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Abstract Amorphous flexible (co)polyesters with low

glass transition temperature (Tg) are very desirable in

impact modification of biodegradable brittle polymers and

synthesis of biodegradable elastomers. However, most

flexible polyesters and binary copolyesters made from

linear diacid(s) and diol(s) are crystalline polymers. In

order to investigate the effect of monomer structure on the

crystallization and Tg of such copolyesters, novel ternary

or multiple flexible copolyesters containing various

structural units were designed and synthesized in this

study, and characterized with 1HNMR, GPC, DSC,

WAXD, TGA and tensile testing. Introducing aromatic

diacid (especially asymmetric one) or short-chain bran-

ched diol is favorable to depress copolyester crystalliza-

tion, and leads to higher Tg at the same time. From easily

crystallized to fully amorphous copolyesters with low Tg
were successfully synthesized by adopting different

combination of structural units. In addition, the existence

of aromatic structural unit in copolyesters is helpful to

improve their tensile properties.

Graphical Abstract Flexible copolyesters containing

various structural units were designed and synthesized.

Introducing asymmetric, rigid aromatic or short-chain

branched unit is favorable to depress copolyester crystal-

lization, and leads to higher Tg at the same time. Crystalline

to fully amorphous copolyesters with low enough Tg have

been successfully synthesized by adjusting the structural

units.
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Introduction

It is well-known that using biodegradable polymers instead

of non-degradable ones is a promising way to avoid the

environmental harm resulted from using the latter. To date,

some important biodegradable (co)polyesters including
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poly(lactic acid) (PLA) [1], poly(butylene succinate) (PBS)

[2–5], poly(butylene succinate-co-adipate) (PBSA) [6–8],

poly(butylene adipate-co-terephthalate) (PBAT) [9–12]

and poly(hydroxyalkanoate)s (PHAs) [13] have been

commercialized and applied to a variety of fields in the last

decades due to their desirable biodegradability, reasonably

good processability and thermo-mechanical properties.

Among them, flexible (co)polyesters made from linear

diacid(s) and diol(s) like PBS and copolyesters like PBSA

and PBAT are often used directly as tough plastics for end

uses such as film, bottle and other disposable goods. They

are also attempted to be used as impact modifiers of brittle

biodegradable polymers like poly(lactic acid) (PLA)

[14–19], biodegradable elastomers [20] or components of

elastomers [21–25].

For impact modification or elastomer applications,

amorphous flexible copolyesters with low glass transition

temperature (Tg) are often more desired as they can provide

better chain flexibility than crystalline counterparts. For an

example, ultratough PLA was successfully developed by

synergistical introduction of amorphous e-caprolactone-
based copolyester and silica nanoparticles in Odent et al.’s

recent report [26]. However, most of linear aliphatic

polyesters like PBS [27] and PBA [28] and binary copo-

lyesters like PBSA [6], poly(butylene succinate-co-azelate)

(PBSAz) [29], poly(butylene-co-ethylene succinate) (PBES)

[30], poly(hexamethylene sebacate-co-suberate) (PHSeSu)

[31], poly(hexamethylene suberate-co-adipate) (PHSuA)

[31], poly(butylene-co-propylene succinate) (PBPS) [32]

and poly(ethylene-trimethylene succinate) (PETS) [33] have

excellent to good crystallizability in whole composition

range. Aliphatic–aromatic binary copolyesters like PBAT

[10], poly(butylene succinate-co-terephthalate) (PBST) [34],

poly(butylene succinate-co-furandicarboxylate) (PBSF) [35]

and poly(butylene adipate-co-furandicarboxylate) (PBAF)

[36] have less crystallizability than the aliphatic counter-

parts, but still kept certain crystallizability, even at the least

crystallizable composition. For an example, typical PBAT

(Ecoflex�) has a melting enthalpy over 10 J/g [10]. Few

ternary or multiple copolyesters were reported in literature.

As an example, poly(butylene succinate-co-ethylene succi-

nate-co-ethylene terephthalate) is also a crystallizable

copolyester [37]. But poly(2-methyl-1,3-propylene succi-

nate), a polyester containing side methyl groups [38] was

reported to be an amorphous polyester. Recently, some

sugar-derived bicyclic diol or diacid compounds were used

as comonomers to synthesize novel biobased copolyesters

[39–42]. These copolyesters are characterized by high Tg
and are amorphous at certain composition rage. This implies

that monomer structure is another important factor besides

composition to affect crystallization and glass transition of

flexible (co)polyesters, but relative research is lacked in

literature.

In this study, we aim to make clear the effect of

monomer structure on crystallization and glass transition of

flexible copolyesters and to synthesize from crystalline to

amorphous flexible copolyesters with low Tg. To this end,

ternary and multiple linear copolyesters were designed and

synthesized from 1,4-butanediol and 3–4 symmetric and

asymmetric linear diacids. Diols with various side groups

were further incorporated to synthesize multiple copolye-

sters with side groups. The copolyesters were characterized

with 1HNMR, GPC, DSC, TGA and tensile testing. The

effects of structural factors including chain length of ali-

phatic diacids, symmetry and rigidity of aromatic diacids

and short-chain side groups of diols on crystallizability and

Tg of the copolyesters were discussed. From easily crys-

tallized to fully amorphous copolyesters with low Tg were

successfully synthesized by adopting different monomer

combinations.

Experimental

Materials

Succinic acid (SA or S, Sanxin Chem. Co), adipic acid (AA

or A, Aladdin), azelaic acid (AzA or Az, Sinoreagent),

sebacic acid (SeA or Se, Sinoreagent), terephthalic acid

(TPA or T, Sinoreagent), isophthalic acid (IPA or I,

Sinoreagent), 2,5-furandicarboxylic acid (FDCA or F,

Ruiyuan Chem. Co), 1,4-butanediol (BDO or B, Wulian

Chem. Co), 2-methyl-1,3-propanediol (MPO or M, Alad-

din), Neopentyl glycol (NPG or N, Aladdin), 2-ethyl-2-

butyl-1,3-propanediol (EBP or E, TCI), tetrabutoxyl tita-

nium (TBT, Aladdin) were all used as received. All other

reagents were analytical reagent grade and used as

received.

Synthesis of Copolyesters

Copolyesters were synthesized in a 250 mL flask via

esterification followed by melt polycondensation. At least

three diacids (0.5 mol in total) and BDO (or BDO and a

branched diol, 1:1 molar ratio, 1 mol in total) was added

in the flask. The diol/diacid molar ratio was fixed at 2:1.

More detailed feed ratios of the monomers are shown in

Table 1. TBT (0.1 mol% based on diacids) was added as

catalyst under stirring and N2 protection. For Runs 1–2,

esterification was conducted under atmospheric pressure

at 190, 200 and 210 �C for 1, 2 and 1 h respectively.

Then, the temperature was raised to 230 �C and the

pressure was reduced to 200–400 Pa in about 45 min.

Finally, melt polycondensation was carried out at 230 �C
for 4 h. For Runs 3–17, the reaction temperatures were

10 �C higher. The resulting product was collected and
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stored in a dessicator under vacuum before characteriza-

tion. The copolyesters were named with the acronyms of

the monomers used. For an example, PBSeAzST2224 is a

copolyester made from sebacic acid (Se), azelaic acid

(Az), succinic acid (S) and terephthalic acid (T) in a

diacid molar feed ratio of 2:2:2:4.

Characterization

Molecular weight and its distribution of the copolyesters

were measured with a Waters 1525/2414 gel permeation

chromatography (GPC) at 30 �C. Tetrahydrofuran was

used as eluent and polystyrene as standard. The sample

concentration was about 4 mg/mL, and the eluent flow rate

was 1.0 mL/min.
1H NMR spectra of the copolyesters were recorded with

a 400 M BRUKER AC-80 spectroscopy. Deuterated

chloroform was used as solvent and tetramethylsilane as

internal reference. X-ray diffraction measurements of the

samples were performed using a Pert X-ray diffraction

system (PANalytical Company) with CuKa radiation

(0.154 nm) working at 40 kV and 40 mA. The samples

were scanned from 2h = 5� to 2h = 60� with a step size of

0.026� and an acquisition time of 30 s per step.

Thermal transition behaviors of the copolyesters were

recorded with a TA DSC Q200. A standard heat-cool-heat

program was performed between -80 and 200 �C for all

samples. The heating and cooling rates were of 10 �C/min.

The temperature was hold at 200 �C and -80 �C for 3 min

respectively before cooling and second heating. Thermal

stability of the copolyesters was assessed with a TA Q500

thermal gravimetric analyzer under nitrogen atmosphere. The

samples were measured from 50 to 800 �C at 20 �C/min.

Tensile properties of some copolyesters were measured

using dumbbell-shaped specimens (2 mm in thickness and

4 mm in width) with a Zwick/Roell Z020 testing machine at

25 �C according to ASTM D638. The specimens were

prepared with different processing methods, namely, injec-

tion molding and hot pressing, according to their different

thermal transition properties. The details are interpreted in

the Mechanical Properties section. All the specimens were

conditioned at 25 �C and 50 % relative humidity for over

48 h prior to testing. The crosshead speed was 20 mm/min.

For each sample, at least five specimens were tested.

Table 1 Synthetic conditionsa and chain structure parameters of the flexible copolyesters

Run Copolyester Feed ratio Copolyester composition Rf Mn*10
-3 g Mw*10

-3 g Ðh

1 PBSeAS334 0.3:0.3:0.4b 0.311:0.291:0.398d 0.98 39.4 74.6 1.89

2 PBAzAS334 0.3:0.3:0.4b 0.317:0.301:0.382d 1.02 42.1 82.5 1.96

3 PBSeAT334 0.3:0.3:0.4b 0.335:0.266:0.399d 1.00 35.4 66.7 1.88

4 PBAzAT334 0.3:0.3:0.4b 0.304:0.270:0.426d 0.98 46.5 82.7 1.78

5 PBSeAzT334 0.3:0.3:0.4b 0.299:0.282:0.419d 0.99 75.1 146 1.95

6 PBSeTI622 0.6:0.2:0.2b 0.601:0.199:0.200d 1.00 41.4 69.4 1.68

7 PBSeST334 0.3:0.3:0.4b 0.300:0.285:0.415d 0.97 37.4 65.3 1.75

8 PBSeSI334 0.3:0.3:0.4b 0.309:0.287:0.404d 0.98 42.5 73.1 1.72

9 PBSeSF334 0.3:0.3:0.4b 0.309:0.298:0.393d 0.97 40.3 72.8 1.81

10 PBSeAzST2224 0.2:0.2:0.2:0.4b 0.193:0.198:0.187:0.422d 1.02 50.0 84.4 1.68

11 PBSeAzAT2224 0.2:0.2:0.2:0.4b 0.190:0.200:0.200:0.410d 0.99 42.0 73.4 1.74

12 PBSeSTI3322 0.3:0.3:0.2:0.2b 0.305:0.286:0.205:0.204d 1.01 36.1 60.1 1.66

13 PBSeATI3322 0.3:0.3:0.2:0.2b 0.313:0.283:0.202:0.202d 1.00 42.3 76.3 1.81

14 PBSeSTF3322 0.3:0.3:0.2:0.2b 0.301:0.292:0.207:0.200d 1.00 48.0 86.0 1.79

15 PBMSeST334 1:1c&0.3:0.3:0.4b 0.499:0.501e&0.310:0.288:0.400d 1.05 51.8 103 1.99

16 PBNSeST334 1:1c&0.3:0.3:0.4b 0.518:0.482e&0.300:0.293:0.407d 1.05 47.2 89.9 1.90

17 PBESeST334 1:1c&0.3:0.3:0.4b 0.429:0.571e&0.303:0.291:0.406d 1.01 54.8 110 2.00

Run 1–2: aliphatic ternary; Run 3–9: aliphatic–aromatic ternary; Run 10–14: aliphatic–aromatic quaternary copolyesters; Run 15–17: short-chain

branched
a Tetrabutoxyl titanium (TBT, 0.1 mol% based on diacid) was used as catalyst. The diol/diacid molar ratio was 2/1; b,d Molar ratio of diacids in

feed and of corresponding structure units in copolyesters, respectively. The order of the numbers is the same as the order of the initials of

monomers appeared in the name of copolyesters in the second column. For an example, B:M:Se:S:T molar ratio is 1:1:0.3:0.3:0.4 in Run 15;
c,e Molar ratio of diols in feed and of corresponding structure units in copolyesters, respectively; f Randomness degree; g g/mol in unit;
h Polydispersity
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Results and Discussion

Synthesis and Characterization of Chain Structure

The chemical structure of monomers used is illustrated in

Scheme 1. The copolyesters were designed using SA, AA

and BDO as main monomers. As binary aliphatic copo-

lyester PBSA is crystalline in the whole composition range

[6], aliphatic ternary copolyesters (Runs 1–2) were first

designed in this study. Long chain diacids, namely, azelaic

acid (Az) and sebacic acid (Se) were copolycondensed with

succinic acid (S) and adipic acid (A) as their long aliphatic

chains can provide better chain mobility [25] and low Tg. In

addition, they are both biobased monomers. Furthermore,

aliphatic–aromatic ternary (Runs 3–9) or quaternary (Runs

10–14) copolyesters were also designed to further depress

crystallization. Besides TPA, IPA and biobased FDCA

were also introduced considering that their asymmetric

structure may favor to further depress crystallization.

Besides, short side groups were introduced into copolye-

sters (Runs 15–17) by using 2- or 2,2-substituted 1,3-

propanediol as a diol comonomer in order to study its effect

on crystallization and Tg.

There are lots of possible combinations with these

monomers. As the main purpose of this study is to inves-

tigate the effect of structural unit on the thermal transition

of flexible copolyesters, the effect of copolymer

composition was not considered. Copolyesters were

designed with some fixed compositions. It is known that

binary flexible copolyesters are usually least crystallizable

when the content of short chain or aromatic diacid unit is of

20–40 mol% [6, 10, 34, 36]. For binary aliphatic–aromatic

copolyesters, 40–50 mol% aromatic diacid unit can assure

good balance between thermo-mechanical properties and

biodegradability [10, 12]. Therefore, in syntheses of ali-

phatic copolyesters (Runs 1–2), the molar fraction of SA in

total diacids was fixed at 40 mol% and that of other two

took the average (30 %). In the syntheses of aliphatic–

aromatic copolyesters, the molar ratio of aromatic

diacid(s) in total diacids were also fixed at 40 mol%. On

the premise of this rule, diacid feed ratios took the averages

of aliphatic or aromatic acids. For the synthesis of short-

chain branched copolyesters, the molar ratio of substituted

1,3-propanediol to BDO was arbitrarily fixed at 1:1. The

detailed feed ratio of monomers are listed in Table 1.

Molecular weight of copolyesters usually affects their

glass transition temperature (Tg), mechanical properties

and end uses. Low molecular weight of thousands gram per

mol is suitable for soft segments in multi-block copolymers

used for elastomers, however, high molecular weight

around 105 g/mol is often required for tough plastics,

impact modifiers and elastomers to ensure sufficient

thermo-mechanical properties. In this study, we aimed to

design and screen flexible amorphous (or nearly amor-

phous) copolyesters with low Tg and acceptable mechanical

properties. Therefore, high molecular weight copolyesters

were synthesized so that the molecular weight dependence

of Tg can be avoided and mechanical properties can be

assessed.

Most copolyesters are colorless/white or pale yellow.

But there is clear discoloration for adipate-containing

copolyesters. The GPC results listed in Table 1 indicate

that high molecular weight copolyesters were successfully

synthesized. The number- and weight-average molecular

weights (Mn and Mw) range in 36,000–75,000 g/mol and

60,000–146,000 g/mol, respectively. And the polydisper-

sity index (Ð) ranges in 1.7–2.0.

Chemical structure of the copolyesters was character-

ized by 1H-NMR. The spectra and attribution of chemical

shifts are shown in Fig. 1 and Scheme 2. The characteristic

chemical shifts of succinate, adipate, azelate, sebacate,

terephthalate, isophthalate, furandicarboxylate, BDO,

MPO, NPG and EBP locate at 2.63 ppm (s), 2.33 ppm (a),

1.32 ppm (z), 1.30 ppm (l), 8.10 ppm (t), 8.22 ppm (i),

7.21 ppm (f), 4.44–4.09 ppm (b), 1.21–0.98 ppm (m),

1.18–0.96 ppm (n) and 0.97–0.80 ppm (v), respectively.

For the aliphatic–aromatic copolyesters, the chemical shifts

of CH2 in diol unit split into four peaks (b4-1, c4-1, o4-1, q4-1,

r4-1), corresponding to different sequence structures as

shown in Scheme 2. The attributions of other chemical

HO OH

OO
n

O
OHHO

O O

HO
OH

HO OH

n=2, SA 
4, AA
7, AzA
8, SeA

TPA

FDCA

diacid diol

BDO

MPO

NPG

HO OH

EBP

HO OH

HO OH

O O

IPA

OHHO

O O

Scheme 1 Diacids and diols used for synthesis of the flexible

copolyesters. SA, succinic acid; AA, adipic acid; AzA, azelaic acid;

SeA, sebacic acid; TPA, terephthalic acid; IPA, isophthalic acid;

FDCA, 2,5-furandicarboxylic acid; BDO, 1,4-butanediol; MPO,

2-methyl-1,3-propanediol; NPG, neopentyl glycol or 2,2-dimethyl-

1,3-propanediol; EBP, 2-ethyl-2-butyl-1,3-propanediol
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shifts are also shown in this scheme. From the peak area of

characteristic chemical shifts, the copolyester composition

and randomness degree were calculated and the results are

listed in Table 1. It can be seen that the composition is

close to the monomer feed ratio and the randomness degree

is close to one. These qualitative and quantitative results

indicate that random copolyesters with expected structure

and composition were successfully synthesized.

Thermal Transition Behaviors

The thermal transition behaviors of the copolyesters were

recorded with DSC using a standard heat/cool/heat proce-

dure. The cooling and second heating DSC curves are

shown in Fig. 2. The transition temperatures and enthalpies

are listed in Table 2.

In the two aliphatic ternary copolyesters PBSeAS334

and PBAzAS334 (Runs 1–2) the long chain diacids,

namely sebacic and azelaic acid, were introduced in order

to lower down Tg. Both copolyesters have only one Tg,

suggesting random sequence structure. And the Tgs (-60,

-58 �C) are lower than PBSA46 (-53 �C) [6]. However,
both copolyesters exhibit rapid melt crystallization with

high crystallization (49.5, 44.3 J/g) and melting enthalpies

(50.5, 45.5 J/g). The melting enthalpies are even higher

than that of PBSA46 (23.7 J/g [6]), possibly due to the

favorable contribution of the long Se or Az alkylene chain

to crystallization. The results indicate that the introduction

of the third aliphatic long chain diacid monomer does not

help to depress the crystallization of the resultant

copolyesters.

In the next study, aromatic acid(s) was(were) introduced

to synthesize aliphatic–aromatic ternary or quarternary

copolyesters. When TPA is used instead of SA, the resul-

tant random copolyesters PBSeAT334 and PBAzAT334

(Runs 3–4) have higher Tg, Tc and Tm, but much slower

crystallization and enthalpies (10.4–10.7 vs. 44.3–49.5 J/

g). When the adipate is replaced with azelate or sebacate

(Run 5 vs. Run 3 or 4), both Tc and Tm decreased and the

crystallization and melting enthalpies kept nearly unchan-

ged. In comparison with PBSeAT334 and PBAzAT334
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(Runs 3 and 4), the ternary copolyester (PBSeTI622, Run

6) has slightly higher Tg, much lower Tc and Tm, and higher

crystallization and melting enthalpies.

Effect of the structure of aromatic diacid on copolyester

crystallization can be seen by comparing the DSC results of

PBSeST334, PBSeSI334 and PBSeSF334 (Runs 7–9).

Clearly, PBSeST334 has crystallizability nearly equivalent

to PBSeAT334, PBAzAT334 and PBSeAzT334 (Runs

3–5). However, PBSeSI334 and PBSeSF334 containing

asymmetric isophthalate and furandicarboxylate unit

respectively neither crystallize from melt nor from glass

state at 10 �C/min. These results indicate that introducing

asymmetric structural unit can effectively destroy the

structural regularity and therefore depress the

crystallization.

In comparison with the ternary copolyesters

PBSeAT334, PBAzAT334 (Runs 3–4), the quarternary

copolyesters PBSeAzST2224 and PBSeAzAT2224 (Runs

10–11) have comparable Tc and Tm and crystallization

enthalpy. However, when two aromatic units are

introduced, amorphous PBSeSTI3322, PBSeATI3322 and

PBSeSTF3322 (Runs 12–14) are obtained. Neither melt

nor glass crystallization was observed in the DSC

thermograms.

In addition to number, chain length, symmetricity of

diacid monomers, the effect of short-chain branching on

crystallization and Tg of copolyesters was further studied.

Using BDO, an equimolar short-chain branched 1,3-

propanediol (MPO or NPG or BEP) and three diacids (Se,

S, T), PBMSeST334, PBNSeST334, PBESeST334 (Runs

15–17), were synthesized. In comparison with the ternary

linear counterpart PBSeST334 (Run 7), these copolyesters

are all amorphous. This indicates that introducing short-

chain branching is also an effective way to depress crys-

tallization of copolyesters. However, it can be seen that

they have Tg (-25.9 to -19.6 �C) higher than PBSeST334

(-39.2 �C) and the Tg increases with the substituted

number (1–2) and side group size. This is possibly because

the steric hindrance of the substituent group(s) hinders the

segment motion, especially for the 2,2-substituted

copolyesters.

According to the crystallization and melting enthalpies

(DHc and DHm), all the copolyesters are classified into five

classes, as shown in Fig. 3. The aliphatic ternary copo-

lyesters, PBSeAS334 and PBAzAS334 (Runs 1–2) are

classified to class A. They can crystallize easily with high

DHc and DHm (ca. 47 J/g) which are equivalent to those of

poly(butylene adipate) (ca. 50 J/g) [43]. The aliphatic–

aromatic ternary copolyester PBSeTI622 (Run 6) is clas-

sified to class B. It crystallizes with moderate DHc and

DHm of about 25 J/g which is equivalent to those reported

for PBSA46 (ca. 24 J/g) [6]. This suggests the big contri-

bution of the sebacate unit to crystallizability. Class C

includes six aliphatic–aromatic copolyesters, four ternary

(Runs 3–5, 7) and two quarternary (Runs 10–11). They

weakly crystallize and have DHc and DHm (ca. 10 J/g)

close to those of commercial Ecoflex�. The others neither

showed any phase transition in the cooling scan nor in

subsequent melting scan both at 10 �C/min. But some of

them, namely PBSeSF334, PBSeSTI2224 and

PBSeATI2224 did show some melting peak in the first

heating scan, especially for PBSeSF334 (Run 9). This

phenomenon means that these copolyesters still have cer-

tain crystallizability. So, they are classified to ‘‘nearly

amorphous’’. Finally, PBSeSI334, PBSeSTF3322 and the

three short chain branched copolyesters are fully amor-

phous. There is no melting peak observed even in the first

heating scan for them. Such order of crystallizability of

these copolyesters was also confirmed by WAXD patterns

of six representative copolyester samples shown in Fig. 4.

Clearly, the intensity of the characteristic peaks decreases

from strong (Run 1) and moderate (Run 6) to weak (Run 7),

faint (Run 9) and none (Runs 8 and 15). In addition, it can
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Fig. 2 DSC thermograms of the flexible copolyesters. a Cooling scan
at 10 �C/min, b 2nd heating scan at 10 �C/min
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be seen from Table 2 that the crystallizability of the

copolyesters was also reflected by their appearance, from

opaque, translucent to transparent. From detailed compar-

ison of above results, it can be concluded that the monomer

structure contributes to the crystallization of multiple

copolyesters in such orders: Se[Az[A[S[T[F[ I,

B � M & N & E.

All the copolyesters only exhibit one Tg, suggesting that

they are all random copolymers. To analyze the effect of

structural unit on Tg, all the copolyesters are ranked

according to Tg, as shown in Fig. 5. Clearly, introduction of

aliphatic diacid(s) with longer alkylene chain (Az, Se)

reduces Tg of the copolyesters, but introduction of aromatic

Table 2 Thermal transition properties of the seventeen flexible copolyesters

Run copolyester First heating scan Cooling scan Second heating scan App.a

Tg (�C) Tm (�C) DHm (J/g) Tc (�C) DHc (J/g) Tg (�C) Tm (�C) DHm (J/g)

1 PBSeAS334 -58.3 25.6,46.3 40.8 9.2 49.5 -60.4 29.9 50.5 O

2 PBAzAS334 -60.0 10.0,33.5,45.0 36.9 -3.8 44.3 -58.0 21.5/42.8 45.5/9.7 O

3 PBSeAT334 -44.6 66.1105 12.2 49.3 10.4 -47.4 101.2 8.71 O

4 PBAzAT334 -45.9 67.9102 13.9 51.0 10.7 -46.5 107 8.32 O

5 PBSeAzT334 -42.8 73.8 11.2 23.9 10.8 -41.9 94.2 10.4 O

6 PBSeTI622 -40.1 32.4 29.9 -9.4 24.7 -40.3 32.8 32.7 O

7 PBSeST334 -39.4 77.9108 16.5 37.7 11.7 -39.2 102 10.5 O

8 PBSeSI334 -35.2 – 0 – 0 -33.3 – 0 T

9 PBSeSF334 -33.8 72.0 8.1 – 0 -28.6 – 0 TL

10 PBSeAzST2224 -41.2 69.5109 14.7 55.8 9.1 -39.0 106 7.39 O

11 PBSeAzAT2224 -44.1 69.2104 12.3 55.3 9.7 -42.9 106 7.3 O

12 PBSeSTI3322 -36.1 46.6 0.6 – 0 -33.2 – 0 T

13 PBSeATI3322 -40.7 46.3 1.4 – 0 -38.0 – 0 TL

14 PBSeSTF3322 -32.2 – 0 – 0 -31.5 – 0 T

15 PBMSeST334 – – 0 – 0 -25.9 – 0 T

16 PBNSeST334 -21.5 – 0 – 0 -20.1 – 0 T

17 PBESeST334 – – 0 – 0 -19.6 – 0 T

O opaque, TL translucent, T transparent
a Appearance of copolyesters
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diacid(s) or substituted 1,3-propanediol raises Tg of the

copolyesters. For the three aromatic diacids, the asymmetry

and/or rigidity of the aromatic ring also contribute(s) to

higher Tg. It was reported that FDCA has higher rigidity

than TPA and lead to less chain mobility [44]. So, the

following order of Tg is observed: PBSeST334

(-39.2 �C)\PBSeSI334 (-33.3 �C) & PBSeSTI3322

(-33.2 �C)\PBSeSTF3322 (-31.5 �C)\ PBSeSF334

(-28.6 �C). From detailed comparison of Tg data, the

monomer structure contributes to Tg in such orders:

Se & Az\A\ S\T\ I\F, B\N & E\M.

In summary, copolycondensation with shorter chain

aliphatic diacid, asymmetric aromatic diacid or short-chain

branched diol is helpful to depress copolyester crystal-

lization. On the other hand, these factors lead to higher Tg.

By compromising these factors, easily crystallized to fully

amorphous copolyesters with low enough Tg can be syn-

thesized as required. These copolyesters are reasoned to be

biodegradable. And the biodegradability of some of them

will be reported later.

Thermal Stability

Thermal stability of the copolyesters was further assessed.

The TGA curves are shown in Fig. 6, and the characteristic

decomposition temperatures, namely Td,5, Td,c, Td,max, are

listed in Table 3. Clearly, all the copolyesters present good

to excellent thermal stability. Clearly, in comparison with

the aliphatic copolyesters, the aliphatic–aromatic copolye-

sters exhibit better thermal stability, especially in terms of

Td,5. Terephthalate- and/or isophthalate-containing alipha-

tic–aromatic copolyesters have slightly better thermal sta-

bility than furandicarboxylate-containing ones. And

introduction of short side group(s) does not result in clear

change in thermal stability. So, the existence of benzene

ring is favorable to improve the thermal stability of the

copolyesters. And the thermal stability of the thirteen

copolyesters containing only benzene ring as aromatic unit

shows little composition and structure dependence (Td,5
387 ± 4 �C, Td,c 401 ± 2 �C, Td,max 429 ± 4 �C).

Mechanical Properties

Finally, the tensile properties of some copolyesters were

measured at room temperature. Specimens of Runs 3–5, 7

and 10–11 were prepared with injection molding and

those of Runs 1–2, 6 and 9 were prepared with hot

pressing. Different processing methods were used

because of their different thermal transition properties.

The DSC results show that Runs 3–5, 7 and 10–11 can

crystallize at 24–56 �C and have high Tm (*100 �C), so
they crystallized to certain extent during injection mold-

ing and could be demolded. The Tm of Runs 1–2 and 6 is

around room temperature (21–33 �C) and they can only

crystallize at lower temperature. Run 9 is a ‘‘nearly

amorphous’’ copolyester. Therefore, it is difficult for

them to crystallize and demold in injection molding. But

with hot pressing followed by long time cooling with

water, specimen preparation still succeeded. Other

copolyesters are much less crystallizable or fully amor-

phous. Their soft or even flowable nature at room tem-

perature prevented them from specimen preparation and

mechanical testing.

The Young’ modulus, tensile strength and elongation at

break are listed in Table 3. Although the two aliphatic

copolyesters PBSeAS334 and PBAzAS334 (Runs 1–2)

have best crystallizability, their Tms are low and close to

testing temperature, so they have lowest tensile modulus
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(E, 26–36 MPa) and strength (rb, ca. 2.4–2.7 MPa). In

comparison, PBAzAS334 has lower modulus (26 vs.

36 MPa) and higher elongation at break (eb, 560 vs. 230 %)

than PBSeAS334 due to lower Tm. In comparison with the

aliphatic copolyesters, the six weakly crystallizable ali-

phatic–aromatic copolyesters (Runs 3–5, 7, 10–11) with

higher Tm (ca. 100 �C) exhibit higher E (40.7 ± 2.6 MPa),

higher rb (7.0 ± 0.8 MPa) and even higher eb
(590 ± 140 %, except for PBSeAzT334). In comparison

with these six copolyesters, PBSeTI622 and PBSeSF334

(Runs 6 and 9) have roughly equivalent rb and much

higher eb (930–1050 %) because of low Tm (32 �C) of Run
6 and nearly amorphous nature of Run 9. The above results

suggest that introduction of terephthalate into copolyesters

can improve the tensile properties possibly due to higher

intermolecular interaction among aromatic units, and

introduction of isophthalate or furandicarboxylate can

further improve the elongation at break because of less

crystallizability.

Td,5 and Td,m are the characteristic decomposition tem-

peratures at 5 % and maximum weight loss respectively,

and Td,c is the characteristic decomposition temperature

corresponding to the intersection point of the horizontal

line of zero decomposition and the tangent line of maxi-

mum decomposition. E, ry, rb and eb are tensile modulus,

yielding stress, breaking stress and elongation respectively.

For tensile testing, specimens were prepared by injection

molding for Runs 3–5, 7, 10–11 and hot pressing for Runs

1, 2, 6, 9.

Conclusions

In this study, novel ternary or multiple random copolye-

sters containing various structural units were designed,

synthesized and characterized, and the effects of chain

length, aromaticity, symmetry, rigidity and short-chain

branching of the structural units on the crystallization,

glass transition temperature and tensile properties of the

resultant copolyesters were investigated. Copolyester

crystallization can be depressed and glass transition

temperature can be raised by incorporating aromatic dia-

cid (especially asymmetric one) or short-chain branched

diol. The monomer structure contributes to copolyester

crystallization in such an order: Se[Az[A[S[T[
F[ I, B � M & N & E, but contributes to Tg in an

almost reverse order: Se & Az\A \ S\T\ I\ F,

B\N & E\M. Through adopting suitable monomer

combinations, copolyesters with different aggregating

structures, from easily crystallized to fully amorphous,

can be synthesized. In addition, the existence of aromatic

structural units in copolyesters is helpful to improve their

tensile properties. These results will be helpful to design

and synthesize biodegradable copolyesters with desired

properties for use in impact modifiers and elastomeric

materials. Further studies are under way and will be

reported soon.
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