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Abstract
Hybrid cellulose nanocomposite films (HCNFs) were fabricated using cellulose from cotton linters as the matrix, and varying 
loadings (5 to 25wt.%) of modified tamarind nut power (TNP) with in situ generated copper nanoparticles as the reinforc-
ing fillers. These hybrid composite films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) 
spectroscopy, thermogravimetric analysis (TGA), and antibacterial tests. The inclusion of modified tamarind nut powder 
improved the crystallinity of the hybrid nanocomposites by 13%. From the FTIR analysis, it could be ascertained that there 
was no notable change in the chemical composition of the matrix with the amendment of the filler. Further, the shift in peak 
intensity with increasing concentration of the filler shows the formation of hydrogen bond between the filler and the matrix. 
The TGA analysis revealed that the degradation temperature of hybrid nanocomposites increased until HCNFs with 15wt.% 
modified tamarind nut powder. The hybrid nanocomposites exhibited better antibacterial properties against all the pathogens 
used in the study. These hybrid nanocomposites were found to have superior antibacterial activity, thermal resistance, and 
improvement in crystallinity. Thus, these bio-based materials can be used to replace the existing packaging materials in the 
food packaging and help to reduce the impact of conventional plastics on the environment.
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Introduction

In the recent years development of materials based on plas-
tics is happening in almost all industries in order to reduce 
the weight of the components. However, another debate is 

going on to reduce the usage of petroleum-based plastic 
materials and the use of bio-based polymeric materials. In 
this case, many countries have formulated stringent norms 
to reduce plastic pollution, which is growing day by day and 
causing serious effects on human beings and other living 
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organisms both on land and water [1]. Usage of polymer-
based food packaging materials has been on a constant rise 
in the last three decades due to the increase in the production 
and consumption of processed foods. However, the synthetic 
polymers used in such applications pollute the ecosystem 
after their disposal. All the above factors paved the way for 
fully biodegradable food packaging materials made from 
the bio-polymers and bio-fillers. Biodegradable polymers 
can be a feasible solution to these problems since they are 
produced from renewable sources like cellulose, starch, 
polysaccharides, proteins etc. Biodegradable polymers used 
in such applications include polylactic acid (PLA), poly-
propylene carbonate (PPC), Poly(3-hydroxybutyrate-co-
3-hydroxyvalerate) (PHBV), cellulose etc. [2]. Even though 
biopolymers provide various advantages, they lack in certain 
functional properties such as mechanical, thermal stability, 
and they are also slightly expensive. Hence, inexpensive fill-
ers are reinforced to enhance the properties of the ensuing 
composites.

In the case of bio-fillers, municipal solid wastes such 
as spent coffee bean powder [3], banana peel powder [4], 
tamarind nut powder (TNP) have been reported earlier [5, 
6]. Preserving the processed food against contamination is 
inevitable for the packing bags and containers. It has been 
identified from literature that incorporation of the metal 
nanoparticles into the leaf extracts from various plants such 
as Terminalia catappa/cellulose [7], Ocimum sanctum/cel-
lulose [8], Cassia alata/cellulose [9] enhances all the above 
said properties. In this study, TNP filler modified by the 
incorporation of copper nanoparticles (CuNPs) was used as 
reinforcement. This was mainly due to their good antibacte-
rial activity [10].

TNP, an agro-by-product obtained after the extraction of 
tamarind pulp, has been used in the processing of paper, jute, 
and textiles. Gelling characteristics of TNP also make them 
prospective fillers in food packaging and pharmaceutical 
industries [11]. Cellulose is an organic compound used as 
matrix due to its high crystallinity and ability to form trans-
parent film [9]. The effect of modified TNP/CuNPs filler 
wt.% on the dispersion characteristic, thermal, crystalline, 
and antimicrobial properties of the hybrid cellulose nano-
composite films (HCNFs) was investigated.

Materials and Methods

Materials

The matrix material cotton linter in the form of sheets was 
supplied by Hubei Chemical Co. Ltd., China. Lithium 
hydroxide, urea, and ethyl alcohol were supplied by Gan-
apathi Chemicals, Tamil Nadu, India.  CuSO4.5H2O was 
obtained from SD Fine Chemicals, Mumbai, India. The filler 

material TNP was purchased from SV Sri Ganga Ayurveda, 
Hyderabad. The filler was sieved, and then the fillers with 
particle size less than 40 µm were used. This TNP filler was 
then dried overnight using a hot air oven at 100 °C. The 
pathogens such as E.coli 1652, P.aeruginosa 2453, S.aureus 
96, B.licheniformis 75527 were purchased from IMTECH, 
Chandigarh, India for conducting the antibacterial test.

Fabrication of Cellulose/Modified TNP Hybrid 
Nanocomposites

Copper nanoparticles were in-situ generated into the TNP 
filler by the hydrothermal method [10] to form a modified 
TNP filler. The cellulose matrix solution was prepared by 
dissolving the cotton linters into a solution containing 8% of 
Lithium hydroxide (LiOH) and 15% of Urea at − 12 °C [3]. 
Modified TNP filler with varying weight percentages (5–25) 
was added to the matrix. In order to have a uniform distribu-
tion of the fillers in the matrix, the solution was continuously 
stirred for about 20 min. The resulting solutions were cast in 
different glass plates and were dipped in ethyl alcohol bath 
to form hybrid nanocomposite films. The nanocomposites 
were then rinsed carefully in deionized water for the removal 
of unwanted materials. Subsequently, the wet nanocomposite 
films were air-dried and stored in a desiccator before testing.

Characterization of Cellulose/Modified TNP Hybrid 
Nanocomposites

FTIR Analysis

The FTIR spectrometer (Bruker, Richmond Scientific Ltd, 
Great Britain) was used in the acquisition of the hybrid cel-
lulose nanocomposite film spectra. A total of 32 scans at a 
resolution of 4 cm−1 and ranging from 4000 to 500 cm−1 
were used to measure the spectra of the nanocomposite 
films.

XRD Analysis

Crystalline changes in the HCNFs with various filler wt.% 
was evaluated using the XRD technique. HCNFs with vari-
ous modified TNP filler loading were scanned in the 2 Theta 
range of 10–80° at a rate of 4°/min. The crystallinity index 
(CI) was calculated using the Segal empirical method [12] 
as depicted in Eq. (1):

where I002 and Iam intensity peak of the crystalline and amor-
phous region, respectively.

(1)CI (%) =
((

I
002

− I
am

)

∕I
002

)

∗ 100
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Thermogravimetric Analysis

The thermal degradation behavior of the HCNFs was ana-
lyzed in the temperature range of between 25 °C and 600 °C 
using a thermogravimetric analyzer (Mettler Toledo/ TGA/
DSC  3+ Series). The heating rate and the nitrogen gas 
flow rate were selected as 10 °C min−1 and 60 mL min−1, 
respectively.

Antimicrobial Analysis

Bacterial resistance of the HCNFs was analyzed by the dif-
fusion method [4]. For this, pathogens such as E.coli 1652, 
P.aeruginosa 2453, S.aureus 96, B.licheniformis 75527 were 
used. The inhibition of the bacteria through the clear zones 
surrounded on the 5 mm diameter samples were used to 
assess the bacterial resistance of the HCNFs. The test was 
carried out with the samples kept in an inoculated medium 
and incubated at 37 °C for 2 days.

Results and Discussion

FTIR Analysis

Chemical groups and the interaction between the cellu-
lose matrix and the modified TNP were determined from 
the FTIR analysis. It can be inferred from Fig. 1a that the 
HCNFs have a similar chemical group and some additional 
peaks.

It can be found that the CuNPs did not change the chemi-
cal composition of the matrix. Therefore, electrostatic forces 
might have held the CuNPs in the nanocomposite films [13]. 
FTIR spectra of the cellulose matrix, TNP/CuNPs filler, 

and HCNFs with 5wt.% and 25wt.% fillers are presented 
in Fig. 1b. The intense broad peak between 3000 cm−1 
and 3700 cm−1 indicates the O–H stretching and intermo-
lecular hydrogen bonding groups in the cellulose matrix, 
modified TNP and nanocomposite films [14–18]. The peaks 
became broader for the HCNFs in the wave number range 
of 3000–3700 cm−1 with an increase in the filler loading. 
This might be due to the strong interaction between (a) the 
OH- and reduced  Cu2+ ions released from the CuNPs and 
(b) CuNPs with the TNP filler [6].

The intense peaks between 1630 and 1650 cm−1 as shown 
in Fig. 1b and Table 1 correspond to the O–H group. The 
band stretching at 2895 cm−1 was due to the presence of 
C–H stretching in methyl and methylene groups [19], and 
the band at 1216 cm−1 corresponds to the –COO of hemi-
celluloses [4]. On the other hand, the band at 1018 cm−1 
was due to C-O stretching of primary alcohol. The intensity 
peaks around 894 cm−1, 1157 cm−1, 1313 cm−1, 1369 cm−1, 
and 1421 cm−1 were ascribed to the C–H rocking vibrations, 
C–O–C asymmetric valence vibration, C–H2 rocking vibra-
tion, C–H2 deformation vibration, and in the form of cellu-
lose, respectively, of the carbohydrates [14]. The presence 
of the lignocellulosic, methyl and methylene groups in the 
cellulose matrix and hybrid nanocomposites were evident 
from the presence of characteristic peaks discussed above.

From Fig.  1b, it can be noticed that the intensity of 
the main peaks of the HCNFs increased with increasing 
filler content. Besides that, shifting of bands can be seen 
in the spectra of cellulose matrix and the HCNFs such 
as 894–896  cm−1, 1014–1018  cm−1, 1157–1155  cm−1, 
1421–1419 cm−1, 1643–1645 cm−1, 2160–2164 cm−1, and 
2890–2894 cm−1 that the carboxyl and hydroxyl of the TNP 
filler had influence in the synthesis of the CuNPs. Further, 
the band located at 3324 cm−1 had shifted to 3340 cm−1, 

Fig. 1  a. FTIR spectra of cellulose matrix, modified TNP, HCNFs overlapped. b. FTIR spectra of cellulose matrix, modified TNP, HCNFs with 
5wt.% and 25wt.% modified TNP fillers
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for HCNFs with 25wt.% fillers. Peak intensity had a greater 
shift with the increasing concentration of the filler. These 
changes are due to the formation of hydrogen bonding or 
Van der Waals force between the modified TNP filler and 
cellulose matrix.

XRD Analysis

XRD analysis was performed, and the results are displayed 
in Fig. 2a. It can be observed from Fig. 2a that XRD analy-
sis displayed approximate peaks for each sample. Besides 
that, various ordered crystalline arrangements were caused 
from both intra- and intermolecular hydrogen bonding that 
takes place in cellulose hydroxyl groups. The intensity 
of the characteristic peaks of the filler was well below 
the magnitude of the cellulose matrix and the HCNFs. 

However, when the modified TNP filler was reinforced 
into cellulose, the CI varied from 61.1% for the cellulose 
matrix to 74.2% in the case of HCNF with 25wt.% filler 
loading.

Figure 2b illustrates the XRD spectra of the cellulose 
matrix, modified TNP filler, HCNFs with 5wt.% fillers, 
and HCNFs with 25wt.% fillers. In the case of the HCNFs, 
the intense peaks at 41.3° and 51.1° arising because of the 
reflections from the (1 1 1) and (2 0 0) planes, respectively. 
It indicates that the CuNPs were crystalline in nature and 
spherical in shape [10]. These patterns confirmed the pres-
ence of spherical CuNPs in the HCNFs. The observations of 
intense peaks at 41.3° and 51.1° corresponding to the pres-
ence of CuNPs were also reported in various nanocompos-
ites films [6, 25, 26]. For cellulose matrix and HCNFs, inten-
sity peaks observed at 12.05°, 20.1°, and 21.3° is attributed 

Table 1  Details of peaks observed from the FTIR spectra of the cellulose matrix and HCNFs

Peak assignment Wavenumber  (cm−1) Structural polymer References

Cellulose 894 C–H rocking vibrations [14, 20, 21]
Cellulose 1157 C–O–C asymmetric valence vibration [16, 19]
Cellulose 1313 C–H2 rocking vibration [15, 21]
Cellulose 1369 C–H2 deformation vibration [17, 21]
Cellulose 1421 – [17, 21]
Cellulose and hemicellulose 1018 C–O stretching of primary alcohol [19]
Hemicellulose 1216 –COO group [4]
Lignin 1227 C–C plus C–O plus C = O stretch; G condensed > G 

etherified
[19]

– 665 aromatic substituted groups [4]
– 2895 C–H stretching in methyl and methylene groups [19]
– 1650–1630 O–H group [22]
– 3000–3700 O–H group [23, 24]

Fig. 2  a. XRD spectra of cellulose matrix modified TNP and HCNFs. b. XRD spectra of cellulose matrix, modified TNP, HCNFs with 5wt.%, 
and 25wt.% modified TNP fillers
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to cellulose II, which arises from the reflections of (1 1 0), 
(1 1 0), and (2 0 0) planes respectively [18, 27, 28].

Thermogravimetric Analysis (TGA)

TGA curves of pure cellulose matrix and their hybrid 
nanocomposites are shown in Fig. 3. From the figure, it 
is observed that all the hybrid composites underwent a 
two-step degradation process. In the first step, the hybrid 
composites degraded between the temperature range of 
296–303 °C. It could be attributed to the degradation of 
hemicellulose [29] in the hybrid composites. Yang et al. 
[30] reported that the decomposition temperature of hemi-
cellulose at 220 °C; however, the decomposition continues 
until it reaches 315 °C. Then, the final degradation of hybrid 
nanocomposites occurred between 326–335 °C, which was 
ascribed to the decomposition of fillers and the cellulose 
matrix. Nevertheless, after decomposition of hemicellulose, 
cellulose, etc. some residue remained due to non-degraded 
CuNPs in the hybrid composites. The final residues for each 
sample are presented in Table 2. 

The thermal behavior of the HCNFs was determined by 
(a) temperature at which the weight loss of hybrid compos-
ites occurred (i.e., 5%, 25%, 50%, and 65%) and (b) based 
upon the attained final residue (%). Besides, the improve-
ment in the thermal behavior of hybrid composites was wit-
nessed by comparing their degradation temperatures and 
final residue with the cellulose matrix composites such as 
cellulose/5wt.% TNP and cellulose/25wt.% TNP (without 
the infusion of CuNPs) obtained from the first phase of the 
research [23].

From Table 2, it is essential to point out that the addi-
tion of modified TNP in the cellulose matrix, the 5% deg-
radation temperature of all the hybrid composites showed 
between 101 and 183 °C. Besides, the final residue of 
hybrid composites ranged between 22 and 24.5%; it could 
be attributed to the infusion of CuNPs in the TNP. This, 
however, is not in the case of pure cellulose matrix and 
non-hybrid composites, where the temperatures were in 
the range of 80–94 °C. These results confirm the improve-
ment in the thermal stability of the films by incorporating 
the modified TNP with CuNPs. However, the pure cel-
lulose matrix exhibited higher thermal stability than the 

Fig. 3  TGA curves of cellulose 
matrix and HCNFs

Table 2  Thermal degradation characteristics of the cellulose matrix and HCNFs

Specimens T °C at 5% T °C at 25% T °C at 50% T °C at 65% Final residue (%)

Cellulose 93.71 325.13 347.24 363.23 17.61
Cellulose/5wt.%TNP 85.08 313.76 332.71 365.19 18.23
HCNFs with 5wt.% modified TNP 101.45 307.37 322.95 363.82 22.97
HCNFs with 10wt.% modified TNP 120.01 309.49 326.35 366.70 22.30
HCNFs with 15wt.% modified TNP 182.32 311.72 328.37 430.93 24.32
HCNFs with 20wt.% modified TNP 102.6 309.29 325.82 368.03 23.46
HCNFs with 25wt.% modified TNP 105.08 303.92 320.01 367.43 23.42
Cellulose/25wt.%TNP 80.37 312.37 332.94 379.55 18.95
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hybrid composites until 357 °C. It was ascribed to the (a) 
crystalline nature of the cellulose matrix, and (b) the cellu-
lose matrix is relatively possessed higher thermal stability 
[31]. This result agrees with the poly(propylene) carbon-
ate/tamarind seed polysaccharide/silver nanoparticles [32].

Besides, it is observed that the degradation tempera-
tures were found to be improved in hybrid composites 
with increasing the dosage of fillers within the cellulose 
matrix (in Table 2). The enhancement in crystallinity for 
the hybrid composites also supports the improvement of 
thermal behavior. However, the increasing trend of degra-
dation temperature of hybrid composites was noticed until 
15wt.%. The insignificant decrease of thermal stability for 
the hybrid composites prepared with 20 and 25wt.% of 
fillers could be attributed to the possible agglomeration of 
modified TNP fillers. Based upon the degradation tempera-
tures and final residue, the HCNFs with 15wt.% modified 
TNP showed higher thermal stability than the others.

Antimicrobial Activity

The use of antibacterial copper is considered in place of 
other expensive antibacterial agents such as silver, gold, 
platinum, etc. due to its cheap cost and comparable anti-
bacterial abilities. The antibacterial activity of HCNFs was 
assessed based on the disc diffusion method, and the results 
are presented in Fig. 4.

From Fig. 4, it is evident that the infusion of modified 
TNP in the cellulose matrix exhibited excellent antibacterial 
activity against all the pathogens used in the study, namely 
E. coli, P. aeruginosa (Gram Negative) and S. aureus, B. 
licheniformis (Gram Positive). The mechanism of the anti-
bacterial activity is presented in Fig. 5. The reason for the 
excellent antibacterial activity can be ascribed to the pres-
ence of photochemical components present in the TNP and 
also the influence of CuNPs. It is well known that the  Cu+ 
ions in the CuNPs prevents cell respiration and punch holes 
in the bacterial cell membrane and thus destroys the DNA 
and RNA inside. The reaction with  Cu+ ions forms reactive 

Fig. 4  Antibacterial activity of 
HCNFs with varying concentra-
tions of modified TNP fillers 
against a E. coli; b P. aerugi-
nosa; c B. licheniformis and d 
S. aureus 
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oxygen, which also attacks and damages the microorgan-
isms in multiple areas [33]. The inhibition diameters of the 
different samples subjected in the test to the corresponding 
bacteria are presented in Table 3. It is also evident from 
Table 3 that effective antimicrobial activity against all the 
microbes has been established, and the inhibition diameters 
of the nanocomposite films were almost equal with minimal 
deviations in each case. Owing to their excellent antibac-
terial behavior, these HCNFs can be considered potential 
replacement in food packaging and biomedical applications.

Conclusions

Hybrid nanocomposites were prepared using cellulose as 
matrix material and modified tamarind nut power as rein-
forcing filler by regeneration method. It is evident from the 
FTIR analysis that the infusion of modified TNP did not 
change the chemical composition of the cellulose matrix. 
Modification of TNP with in-situ generated CuNP resulted 

in the strong adhesion of reduced  Cu2+ ions on TNP pow-
der as evident from the increase in the broadness of –OH 
peaks. The interactions of hydrogen bonding between 
hydroxyl groups of the cellulose matrix and the filler could 
also be observed from the FTIR spectra. When the filler 
loading was increased, the crystallinity of the compos-
ites’ improved. The relative crystallinity of the cellulose 
matrix was found to be 61.1%, whereas after the addi-
tion of 25 wt.% filler, the crystallinity index increased to 
74.2%. The thermal stability of the hybrid nanocomposites 
at 5% weight loss was found to be better than the matrix. 
However, the thermal stability marginally reduced with 
increased filler content. Further, it could be also be seen 
that the residues increased with increased filler content. 
The nanocomposite films showed outstanding resistance 
against the bacteria used in the study. With better thermal 
and antibacterial properties, these hybrid nanocomposites 
can be potentially used in food packaging applications.

Fig. 5  Mechanism of antibacte-
rial inhibition

Table 3  Inhibition zone 
diameters

Control and modified TNP infused films Inhibition zone diameters (cm)

Gram negative bacteria Gram positive bacteria

E.coli P.aeroginosa B. licheniformis S.aureus

Cellulose matrix (M) – – – –
HCNFs with 5 wt.% modified TNP (A) 1.020 0.930 1.010 0.900
HCNFs with 10 wt.% modified TNP (B) 0.870 1.010 0.960 0.870
HCNFs with 15 wt.% modified TNP (C) 0.880 1.190 0.970 1.010
HCNFs with 20 wt.% modified TNP (D) 1.000 0.880 0.990 0.990
HCNFs with 25 wt.% modified TNP (E) 1.010 1.130 1.330 1.280
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