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Abstract
Lubricants are used to prevent friction that causes resistance and heating up in oil drilling; ocular and orthopaedic implant 
materials; with Metal Working Fluids (MWF) and in general anti-wears. Conventional lubricants are either non-renewable 
petroleum-based or environmentally unfriendly synthetic materials, while biolubricants are renewable and eco-friendly 
of ‘biological origin’. Biolubricants are derived from either lipids/oils or carbohydrates obtained from living sources like 
animals (Chitosan, Hyaluronic acid), plants (Gum arabic, Guar gum), algae/cyanobacteria (oil, polysaccharide) and other 
microorganisms like bacteria (Gellan, Xanthan gum, Dextran, Lichenysin, Surfactin), yeast (single cell oil), filamentous fungi 
(esters). Lipids/Oils have varied uses in energy (biodiesel), food and other sectors, and are therefore in high demand, while 
extracellular polysaccharides (EPS) are of limited use at present. Biolubricants from animals have limitations. Similarly, 
the use of higher plants also has limitations as they require large arable land; only a part of their biomass, not the entire 
plant useful, and have long-life cycles compared to microorganisms. However, microorganisms like bacteria need special-
ized equipment and techniques to cultivate, increasing production costs. But, Algae and Cyanobacteria are photoautotrophs 
with minimal growth requirements and easy to cultivate. The viscous algal/cyanobacterial polysaccharides have remarkable 
rheological properties useful in reducing friction. Among algae, the seaweed products like agar, carrageenan and alginic 
acids are shown to provide lubrication, but they are needed more for other uses, and the macroalgae cultivation has its own 
limitations. Instead, Microalgae and Cyanobacteria pose relatively less problems and produce polysaccharides with remark-
able rheological properties and physico-chemical characteristics, fit for lubrication. They can be cultivated round the year, 
some with seawater or even with wastewater or effluents (resulting also in bioremediation), reducing the cost of biomass 
production. This review highlights the emerging importance of carbohydrates especially the extracellular polysaccharides 
(EPS) of Algae and Cyanobacteria with commercial potential as Carbohydrate biolubricants. In addition, algal/cyanobac-
terial biomass production, together with optimizations required to maximize polysaccharides have been reviewed and the 
physicochemical properties including molecular weight, crystallinity, thermal characteristic and rheology of polysaccharides 
useful as biolubricants are discussed.
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Introduction

Lubricant can be a substance that is a solid/liquid/ solid–liq-
uid/ liquid–liquid or gas that can reduce friction amid two 
surfaces and usually increase smooth functioning; decrease 

heat; act as a rust protector; resist fire and also tempera-
ture extremes [1, 2]. Additives, are mostly polymers, which 
improve viscosity; reduce temperature dependence; disperse 
impurities; reduce foam; stabilize emulsion; prevent oxida-
tion, corrosion, rust; inhibit metal catalytic effect and act as 
biocides to increase durability by preservation of the fluid 
[3]. These are useful in reducing friction between rough sur-
faces, machines, synovial joints, blood capillary flow, ocular 
lubricants and also in oil drilling (Table 1).

Lubricants are of three types, viz. conventional, syn-
thetic and biolubricants. Conventional lubricants are 
mostly petroleum oils, developed by hydrotreatment, 
deasphalting along with solvent extraction [4]. Mineral oil 
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lubricants (1.5% of crude), obtained from crude petroleum 
distillation /refining are composed of complex hydrocar-
bons with traces of sulphur, nitrogen and oxygen as con-
taminants. Present day market products (food; cosmetics; 
pharmaceuticals) widely use white mineral oils [5]. Syn-
thetic lubricants, synthesized chemically, are to provide 
better lubricity, oxidative stability, low/high temperature 
fluidity/stability, and are priced higher than petroleum 
lubricants. Examples are—polyphenyl ethers (heat resist-
ant, applied in high temperature hydraulic fluid); silicate 
esters (useful in low temperatures); hydrogenated polyal-
phaolefin (Mobil oil); phosphate esters (fire resistant, air 
compressor); Polyalkylene glycols (refractory kiln bear-
ings, gear and compression, fibre lubricant) etc. [2, 6].

Environmentally, the conventional and synthetic lubri-
cants are not very friendly. For instance, the acute toxicity 
of mineral oil, though regarded as low, can at a concentra-
tion of ≥ 100 mg/m3 on a long-term cause microgranulo-
mas in lungs [7]. Petroleum products are used as lubri-
cants typically in machines. The toxic aliphatic/aromatic 
compounds emanating from technological processing, 
released to the environment can lead to bioaccumulation 
and be carcinogenic. Although synthetic lubricants are 
efficient, they are both expensive and toxic [8]. Conse-
quently, there is need for a low cost; renewable; easily 
biodegradable; non-toxic lubricant of biological origin 
(Biolubricants), to replace the petroleum-based and syn-
thetic lubricants.

Biolubricants

Biolubricants are preferred because of higher biodegradabil-
ity, less toxicity and safety in disposal to the environment 
[9]. Biolubricants can be classified into two main categories 
viz. oil biolubricants and carbohydrate biolubricants.

Oil Biolubricants

To achieve the environmental standards and non-toxicity, 
vegetable oils with biodegradability of 70%–100% were 
introduced as lubricants [8]. These are triacylglycerols and 
their derivatives like diacylglycerols, monoacylglycerols, 
free fatty acids, and liquid glycerol. Biolubricant production 
from oleaginous feed-stocks generally involves transesteri-
fication, esterification, epoxidation/ring opening, hydroes-
terification and catalysis [10, 11]. Homogenous catalysts 
are low-cost, however difficult to regenerate. Heterogenous 
biocatalysts like immobilized lipases are advantageous over 
homogenous/heterogenous chemical catalysts as these are 
regenerable, continuous, more active, less corrosive and eco-
friendly as well [11]. Lubrication characteristics are mostly 
dependent upon carbon chain length, fatty acids and polar-
ity [10]. Titanium isopropoxide was used as a catalyst to 
transesterify castor and rapeseed oil to develop biolubricants 
[12]. The biolubricant property was greatly influenced by the 
fatty acids viz. oleic acid and ricinoleic acid. Microbial oil 
from yeasts like Rhodotorula mucilaginosa, Cryptococcus 

Table 1  Carbohydrate-biolubricants and their applications

Biolubricant Source Application References

Guar gum (guar beans) Oil drilling, corrosion inhibitors, dispersants [101]
Chitosan (Shrimp and other crustacean chitin) Oil drilling, biomedical applications [102]
Xanthan gum (‘Xanthomonas campestris’) Oil drilling, emulsion, tribology [103]
Gellan (‘Sphingomonas paucimobilis’) Anti-wear, oil drilling, orthopaedic implant materials, 

mud thickener in drilling
[104]

Cellulose ‘nanocrystals’ and derivatives Oil drilling, biodegradable ‘lubricating greases’ [105, 106]
Dextran (‘Leuconostoc mesenteroides’ and ‘Streptococcus mutans’) Ocular lubricant, artificial tears [107]
‘Hyaluronic acid’ (HA) (rooster combs, streptococcal fermentation like 

‘Streptococcus zooepidemicus’, engineered ‘Synechococcus sp. PCC 
7002′)

Tribology, joint lubrication [108]

Emulsan (Acinetobacter calcoaceticus/ lipopolysaccharides) Oil emulsion lubrication [109]
Surfactin (Bacillus subtilis) Oil emulsion lubrication, ‘microbial enhanced oil 

recovery’ (MEOR)
[51]

Biosurfactant (Pseudomonas aeruginosa) Oil emulsion lubrication, oil recovery [110]
Polysaccharide from red algae Porphyridium cruentum/ Rhodella macu-

lata/ Rhodosorus marinus; Green algae Schizochlamydella capsulata/ 
Chlorella stigmatophora

Drag reduction, tribology / arthritis [53, 111]

Carrageenan (‘Gigartina skottsbergi’) Tribology, film lubrication [50, 112]
Alginate Joint lubrication [113]
Polysaccharide from Green alga Ulva sp. ‘Tissue engineering’ and ‘regenerative medicine’ [114]
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curvatus, Rhodosporidium toruloides, Yarrowia lipolytica 
etc. were useful for biolubricant production [13–15]. Tri-
glycerides from C. curvatus were initially converted into 
free fatty acids and finally into polyol esters by a biocatalyst 
(lipase Lipomod 34MDP) [14]. The viscosity (23.84 mm/
s2) of C. curvatus derived biolubricant was comparable 
to International Standards Organization Viscosity Grade 
(ISO VG 22) and rich in saturated fatty acids. Ester based 
biolubricants are also derived from filamentous fungal mat 
of Fusarium and Rhizopus sp. with lipid content 39% at 
least [16]. Oil biolubricants are comparable to ISO VG32 
for parameters like Viscosity index (VI), Pour point (PP), 
Flash point (FP) etc. [ASTM D2422-97(2018)]. Different 
vegetable oils – Rice bran oil; Coconut oil; Sunflower oil 
and even oils from algae like Nannochloropsis sp., Chlo-
rella vulgaris etc. are suitable as biolubricants [17–21]. Oil 
biolubricants can also be derived from non-edible plants like 
Jatropha oil (61%–64% fatty acids), Neem oil (oleic acid- 
43.9%), Karanja oil (oleic acid—30%–40%) [10]. Modified 
microalgal (Chlorella sp.) oil blend (MMO) with poly-
alpha-olefin (10%) was found to be an excellent lubricant 
in reducing friction (10.1%) and heat dissipation in a hydro-
gen powered engine [22]. Interestingly, all blends fulfilled 
ISO VG 68 standards except MMO-20. Main components 
in MMO were Tetrahydrofuran, 2,2-dimethyl-, 4-Butoxy-
2-butanone, Hydroperoxide, 1-methylhexyl, Hydroperoxide, 
1-ethylbutyl, Hydroperoxide, 1-methylpenthyl, Cyclopen-
tane, 1-acetyl-1,2-epoxy-, Hexadecanoic acid- methyl ester, 
9,12-Octadecadienoic acid methyl ester, Heneicosanoic 
acid, methyl ester etc. Among all these, algal oils can be 
promoted because they are not so much in demand for food 
and other applications; their eco-friendliness; lesser toxic 
emissions and round the year production possibilities. Veg-
etable oils are added to base oils as additives. Also, additives 
are required to improve cold flow behaviour and thermo-
oxidative stability of bio-oil lubricants. These are anti-
oxidants, corrosion inhibitors, detergents and dispersants, 
extreme pressure viscosity modifiers, nanoparticles, pour 
point depressants and anti-wear additives [10]. Polysaccha-
rides are also useful as additives to oil lubricants. Schiff base 
derivative of chitosan (SBC) additive in paraffin oil lubricant 
was found to reduce friction coefficient significantly [23]. 
But the major issue in using lipids and oils as biolubricants 
is their use as raw material for biodiesel production; in cook-
ing food and also in industries producing soaps and other 
products. Therefore, they are already in short supply to meet 
these demands. Hence, an alternate source of raw material 
for biodegradable and eco-friendly biolubricant production 
is required.

Industrially, carbohydrates are potential sources for biolu-
bricant production. Carbohydrate biolubricants from cluster 
beans (guar gum), crustaceans (chitosan) and microorgan-
isms like bacteria (Xanthomonas campestris, Leuconostoc 

mesenteroides, Streptococcus zooepidemicus, Acinetobac-
ter calcoaceticus etc.) are with excellent viscous properties 
for large number of applications (Table 1). However, these 
have their own limitations in raw material availability and 
production costs. Chitosan requires crustacean shells and 
their supply is neither abundant nor continuous. Hyaluronic 
acid is biologically important as a joint lubricant, produced 
from animal tissues and microorganisms like Streptococ-
cus zooepidemicus, but it is otherwise in high demand 
pharmaceutically. Plants like cluster beans, useful also as 
a vegetable limit their production by land availability and 
seasonality. Microorganisms like bacteria and fungi require 
expensive, skilled and sophisticated techniques to cultivate, 
and unsuited to inexpensive open outdoor cultivation. There-
fore, an alternative raw material (biomass) that is available 
round the year with simpler production methods would be 
ideal. Carbohydrates useful as biolubricants can be extracted 
from cyanobacteria and diverse groups of algae like Chloro-
phyceae, Rhodophyceae, Phaeophyceae etc. of marine and 
freshwater habitats.

Macroalgae (Seaweeds)

Macroalgae grow wild and can also be cultivated in coastal 
areas. The cultivation and collection of seaweeds provide an 
alternate livelihood for the poor living in coastal areas. Gulf 
of Mannar and Palk Bay of South India are commercially 
important for alginophytes and agarophytes with earnings 
of about US $1000 per annum per person to the women 
and teenagers among impoverished rural communities [24]. 
Algal polysaccharides, in general, are extracted from mac-
roalgae like Gelidiella acerosa, Enteromorpha prolifera, 
Ulva fasciata, Gracilaria intermedia etc. growing in wild 
or cultivated [25–28]. The phycocolloids agar, carrageenan 
and alginate from seaweeds are known for their viscosity and 
lubricating properties (Table 1, 3). However, extended and 
extensive macroalgal harvest from wild as well as cultivation 
could cause adverse effects on the marine ecosystem, and 
pollute the sea [29, 30].

Agar, a sulphated phycocolloid, extracted from mem-
bers of Rhodophyceae is an efficient lubricating agent, pre-
dominantly composed of the monosaccharide galactose. As 
a lubricant, coating of agar (1 mm) in a rectangular pipe 
reduced 40% drag with Reynolds number ̴ 2,600 [31]. Simi-
larly, the red seaweeds of the families Gigartinaceae, Hyp-
neaceae, and Solieriaceae are harvested for the sulphated 
polysaccharide carrageenan. The known carrageenophytes 
are Chondrus, Gigartina, Eticheuma, Kappaphycus, Hyp-
nea, Laurencia, Solieria, Agardhiella, Sarconema etc. Com-
mercially, carrageenan are of three different types based on 
gelation properties viz. ‘iota’, ‘kappa’ and ‘lambda’. Of 
these, kappa (25–30% ester sulfate) forms strong gel with 
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potassium salt, and usually extracted from ‘Kappaphycus 
alvarezii’, useful as oil drilling lubricants [32].

Alginate/algin is produced from the macroalgae belong-
ing to the class Phaeophyceae, such as Macrocystis pyrif-
era, Sargassum vulgare, Laminaria hyperborea, L. japonica, 
Ascophyllum nodosum. Alginates even from bacteria like 
Azotobacter sp. and Pseudomonas sp. are reported [33]. 
Alginates are linear anionic polysaccharides. Apart from 
oil drilling, alginates are also marketed as cleaner lubricant 
spray. A composite of Sodium alginate and N-Succinyl chi-
tosan was proved to be an excellent aerogel in separation of 
oil–water (99%) due to super oleophobicity and more poros-
ity [34].

Starch composed of glucose is of two types, viz. amyl-
oses (linear) and amylopectins (branched) depending on the 
arrangement of glucose units. Starch associated dispersant 
lubricating muds with a pour point of 20 °C to − 25 °C are 
generally prepared with polyalkenes and water by a steam 
jet cooker. However, it needs additional exploration for com-
mercial biolubricant applications [35]. Starch is a major 
constituent in plastids of Chlorophyceae (green algae), 
often comprising 10%–60% of total carbohydrates [36, 37]. 
Cell wall of Ulva is composed of 8%–29% dry weight of 
polysaccharides [38]. Ascophyllum nodosum, a brown alga 
has 9.15% polysaccharides by dry weight [39]. Floridean 
starch from Rhodophyceae, known as semi-amylopectin, is 
reported to contain amylopectin, and occasionally amylose, 
e.g. Glaucosphaera vacuolata [40, 41].

All these polysaccharides have potential for development 
as biolubricants. However, the seaweed products like agar, 
alginates and carrageenans are already in short supply for 
different industrial and laboratory applications and hence 
may not be available in sufficient volumes for lubricant 
production. Further, the macroalgal biomass production 
is restricted by seasonal growth and cannot be continued 
year-round. In addition, production could also be affected 
by overharvesting and diseases like “ice-ice”.

Microalgae and Cyanobacteria

Microalgae and Cyanobacteria are thalloid photosynthetic, 
oxygenic microorganisms. Among them, the cyanobacteria 
are prokaryotic and colonize extreme habitats like saltpans 
due to their physiological adaptability. Often, they form 
blooms in freshwater as well as oceans spreading to sev-
eral miles [42–44]. Microalgae and cyanobacteria are bio-
technologically important in food; feed; phycoremediation; 
pharmaceuticals; biofertilizer and biofuel production [45, 
46]. The extracellular polysaccharides (EPS) are possible 
to get as a byproduct in industries employing microalgae 
and cyanobacteria for biodiesel manufacturing and other 
products. EPS with bioactivity due to sulfate group, can be 

extracted, and applied as biolubricant, for drag reduction by 
turbulence damping during movement of the fluid [31, 47, 
48]. The multi-functional capabilities of the polysaccharides 
from microalgae and cyanobacteria could replace synthetic 
lubricants [49]. Aqueous polysaccharide lubrication is stud-
ied, combining their adsorption, tribology and rheological 
behaviour [50]. Microbial enhanced oil recovery (MEOR), 
mostly from bacteria like Bacillus subtilis is in use in oil 
industries [51]. Biolubricants can be applied as drag reduc-
ers in both closed and open pipe systems [31]. According to 
European Union standards (EN 16807), biolubricants for EU 
Ecolabel require 25% carbon in the formulation.

Microalgae

Microalgal starch is a byproduct in bio-oil refineries, and 
could be utilized in biolubricant production. A minimum 
of 44.8 g polysaccharides per kg dw can be extracted from 
Chlorella pyrenoidosa [52]. The polysaccharides from 
the microalga Schizochlamydella capsulata were found to 
be an efficient drag reducer (type-B) with a slight varia-
tion in Reynolds number 9,000–10,000 [53]. The glucose 
polymers like polyglucans (α/β) are distributed differently 
among algae of different taxonomic positions. Paramylon 
bodies observed in many heterokontophyta and Euglena sp. 
are storehouses of β-1, 3 glucan, an efficient ocular lubri-
cant. Cellulose glucan, useful for biolubricant production, 
is present (β-1, 4-linked; β-1, 3-/ β-1, 4-linked) in cell walls 
of algae [54]. Extracellular polysaccharide (EPS) production 
is common in algae and cyanobacteria. An acidic, sulphated 
heteropolysaccharide as EPS was obtained from the unicel-
lular fast-growing alga Porphyridium sp. of Rhodophyceae 
[55]. The EPS (0.5–2% w/w) was found useful as a visco-
supplementation lubricant to reduce friction and pain when 
injected into human joints like the knee, which otherwise 
often require total knee replacement which is expensive and 
durable for 10–15 years only [56]. The sulphated polysac-
charides have been found to be a lubricant for arthritis, and 
an alternate for hyaluronic acid [48, 56]. The adhesive poly-
saccharide hydrogels with low friction coefficient are useful 
as drug delivery biolubricants, biocompatible, and useful in 
tissue engineering [57]. This biolubricant is comparable to 
lubricin and useful in reducing the allergic effect of hyalu-
ronic acid.

Cyanobacteria

Cyanobacteria produce slime, as they are often cov-
ered with sheaths and capsules (Fig. 1). EPS released 
by cyanobacteria are useful in soft tribology/ microbial 
enhanced oil recovery (MEOR), and a possible alterna-
tive for synthetic surfactants [58]. Optimization of growth 
medium and physical parameters like light (duration and 
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intensities) and temperature, maximise EPS production 
(Table 2). Closed photobioreactors are useful to maintain 
quality during large scale production of EPS [59, 60]. 
But carbohydrate biolubricant production for oil drilling 
can be made inexpensive with biomass from open out-
door ponds. The raceway ponds are economical and up-
scalable to any level of industrial production [61]. The 

EPS composition from these organisms, and therefore their 
applications could be varied. Unlike bacteria, cyanobacte-
rial anionic, highly hydrophobic EPS are heteropolymers 
extending to 10–12 monomers. The novel polysaccharides 
nostoflan, cyanoflan and sacran were isolated from Nos-
toc flagelliforme, Cyanothece sp. and Aphanothece sacrum 
respectively [62–64]. Nearly 75% of total carbohydrates 

Fig. 1  EPS from cyanobacteria. SEM image of N. muscorum with 
EPS (a); India ink staining of EPS of C. epiphytica (b); differential 
interference contrast microscopic view of EPS from C. epiphytica (c); 

Cells of Nostoc sp. with EPS (d); Confocal Laser Scanning Micros-
copy (CLSM) image of Mucilaginous (EPS) ball of N.commune (e); 
Extracted EPS (f)
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synthesized could be released as polysaccharides into the 
medium. EPS production can be maximized by altering 
simple factors (Table 2). Emulcyan, an emulsifier EPS 
of the cyanobacterium Phormidium J-1 were maximal in 
stationary phase [65]. Cyanoflan the polymer from Cyan-
othece sp. form droplets (≤ 200 μm), similar to xanthan 
gum with an Emulsification Index (EI) of ≥ 50% and sta-
bility of more than a month [64]. Also, emulsifier, a bio-
surfactant from Nostoc sp. had an EI of 21.4 to 37.5% 
with different hydrocarbons and oils [66]. EPS extracted 
from cyanobacteria Cyanothece sp. CCY 0110, Limno-
thrix redekei, N. flagelliforme etc. are highly viscous, and 
comparable to commercial xanthan gum [64, 67–69]. The 
lubricity provided by EPS (0.1; 5.0% w/w) is similar to 
grease with remarkable emulsifying activity as shown by 
Cyanothece epiphytica [47]. Also, the EPS from N. musco-
rum with ample uronic acid could be useful in oil drilling 

operations and paint emulsions [70]. EI for sulphated EPS 
from C. epiphytica at its lowest (0.2%) was 58.24–72.37% 
[47]. EPS from N. flagelliforme (0.45%) showed better EI 
(27.3–73.8) than xanthan gum in hydrocarbon and oil 
[69]. Emulsion from EPS of N. muscorum was stable for 
3 months (EI > 75%), while E24 was > 80% [70]. Emulsi-
fying properties are useful in oil drilling.

Physical and Chemical Properties

Analysis of the physical and chemical properties of the poly-
saccharides would reveal their utility as biolubricants and 
will enthuse entrepreneurs to view algal industries as prof-
itable ventures to make multiple products. Some important 
properties to be considered are:

Table 2  Polysaccharide production from algae/cyanobacteria

Organism Condition PSs yield Time (d) References

Anabaena sp. BTA990 N (–) 1.30 mg/mL 26–30 [109]
Arthrospira platensis LI 180 μmol/m2 /s; temperature: 33 °C 290 ± 5 mg/ L 21 [115]
Cyanobacterium aponinum 500 μmol photons/  m2 /s ̴20 mg/ L/d 14 [116]
Cyanothece epiphytica Nutrient starvation; ozonisation 6.33–9.66 μg/mL/day 9 [47]
Limnothrix redekei PUPCCC 116 Radiant flux of 9.8 W/m2, continuous light 614 µg /mL 21 [67]
Lyngbya stagnina Salt (NaCl) 88 µg/mL 6 [98]
Microcoleus vaginatus Light intensity at 80 µE/  m2 /s 302.41 mg/ g DW 20 [117]
N. flagelliforme TCCC11757 N (–) 37.95 mg/L 16 [100]
N. microscopicum BG11 0.90 g/L 44 [118]
N. muscorum Ozonisation 126.73 μg/mL 12 [70]
Phormidium 94a Continuous illumination by fluorescent lamps ̴5,000 lx 929.88 mg/g dw 15 [119]
Scytonema tolypothrichoides VB61278 Temperature 28 to 34 °C; Irradiance: 8 to 13 W/  m2 ̴500 µg/mL 25 [120]
Synechocystis sp. BASO444 Salt (NaCl) 500 mg/L EPS 15 [121]
Tolypothrix bouteillei VB61268 Temperature: 27–34 °C; Irradiance: 7 to 17 W /m2 ̴250 µg/mL 25 [120]
Ulva rigida Collected alga 20% of DW – [122]
Enteromorpha compressa Collected alga 23% of DW – [123]
Sargassum tenerrimum Collected alga 61% of DW – [124]
Gelidiella acerosa Collected alga 89.5% of DW – [125]
Gracilaria caudata Collected alga 32.8% of DW – [126]
Turbinaria conoides Collected alga 35% of DW – [127]
Ascophyllum nodosum Collected alga 42.31% of DW – [39]
Laminaria japonica Collected alga 7.56%-18.6% of DW – [128, 129]
Porphyridium sp. Continuous illumination (15µE/ m 2 /s); 3%  CO2; artifi-

cial sea water
36% of DW 15 [55]

Chlorella vulgaris Continuous illumination (3600 lx) 495.44 mg/g 16 [130]
Spirulina platensis Algal powder 71.65% of DW – [131]
Chlorella pyrenoidosa Algal powder 44.8 g/ kg – [52]
Scenedesmus sp. Constant illumination: 1500 lx 48 mg/L 14 [83]
Scenedesmus obliquus Varying light intensities (10–60 µmol /m2/s) 0.14–0.20 pg/cell 9 [132]
Botryococcus braunii ‘Laboratory’ simulated ‘Mediterranean climate’ condi-

tions
0.29 g/L/day [133]
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Molecular Weight

The molecular weight (MW) of a substance can determine 
the viscosity, and consequently the lubricity. Algal/cyano-
bacterial polysaccharides are high MW polymers (Table 3). 
A high MW polysaccharide (> 10,000 kDa) Fucoidan from 
Turbinaria turbinata can be extracted with mild enzymes 
[71] and the Cell bound polysaccharide (CPS) is of high 
MW. It can be extracted as efficiently as Released polysac-
charide (RPS) [47, 70, 72]. The Natural Algae Based Syn-
thetic Lubricant (NASL) with MW > 300,000 is the slime 
extracted from a kelp Macrosystis pyrifera. Its MW is higher 
than a typical lubricant and is a superior drag reducer [73]. 
Due to its high MW, bio-emulsion in low concentration 
(1:50–1: l000) produces a stable emulsion [74]. Biomedi-
cally, ultra-high molecular weight polyethylene is used for 
hip and knee replacement which can cause inflammation and 
this can be reduced by the algal biolubricant.

Sugar Composition

Carbohydrate biolubricants can be both hydrophilic and 
hydrophobic in nature, depending on the monomeric 
composition. In general, algal/cyanobacterial polysaccha-
rides are composed of several monomeric units (Table 3). 
The commercial xanthan gum is composed of mannose, 
glucose and glucuronic acid. The potential EPS biolubri-
cants of the cyanobacterium C. epiphytica is composed 
of six monosaccharides with sulfate groups [47]. Sulfated 
polysaccharides are useful as biolubricants for biomedical 
applications. Based on partition coefficient  (Kav) (based on 
sugar partition between aqueous solvents and polystyrene 
gel) the hydrophobicity of sugars is as D-ribose > D-arab-
inose > D-xylose > D-mannose > D-glucose > D-galactose 
[75]. In the formulation of oral tablets/capsules hydropho-
bicity is not advantageous, but in coating oil drilling pipes 
hydrophobic lubricants are useful. Hydrophilic tablets were 
manufactured by co-processing starch/microcrystalline cel-
lulose (MCC) /Chitin polymer and an additive magnesium 
silicate [76]. Hydrophilic hydroxypropyl methylcellulose is 
a derivative obtained from cellulose used in tolcapone tablet 
formulation due to its high viscosity, gelling and swelling 
ability, inertness, non-ionic property, odourless fillers, and 
significant impact on release kinetics into the system [77]. 
Superhydrophobic coatings on oil/ gas pipelines are mostly 
developed by nanomaterials that protect against corrosion, 
fouling agents and aggressors [78]. A green superhydropho-
bic film was developed with cerium chloride (0.038 M) and 
myristic acid (0.1 M) to coat onto the carbon steel surface 
[79]. However, hydrophobic lubricants from carbohydrates 
are less recognized. Peptide moieties and ester linked acetyl 
groups together with deoxyhexoses (rhamnose/fucose) pro-
vide hydrophobicity for cyanobacterial EPS [80].

Thermal Stability

For a lubricant, to work properly, thermal stability is a basic 
requirement (Table 3). Algal/cyanobacterial polysaccharides 
are quite stable in a high temperature range due to complex-
ity of their polymeric structures. Released polysaccharides 
(RPS) from Cyanothece sp. CCY 0110 showed 65% loss 
at 248–300 °C [68]. At 237 to 378 °C, only 39% loss was 
observed in RPS from N. carneum. As revealed by differ-
ential scanning thermogram (DSC), the crystallization tem-
perature was 107.4 °C with a latent energy of crystalliza-
tion of 108.67 mJ [81]. EPS from C. epiphytica degraded 
50% at 288 °C [47] and that of Arthrospira maxima had a 
weight loss of 66.6% at > 500 °C, while a mass residue of 
34% still remained at 700 °C [82]. 80% mass loss of EPS 
from Scenedesmus sp. SB1 took place at 167 °C [83].

Crystallinity

Carbohydrate biolubricants are mostly amorphous in nature. 
However, sodium alginate is crystalline with its peak 2 θ of 
13.5 and 21.9°, while calcium alginates show different semi 
crystalline peaks [84]. Polysaccharides from cyanobacteria 
like Cyanothece sp. CCY 0110, C. epiphytica, N. flagelli-
forme, N. muscorum are reported to be amorphous [47, 68, 
70, 85]. But X-Ray diffraction’ analysis of EPS from the 
microalga Scenedesmus sp. SB1 found them both amorphous 
(84.8%) and crystalline (15.2%) as presented (Fig. 2) [83]. 
Amorphous materials have generally been used for lubrica-
tion in a large number of applications including tablet for-
mulations and earthquake lubrication [86, 87].

Rheological Property

In tribology, under hydrodynamic, boundary and mixed 
regime, aqueous polysaccharide lubrication is important, 
and dependent on viscosity, adsorption and both [50]. In 
drilling muds, often, water alone is used as a lubricant, but 
the efficacy could be enhanced with carbohydrate biolu-
bricants. These are mostly thixotropic, pseudoplastic and 
non-Newtonian. The carbohydrate biolubricants from micro-
algae and cyanobacteria are comparable to seaweeds and 
commercial polysaccharides like Xanthan gum of bacte-
rial origin (Table 3). The Newtonian lubricants are useful 
in hydrodynamic, elastohydrodynamic and also in mixed 
regimes. Rheological properties are affected by temperature, 
pH, MW, chemical structure, concentration, and extraction 
processes which are evaluated prior to different applica-
tions for its conformity. The flow index of Cell bound poly-
saccharides (CPS) and RPS from Anabaena sp. CCC 745 
were < 1, indicating pseudoplastic and non-Newtonian char-
acteristics [72]. Consistency index was high for RPS (90.92 
PaS), compared to CPS (67.35 PaS). The polysaccharide 
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Cyanoflan (MW > 1 MDa) from Cyanothece sp. CCY 0110 
exhibited better rheological property than Xanthan gum 
[64]. For instance, 1% solution of Cyanoflan has a viscos-
ity of 1594.0 mPa.s while Xanthan gum (1%) has a viscos-
ity of only 1113.0 mPa.s. Xanthan gum was more plastic 
than viscous compared to Cyanoflan. EPS from Limnothrix 
redekei PUPCCC 116 (0.2%) and Xanthan gum presented 
comparable shear thinning characteristics [67]. Interestingly, 
viscosity of Xanthan gum decreased with rise in temperature 
(15–55 °C) but no change in the EPS.

Advantages of Microalgae/Cyanobacteria

Generally algal Carbohydrate biolubricants are formulated 
from seaweed products like agar, alginic acid, and carra-
geenans (Table 1). However, the critical factor in using 
macroalgae is their cultivation, and related environmental 
issues. Apart from seasonal dependence on light and tem-
perature in ‘spring’ and ‘autumn’, overharvesting from 
the wild reduces the genetic pool of Macroalgae. They are 
cultivated on surface sea water, and shadowing affects the 
productivity of other marine resources like phytoplanktons 
and microalgae of benthic regions [29]. In sea, primary 
productivity is dependent upon phytoplanktons in a major 
way [43]. Tropical seawater is limited by  NO3-N. Cultiva-
tion of seaweeds in natural seawater may further decrease 
the nutrient status, and affect the marine biota. As nitrogen 
source is essential for algal growth, urea is often applied 
in offshore cultivation of algae [30]. The microalgal/cyano-
bacterial biomass production can be coupled to bioreme-
diation of industrial effluents (Fig. 3). Microalga Chlorella 
vulgaris and C. protothecoides presented short lag phase in 
biomass production and complete  NH4

+ (40 mg/L) removal 
in 10 days from ‘anaerobic digestion effluent’ [88]. C. 
minutissima was cultivated in ‘saline aquaculture wastewa-
ter’, and fivefold increase in cell density was achieved [89]. 
Both total N and P were decreased up to 88% and > 99% 
respectively.  NO3-N,  NO2-N, dissolved orthophosphates 
were reduced by 88.6, 74.3, 99% respectively. ‘Dairy waste-
water’ was useful in increasing biomass productivities of C. 
pyrenoidosa, Anabaena ambigua and Scenedesmus abun-
dans while effectively reducing biological oxygen demand-
BOD (56%), chemical oxygen demand-COD (77%),  NO3-N 
(88%), phosphate (85%) in 25 days [90]. Chlorococcum sp. 
SL7B, Chlorella sp. SL7A and Neochloris sp. SK57 were 
cultivated in ‘pharmaceutical effluent’ contaminated river 
water. Neochloris sp. SK57 reduced COD in 10 days with 
efficiency 90% [91]. Also, Chlorococcum humicola culti-
vated in undiluted ‘textile mill effluent’ reduced  NO3-N and 
 NO2-N below detectable limit in 3 days [92]. Maximum 
biomass was produced in TE (90%) +  NaNO3 (0.15%) with 
growth rate 0.37/d. Microalgae and cyanobacteria used for 
bioremediation, also called phycoremediation, can result in 

biomass with EPS [92–94]. Remarkably, microalgae and 
cyanobacteria can grow in both low nutrient waters as well 
as nutrient loaded industrial effluents, reducing nutrients 
and water requirement as well. Cultivation in wastewater 
is the most economical way of biomass production [92]. 
The cyanobacterium Oscillatoria boryana BDU 92181 was 
reported to break down ‘melanoidin’, a recalcitrant pigment 
from distillery effluent and utilized it as carbon and nitro-
gen source [95]. Conversion of nutrients into biomass is 
contributed by light and inorganic carbon [96]. Flue gases 
from industry can also be utilized by microalgae and cyano-
bacteria, and about 513 tons of  CO2 can be converted to 
100 tons of dry algal biomass [97]. Algal/ cyanobacterial 
biomass production excludes arable land requirement, and 
are capable of growing in wastewater and the biomass would 
be available irrespective of seasons in a much shorter time 
period compared to higher plants. Hence, for any biotech 
industry including biolubricant production, microalgae/
cyanobacteria cultivation is desirable for continuous supply 
of raw materials. Marine microalgae/cyanobacteria can be 
cultivated in seawater, which minimizes freshwater require-
ment. Porphyridium sp. was cultivated on supplementation 
of  CO2 (3%), and a continuous illumination of 15µE/m2/s in 
artificial seawater medium (ASW). Production of biomass 
can be enhanced by photobioreactors, and an economical 
photobioreactor is a raceway pond for mass production of 
biomass. Even harmful algal/cyanobacterial blooms can 
be harvested and the different components of the biomass 
can be used for different purposes [44]. Growth rate is high 
for microalgae and cyanobacteria compared to seaweeds. 
Physico-chemical properties of the carbohydrates are also 
comparable to seaweeds (Table 3). Chosen marine micro-
algal strains can be cultivated in seawater both indoors and 

Fig. 2  XRD spectrum of EPS from Scenedesmus sp. SB1 [83]
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outdoors depending on the products to be made. Unlike bac-
teria and fungi, the algae and cyanobacteria can be cultivated 
outdoors under daylight as they are photosynthetic. In algal 
biorefineries for energy production, pigments and carbohy-
drates could become value-added products. Carbohydrate 
components can be separated and used for biolubricant 
production which would reduce production costs of both 
primary and byproducts (Fig. 3). For maximal production 
of polysaccharides by microalgae and cyanobacteria, mild 
stress which is often starvation of macronutrients like N/ 
P or increase in salinity or mild ozonation would help [70, 
98–100]. Such manipulations are not possible with macroal-
gae as they are cultivated in the natural sea surface water. 
Unlike seaweeds, microalgae and cyanobacteria are not so 
much disease prone. Algal/cyanobacterial strains in open 
ponds or raceways can compete with bacteria by releasing 
metabolites with allelopathic effect [92].

Conclusion

Carbohydrate biolubricant production is yet to achieve 
commercial dimensions and a sustainable market growth. 
Just as vegetable oil, microbial oil and animal fat are used 
as a base for biolubricant production, carbohydrates from 
algae and cyanobacteria are also suitable and have poten-
tial in diverse applications. The commercial leads to use 
eco-friendly microalgae and cyanobacteria for carbohy-
drate biolubricant production are yet to be used to estab-
lish industries comparable to those for mineral oils and 
synthetics as well as those of seaweeds. Industrially, at 
present, macroalgae are more in use, although their cul-
tivation is at present only in sea and regarded as a threat 
to marine biota raising environmental concerns. Marine 
microalgae cultivation on the other hand, is possible in 

saline water, artificial sea water, inorganic/organic growth 
media, and industrial effluents as well. Algal biomass pro-
duction coupled with bioremediation can substantially 
reduce nutrients and water requirements. In addition to 
continuous supply of raw material, it can reduce cost of 
production. Accumulation of carbohydrates in cells has 
been shown to be improved by simple stresses like nutrient 
starvation and ozonisation for short durations. Further, the 
physico-chemical properties of carbohydrates from algae 
and cyanobacteria comply with the required properties for 
a biolubricant. The successful lab level studies reported 
thus far, are to be scaled up and commercialized, using a 
multi-disciplinary approach. Uninterrupted supply of the 
raw materials is assured as mass cultivation technology is 
available for algal/cyanobacterial biomass. Carbohydrate 
biolubricant formulations are biodegradable and eco-
friendly and therefore to be preferred over mineral oils 
and synthetic lubricants.
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