release water slowly. Hence hydrogel-
based agriculture can be widely used [298]. Advantages of 
using hydrogels in farmlands are many, such as—(I) less 
amount of water is required for irrigation, (II) fertilizer is 
retained in the soil for a longer period, (III) decrease plant 

death, (IV) enhance plant growth, and (V) decrease environ-
ment pollution [299].

SHs can be utilized in this sector for water storage and 
fertilizer retention [22]. Starch-based polymers are utilized 
not only in water and fertilizer storage but also in the green-
house hood and mulch film [300]. SHs can prevent the ferti-
lizers from early leaching and surface runoff [292, 299, 301, 
302]. It is found that the use of starch-based superabsorbent 
hydrogels enhances bacterial growth in the farmland. By 
utilizing this property, weedy plants and harmful microor-
ganisms can be controlled from the land. Hence controlled 
pesticide formulations are another use of SHs in agricul-
ture [83]. Along with water and fertilizers, proper use of 
pesticides is also important for increased production of 
foods and preventing environmental problems [303, 304]. 
Hence controlled released pesticides are required to reduce 
environmental leaching and dermal toxicity [305–307]. For 
example, SHs were prepared by Singh et al. [308] for the 
controlled release of thiram fungicide. The SH was prepared 
from starch and poly (methacrylic acid) adding initiator 
(ammonium persulphate) and crosslinker (N,N′-methylene-
bis-acrylamide). It showed a very good result in controlled 
thiram release [309]. Starch–alginate beads (adsorbents—
bentonite and kaolin) were used for controlling the release 
of thiram by Singh et al. [310].

For the slow release of thiophanate methyl, fluometuron, 
and trifluralin, Abd El-Mohdy et al. [311] prepared starch/
(EG-co-MAA) hydrogels. SH with the copolymers acrylic 
acid and acrylamide was used as the membrane of urea by 
Liu et al. [299] for slow release purposes. The observation 
result showed that 61%  N2 was released on the 13th day from 
the hydrogel and its water intake capacity was 80%. Fang 
et al. [312] used the graft copolymerization technique to 
prepare SHs. Acrylamide and acrylic acid was grafted onto 
starch and ethylene glycol was the crosslinker. These SHs 
were used to observe the corn seed germination. Germina-
tion energy was comparatively higher than normal germina-
tion when SHs were used.

Food Industry

The use of starch-based biodegradable polymers for the 
packaging of food is getting attention nowadays. The use of 
petroleum-based plastic can be minimized by using natural 
biodegradable polymers [313]. In the food industry, starch-
based biopolymers are primarily used for food packaging 
[314]. For using starch-based polymers in food packag-
ing some requirements should be maintained such as—(I) 
packaging materials should be cheap, (II) protection from 
chemical, biological, and physical influences, and (III) keep 
the food fresh [315]. Traditionally food packaging made 
from LDPE (low-density polyethylene) is not ecofriendly 
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and takes a long time to be disposed of [316]. Starch-based 
biodegradable polymers can be a good alternative to this 
packaging material [188]. The main limitation in this respect 
is the retrogradation of starch in presence of water. To over-
come this issue, thermoplastic starch can be prepared by 
adding different types of plasticizers [315]. Different meth-
ods like thermo-processing or casting techniques can be used 
for fabricating starch films [317–319]. Avella et al. [320] 
prepared starch/clay nanocomposite-based biodegradable 
packaging materials for food. Good mechanical properties 
(modulus and tensile strength) had been shown by the pack-
aging. Different forms of starch like modified, soluble, or 
pre-gelatinized starch are used to prepare starch films [321, 
322]. Some advantages of using starch film are—these films 
are non-toxic, biodegradable, odorless, transparent, and low 
oxygen permeability at less humidity [323, 324]. Further-
more, foamed materials can be prepared from starch which 
can be the replacement of polystyrene foam [325]. For food 
packaging, chitosan-starch based hydrogels can be used 
[326]. Jyothi et al. [327] crosslinked (cassava starch with 
epichlorohydrin) polymer for food packaging with enhanced 
physicochemical, thermal, and retrogradation properties. 
Food packaging film coated by starch-graft-acrylic acid was 
prepared by Tsuji et al. [17]. For controlling humidity (for 
fruits and vegetable preservation),  CO2 and  O2 concentration 
urethane was used as binder. Hence, in the food packag-
ing industry, the starch-based biodegradable polymers can 
bring revolutionary change by implementing eco-friendly 
packaging.

Electrical Applications

Nowadays superabsorbent hydrogels are used in numerous 
kinds of electrical sectors such as in electronic water-resist-
ant cable coatings, corrosion-resistant coatings etc. SHs are 
utilized in telecommunication cable production. When the 
outer layer of the electric cables are damaged, water enters 
the inner side and damages the cable. Cables can be pro-
tected from unwanted water by using hydrogels in the cable. 
They can also be utilized in the water blocking tape for elec-
tronics by dispersing on the fabric [328].

Water resisting cable was prepared by Schoeck et al. 
[329]. For enhancing the water blocking capacity of the 
cables, starch-based super absorbent hydrogels coated fila-
ments were utilized. Starch grafted sodium polyacrylates, 
and partial sodium salts of polypropenoic acid were used 
in the filament. Alcohol soluble yarn binders were used to 
attach the hydrogel to the surface [17, 328, 330].

Starch/graphene hydrogels were prepared by González 
et al. [331] by Diels–Alder cross-linking reactions between 
starch (furan modified) and bismaleimide (BMI) com-
pound. It was hypothesized that enhanced antimicrobial and 

electrical properties could be represented by the prepared 
SHs. Electrically conductive SHs (polyaniline impregnated 
polyacrylate-starch hydrogel) were prepared by Prabhakar 
and Kumar [332] and conductivity was studied with a vary-
ing crosslinker, initiator, and monomer concentration.

Personal Hygiene Applications

Superabsorbents are mainly used in diapers, sanitary nap-
kins, adult incontinence products, feminine hygiene prod-
ucts as an absorbent for water. These personal care products 
are very important for keeping individuals dry and hygienic 
especially during the period time [333–335]. It has taken 
the place of cloth, cotton, cellulose fiber etc. which were 
traditionally used as absorbent. Because they have limita-
tions like low water absorption capacity, recyclability [336]. 
There are mainly two parts in diapers—core and chassis. 
Superabsorbent polymers are mainly used in the core part 
to absorb body fluids [337]. Hydrogels can absorb huge 
amounts of body wastes, fluids, and retain them under pres-
sure. All these features have made hydrogels one of the most 
suitable materials for using in personal hygiene products. By 
reviewing the literature, it is seen that lots of studies have 
been done on the cellulose based superabsorbent hydrogel 
and its use in hygiene applications [338–344]. But a few 
works have been found on starch-based superabsorbent poly-
mers used on this site. A starch-based film was prepared by 
Weisman et al. [17] from starch-graft-acrylic acid. This film 
could be used for the storage of fluid in diapers. Nowadays 
cellulose and acrylic-based hydrogels have got huge atten-
tion. Hence further research on the use of SHs in this sector 
should be continued.

Water Treatment

Water pollution by heavy metals (Ni, Pb, Cd, Ag, Hg) is 
one of the main environmental issues all over the world. 
If the number of heavy metals in water crosses the per-
missible limit then it may cause serious environmental 
and human health issues [345–350]. Traditionally different 
types of water recycling methods (ion exchange, solvent 
extraction, and precipitation) are used for the purification 
of water from heavy metals. But these methods are expen-
sive and a large quantity of solid wastes are produced [17]. 
Using different adsorbents for heavy metal ion removal 
from water is a very effective method. Nowadays activated 
carbon is highly used for the heavy metals (Cd, Ni, Cr, 
Cu) [351–354] removal from aqueous media [355, 356]. 
Although it has several advantages (adsorption capacity 
is higher, large surface area), it is not a very cost-effective 
approach for water recycling. Hydrogels prepared from 
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polysaccharides can be a great alternative for high-cost 
adsorbents for water recycling because they are inexpen-
sive and non-toxic [357, 358]. Several authors have studied 
the use of inexpensive adsorbents like starch biopolymers 
and SHs to extract toxic heavy metals from wastewater 
[359–363].

Cassava starch-based hydrogels were prepared by Eke-
bafe et al. [362] by grafting acrylonitrile onto native cassava 
starch. Ceric ammonium ion was used as an initiator. Under 
equilibrium conditions, sorption mechanisms were studied 
for  Ni2+,  Cu2+,  Pb2+. The sorption data were a good fit for 
the Freundlich model represented the sorption capacity for 
grafted hydrogel: 72 mg Pb/g, 76.6 mg Cu/g, and 86.5 mg 
Ni/g. With increased hydrolysis, heavy metal affinity also 
increased.

Abdel-Aal et  al. [364] synthesized maize starch/
acrylic acid hydrogels by radiation-induced graft copo-
lymerization technique to remove heavy metal ions such 
as  Fe3+,  Cr3+,  Pb2+, and  Cd2+ from wastewater. The 
sequence of metal uptake capacity for the hydrogel was 
 Fe3+ >  Cr3+ >  Pb2+ >  Cd2+ which increases with increased 
pH.

For the effective removal of  Cu2+ ions from the wastewa-
ter, Dai et al. [365] prepared thermoresponsive composite 
SHs. The novel SH was synthesized from sodium alginate 
and 2-hydroxy-3-isopropoxypropyl starch and its response 
to the pH was investigated. It was observed that inside 
the hydrogel structure there are sufficient  Cu2+ ions bind-
ing sites. The maximum adsorption capacity for  Cu2+ was 
25.81 mg/g.

Chauhan et al. [366] synthesized functional SHs (polycar-
boxylated) by the free radical initiation technique for sorp-
tion of  Cu2+ ions where N,N′-methylene-bis-acrylamide was 
used as crosslinker. At pH 7, maximum adsorption capacity 
for the ions was investigated 128.26 mg/g−1 (2 h at 40 °C). 
From the FTIR data it was seen that ions were adsorbed by 
chelation mechanism between the –CO2 and –C=O or –OH 
groups of the hydrogel with  Cu2+ ions.

Yu et al. [367] proposed starch/PVA hydrogels crosslink-
ing with Laponite RD (LRD) by freezing/thawing tech-
nique for cadmium ion absorption. It was investigated that 
with raising LRD concentration,  Cd2+ ion absorption was 
increased.

For the efficient sorption (exothermic and spontaneous) of 
 Fe2+ ions from the solution, a range of hydrogels were pre-
pared. As initiator accelerator ammonium persulphate (APS) 
and N,N,N,N-tetramethyl ethylene diamine (TEMED) were 
utilized. The investigation showed that metals ion adsorption 
capacity is strongly relied on the environment (temperature 
and pH). It was clear from the characterization techniques 
that metal ions intake capability of N,N′- methylene-bis-
acrylamide crosslinked hydrogels were less than the hydro-
gels crosslinked with ethylene glycol dimethacrylate [368].

Dye Sorption

Water pollution is a dangerous environmental issue [369]. 
Different industrial effluents carry a variety of toxic 
chemicals, dyes, and heavy metals. Plastic, leather, paint, 
textile, paper, and cosmetic industries use toxic dyes to 
color their products and release a huge amount of toxic 
dyes in rivers and groundwater without appropriate treat-
ments [370, 371]. Textile dying industries are the major 
contributor to this dye pollutions [372, 373]. The World 
Bank reported that 17% to 20% of the polluted water 
comes from the dyeing and finishing sectors of the textile 
industries [374–376]. These water containing colorants 
and dyes are very harmful to the ecosystem and public 
health [377–383]. Different types of methods have been 
utilized to remove industrial dyes from wastewater such 
as—adsorption, anaerobic degradation, coagulation, flo-
tation, biological treatment, chemical treatment, and so 
on [384, 385]. Among these methods adsorption method 
is becoming popular day by day because of its high effi-
ciency, low cost, and easy handling [386–389]. The sorp-
tion process is subjected to different factors like pH, tem-
perature, the surface area of solvent, bonding between the 
dye, sorbent, and particle size, etc. [17, 385].

To remove dyes from wastewater different types of 
adsorbent materials are utilized such as—different types 
of clays [390], synthetic hydrogels [391–393], and biopol-
ymers [394–396]. Different adsorbents based on natural 
polysaccharides (chitosan, starch-based hydrogels) have 
got much attention these days [53, 364, 397–399].

Mahmoud et al. [400] prepared starch, acrylic acid, and 
2-hydroxyethyl methacrylate (HEMA) based hydrogels by 
gamma radiation for the adsorption of acid-fast red dye 
from industrial wastewater. With increased gamma irradia-
tion gel content of the prepared hydrogel also increased. 
The effect of temperature, pH, and concentration of the 
dye medium during adsorption was also investigated. With 
the decrease of pH, the adsorption capacity of the hydro-
gels increased whereas capacity decreased with lower ini-
tial dye concentration and temperature.

IIgin et al. [401] proposed the preparation of hydroxy-
ethyl starch (HES) based hydrogels, hydroxyethyl starch/
p(sodium acrylate), hydroxyethyl starch/p(3 (acrylamido-
propyl) trimethyl ammonium chloride), and hydroxyethyl 
starch/p(acrylamide) to adsorb cationic dyes [e.g., methyl 
violet (MV) and methyl orange (MO) from water]. The 
hydrogels were prepared by redox polymerization technique. 
The result showed that the organic dye adsorption efficiency 
of the hydrogels was over 90% (maximum adsorption of MO 
and MV was 238.1 mg/g and 185.2 mg/g).

Starch/poly(alginic acid-g-acrylamide) nano-hydrogel 
(ST/PL(AA-g-AAm) NHG) was synthesized by Sharma 
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et al. [402] by copolymerization technique. The prepared 
hydrogels were utilized for the adsorption of Coomas-
sie brilliant (CB) blue R-250 dye from wastewater. The 
adsorption isotherm was investigated from the regression 
coefficient value of Langmuir (0.99), Freundlich (0.93), 
and Tempkin (0.98) isotherm which shows that Langmuir 
isotherm fits the adsorption process. The dependency of 
adsorption on temperature, time, pH, and dye concentra-
tion was also studied in detail.

For the removal of different dyes such as anionic dyes 
[direct brown 2 (D. Brown 2), direct blue 21 (D. Blue 21)], 
and a cationic dye (methylene blue), Hashem et al. [403] 
prepared bi-functional starch composite hydrogels by graft-
ing acrylic acid (AA) and acrylamide (AAm) onto maize 
starch. Gamma irradiation induced grafting mechanism was 
utilized for the hydrogel preparation. The adsorption of D. 
Brown 2 and D. Blue 21 onto a prepared composite followed 
the Freundlich isotherm.

Different studies had been done on dye adsorption by SHs 
such as—Dragan et al. [198] synthesized semi-IPN compos-
ite hydrogels from potato starch for the adsorption of Meth-
ylene Blue dye. Bhattacharyya et al. [388] prepared SHs 
based on acrylamide, hydroxyethyl methacrylate, and starch 
for effective removal of low (2.5–40) and high concentration 
(200–500 mg/L) cationic dyes from aqueous solution. Super-
absorbent chitosan-starch (ChS) hydrogels were prepared by 
Ngwabebhoh et al. [371] for the adsorption of Direct Red 80 
(DR80) from water. Moharrami and Motamedi (2020) syn-
thesized starch-based hydrogel nanocomposites from agri-
cultural waste for the adsorption of two cationic dyes—crys-
tal violet (CV) and methylene blue (MB). Malachite green 
and methyl violet are two widely used dyes in industries for 
being cheap and easily available [404, 405]. Al-Aidy and 
Amdeha [406] proposed the preparation of polyacrylic acid 
and acrylamide grafted starch hydrogels for the enhanced 
adsorption of malachite green dye from water.

Miscellaneous Applications

The use of SHs are gaining huge attention in numerous areas 
and industrial sectors such as petroleum industries, paper 
industries, plastic and ion exchange resin manufacturing, and 
so on [407, 408]. The use of SHs for making biodegradable 
plastic film can be a good alternative to synthetic polymers. 
Thermoplastics can be fabricated by grafting starch with 
acrylate esters, methacrylate esters, and styrene. Starch-g-
poly(methyl methacrylate-co-acrylonitrile) polymers can be 
highly used in making bio-plastics because of their good 
toughness. The starch grafted copolymers are easily attacked 
by soil microorganisms and degrade rapidly [409, 410]. Bio-
degradable polyethylene was developed by Maharana and 
Singh [411] by graft copolymerization of starch.

For reducing the filtrate loss in the oilfield drilling 
muds, starch graft copolymers are frequently used. Acryla-
mide and vinyl alcohol monomers grafted on starch are 
utilized in drilling mud [412–414]. Song et al. [415] pre-
pared copolymer of starch with acrylamide (AM) and 
2-acrylamido-2-methylpropanesulfoacid (AMPS) by 
grafting mechanism and used the copolymer as flooding 
agent in oil recovery. The study showed that with a higher 
grafting level oil recovery rate also increased. Acryloni-
trile-graft-starch and quick lime particles were utilized by 
Kobayashi et al. [416] for the development of demolition 
agents for demolishing the rigid structures. SHs are poten-
tially used in other sectors such as sizing agent of textiles 
(e.g., starch-g-poly(vinyl acetate-sizing agent of cotton)) 
[417], dye thickening agents etc.[418].

Research Gaps and Future Aspects

Research on starch-based hydrogel is flourishing due to 
its distinctive characteristics and potential applications. 
Synthesis methods of SHs are developing. The combina-
tion of both physical and chemical cross-linking is getting 
much attention. Different studies have been conducted on 
starch-based smart hydrogels such as responsive hydro-
gels (e.g., pH sensitive and stimuli responsive SHs) [198, 
237, 419–421], dual and multi-responsive SHs [422, 423], 
hybrid nanothermochromic SHs [424], starch-based tun-
able hydrogels [425], magnetic SHs [426], clickable SHs 
for 3d encapsulation [427] etc. Further studies and inves-
tigations are necessary for developing hydrogels with 
smart properties. In this regard nanostructured, hybrid 
and bioinspired SHs can be the field of further interest. 
Hydrogel’s characteristics depend heavily on its method of 
preparation, composition, and structure. So, various kinds 
of starch-based hydrogels with numerous unique proper-
ties can be developed by closely customizing the struc-
ture of the macromolecules based on starch. Sometimes 
the properties of native starch-based hydrogels are not as 
good as synthetic polymers such as having poor mechani-
cal properties. Hence different types of synthetic polymers 
(e.g., PVA, PLA) are utilized for the modification of starch 
hydrogel properties. To catch the commercial fields, the 
performance (e.g., mechanical properties, antimicrobial 
properties, swelling behavior) of starch-based hydrogels 
need to be improved. Although different studies are going 
on for applying SHs in biomedical and other fields, com-
mercialization of these products are not satisfactory. For 
the development of more commercial products with more 
advanced and unique properties, further research on SHs 
should be continued.
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Conclusion

There are many beneficial properties of starch-based hydro-
gels. They are hydrophilic, biodegradable, biocompatible, 
pH-responsive, and non-toxic in nature. In addition, they 
are cheap and their high accessibility from natural sources 
makes them more appealing, intelligent polymer materials. 
Due to their environment-friendly nature, starch-based sus-
tainable hydrogels can be the alternative to petroleum-based 
polymeric materials. People will be no longer highly reli-
able on synthetic polymers. Preparation and characteriza-
tion methods of SHs are comparatively easier. Although, 
SHs have some drawbacks such as lower sustainability and 
poor mechanical properties, promising application opportu-
nities of SHs are widening day by day. They are occupying 
the place of synthetic hydrogels in the field of agriculture, 
biomedical (e.g., tissue engineering, drug delivery), water 
recycling, and food industries. More studies on starch-
based sustainable hydrogels are required. In this review, a 
brief summarization of preparation methods, characteriza-
tion techniques, and several potential applications of SHs 
are given. This review might be helpful for the researchers 
studying in this field.
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