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Abstract The shape memory behavior of PLLA (poly

(L-lactide)) and chitosan/PLLA composites was studied.

PLLA and chitosan were compounded to fabricate novel

materials which may have biodegradability and biocom-

patibility. Chitosan does not significantly affect the glass

and melting transition temperature of the PLLA. Both the

pure PLLA and chitosan/PLLA composites showed shape

memory effect arising from the viscoelastic properties of

PLLA comprised of semi crystalline structures. The shape

recovery ratio of the chitosan/PLLA composites decreased

significantly with increasing chitosan contents due to the

incompatibility between PLLA and chitosan. Phase sepa-

ration structures of the composites were observed by using

atomic force microscopy. To obtain good shape memory

effect, the chitosan content should be below 15 wt%.

Keywords Shape memory property � Poly(L-lactide) �
Chitosan

Introduction

Shape memory polymers are a group of ‘actively moving’

polymers which have at least dual shape capability. A

permanent shape can be given to them by a processing step

or a heat setting process. The polymers can rapidly change

their shapes in a predefined way from one to another under

appropriate stimuli such as heat [1], electricity [2], pH

value [3], ionic strength [4], light [5] and magnetic field

[6]. Shape memory polymers can be used in smart textiles

and apparels [7, 8], intelligent medical devices [9–14], heat

shrinkable films for electronics packaging [15], and self-

deployable sun sails in spacecrafts in the forms of solution,

emulsion [16–18], film [19], fiber [8, 20–24], nanofiber

[24–34], foam [35–38] or bulk [39].

The medical applications of shape memory polymers are

of great interest to scientists and engineers due to their

combination of biocompatibility with their wide range of

tunable stiffness, tailorable transition temperatures, fast

actuation, large deformation, large recovery, and elastic

properties [40]. The medical applications of shape memory

polymers presently reported include: laser or magnetic

activated shape memory devices for the mechanical

removal of blood clots [41–45]; aneurysm coils for the

treatment of intracranial aneurysm in place of platinum

coils [46]; biodegradable shape memory sutures for surgery

[9, 47, 48]; shape memory foams for overweight patients to

lose weight [37]; shape memory foams for drug delivery

to treat disorders and diseases in the stomach or intestine

[11, 49]; and shape memory polymer for orthodontic

appliances [50–52]. The shape memory polymers with

biodegradability would be beneficial for many applications

because they do not require a second surgery to remove the

materials if necessary because the polymer would gradu-

ally dissolve in the body due to the biodegradability of the

materials.

PLLA is a biodegradable and biocompatible linear ali-

phatic biopolymer derived from 100% renewable resources

such as corn and sugar beets. It can be readily degraded by

hydrolysis under mild conditions to lactic acid, which is a

common biodegradable organic acid naturally present even
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in the human body [53, 54]. PLLA has been widely used in

biomedical applications, such as surgical sutures and

implants [55], drug delivery systems [56, 57], three-

dimensional porous scaffolds for tissue engineering appli-

cations [58, 59] and bone fixation [60, 61].

The shape memory effect of PLLA has been studied by

several researchers [62–67]. It was found that the shape

recovery of PLLA decreased and approached to steady

with thermomechanical cyclic tensile testing number

increasing. Zheng et al. [68] investigated the shape mem-

ory effect of poly(D,L-lactide)/hydroxyapatite composites

which are also for potential biomedical applications. They

assumed that the amorphous poly(D,L-lactide) polymer

forms a reversible phase and the crystalline calcium

phosphate forms a stationary phase, which were necessary

for the composites to show good shape memory effect.

They found that the hydroxyapatite particles improved the

shape memory effect of poly(D,L-lactide).

Chitosan (poly(N-acetyl-D-glucosamine-co-D-glucosa-

mine)) is a partially N-deacetylated derivative of chi-

tin(poly(N-acetyl-D-glucosamine)), which is the second

most abundant biopolymer in nature after cellulose.

Chitosan is biocompatible, nontoxic, edible, and biode-

gradable. In addition, chitosan has antimicrobial activities

against different groups of microorganisms [69–72]. It has

been widely used for medicine, edible packaging or coat-

ing, food additives, cosmetic, water treatment and anti-

fungal agents.

Many efforts have been made to compound polylactide

and chitosan through chemical methods or physical meth-

ods to prepare materials with novel functions. Zhu et al.

[73] covalently immobilized chitosan onto polylactide

films using a photosensitive hetero-bifunctional crosslink-

ing reagent, 4-azidobenzoic acid by irradiating with ultra-

violet light. Chitosan molecules immobilized on the

polylactide could be modified by heparin (Hp) solution to

form a polyelectrolyte complex on the polylactide surface.

The polylactide surface modified by chitosan/heparin

complex could inhibit platelet adhesion and activation. Li

et al. [74] prepared a series of chitosan/polylactide com-

posites as a scaffold material because pure polylactide has

obvious weaknesses of fast biodegradation, acidic degra-

dation product, hydrophobicity, and acidic degradation

product. It was showed that the composites were hydro-

philic and had appropriate porosity and structure, which

were favorable to cell growth. The degradation tests in

vitro indicated that the degradation speeds of the materials

were slower than that of polylactide, and the materials

could keep adjacently litmusless, certain shape and

mechanical properties. Suyatma and Sébastien et al. [75,

76] prepared biodegradable film blends of chitosan/poly-

lactide by solution mixing and film casting. The films were

intended to be used for antimicrobial food bio-packaging

with good water vapor barrier properties. They found the

composite films had good water barrier properties and

antifungal activity at suitable composites.

In this study, we prepared chitosan/PLLA composites by

solution casting and studied the shape memory effect of the

composites. The thermal properties, dynamic mechanical

properties and phase separation of the composites were

investigated to illustrate the influence of chitosan on the

shape memory effect of PLLA. The biomaterial chitosan/

PLLA with shape memory effect may be used for drug

controlled release and biodegradable smart devices which

can be implanted into bodies. In addition, the PLLA

incorporated chitosan may have antibacterial properties,

therefore the composites may be used for intelligent

packaging with antibacterial effects.

Experimental

Material

Chitosan (Jinan Haidebei Marine Bioengineering Co., Ltd,

China) was prepared from shrimp shells by acid and alkali

treatments. The degree of deacetylation was about 85%. It

was pulverized into powder, the size of which was below

150 um. The PLLA was synthesized by ring-opening poly-

merization of cyclic lactic monomers. Tin(II) 2-ethylhex-

anoate was used as catalyst. The viscosity average molecular

weight of the PLLA was 49,000. The solvents for solution

blending were acetic acid (Aldrich, USA) and chloroform

(Aldrich, USA). The FT-IR spectrum of the PLLA is shown

in Fig. 1. It is consistent with that reported in the literature

[77]. The characteristic IR peak at around 1761 cm-1 is due

to the C=O stretching vibration. The peaks at about
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Fig. 1 FT-IR spectrum of the PLLA
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1187 cm-1 and 1093 cm-1 are owing to the asymmetry

stretching vibration and symmetry stretching vibration of

C–O–C. The peaks at about 2997 cm-1 and 2946 cm-1 are

attributed to the stretching vibration of –CH3. The peak at

3506 cm-1 corresponds to –OH stretching vibration. The
1H-NMR spectrum of the PLLA characterized with a Varian

Unity INOVA Solid State (400 MHz) FT-NMR Spectrom-

eter is shown in Fig. 2. CDCl3 was used as the solvent and

tetramethylsilane was used for the internal reference. The

resonances at 1.573 and 1.590 ppm are ascribed to the pro-

tons of methyl groups in the PLLA. The resonances at 5.137,

5.154, 5.172 and 5.189 ppm are ascribed to the protons of

methine groups in PLLA.

Sample Preparation

Chitosan and PLLA were first dissolved separately in

acetic acid (1 wt%) and chloroform (1 wt%). After the

chitosan and PLLA were completely dissolved, the two

solutions were blended with vigorous mechanically stirring

until a homogenous solution was prepared. Then films were

made by casting the mixed solution into polytetrafluoro-

ethylene coated plates. In order to make pinhole free films,

the solution was first degassed at 50 Pa for 30 min. Then

the solvent was evaporated at 60 �C for 12 h at atmo-

spheric pressure and the residual solvent was removed at

60 �C for another 12 h in a vacuum oven. The thickness of

the obtained films was about 0.10 mm. Wires of about

2 mm in diameter of the PLLA and the composites were

prepared using a Haake minilab (Thermo Electron Corpo-

ration) at an extruding temperature of 160 �C.

Characterization

The thermal properties of the PLLA and its composites were

determined using a DSC (Perkin–Elmer Diamond Differ-

ential Scanning Calorimeter) with nitrogen as purge gas.

Indium and zinc were used for calibration. First, samples

were heated to 200 �C at a heating rate of 10 �C/min

and maintained at 200 �C for 3 min to remove thermal his-

tory, and subsequently cooled to 22 �C at a cooling rate of

25 �C/min. Finally, samples were reheated at a 10 �C/min

heating rate to 200 �C. The heat flow change with tempera-

ture was recorded.

The DMA (Dynamic Mechanical Analysis) test was

carried out on a Perkin–Elmer Diamond Dynamic

Mechanical Analyzer operated in the tensile mode. Sam-

ples of 30 9 5 9 0.5 mm3 in dimension were cut out from

the cast films using a sharp knife for DMA testing. The

heating rate was 2 �C/min, frequency 1 Hz, and oscillation

amplitude 5.0 lm. Tests were conducted over the temper-

ature range from 0 to 200 �C. The gauge length between

the clamps was 15 mm.

The shape memory effect was first roughly examined by

field observation. First, the extruded straight wire was

folded 180� in 65 �C water. Second, the folded wire was

taken out from the hot water and cooled to the ambitent

temperature to retain the deformed shape. After 2 min, the

folded wire was put into 65 �C water again to observe the

shape recovery.

The shape fixity and recovery ratio of the PLLA and the

PLLA composites were determined by thermomechanical

cyclic tensile testing using tensile tester (Instron 5566)

equiped with a self-fabricated temperature-controllable

chamber. Samples of 40 9 5 9 0.5 mm3 in dimension were

cut out from cast films. The sample gauge length was 20 mm.

The cyclic tensile testing path is shown in Fig. 3. em is the

defined maximum deformation in the cyclic tensile testing. eu

is the strain after unloading at below the switch temperature,

and ep(N) is the residual strain after recovering in the Nth

cycle. The thermomechanical cycle for measuring the shape

Fig. 2 NMR spectrum of the PLLA

Fig. 3 Schematic thermomechanical cyclic tensile testing path
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memory properties is as follows: (1) The film was

first stretched to em at 65 �C (Thigh) at a drawing speed of

10 mm/min [78]; (2) Subsequently, cool air was vented

passively into the chamber to cool down the sample to 22 �C

and the deformation was maintained for 2 min to fix the

temporary elongation; (3) Then upper clamp was returned to

the original position at a speed of 40 mm/min and the film

shrank from em to eu because of instant elastic recovery; (4)

Finally, the film was heated to 65 �C to allow shape memory

recovery with result film elongation returning to ep; (5) After

finishing the above procedures, the second cycle began. The

em was set as 50, 100 and 200% to investigate the influence of

defined maximum deformation strain on the shape memory

effect. The cycle was repeated for five times. The shape fixity

ratio (Rf(N)) and shape recovery ratio Rr�tot(N) after Nth

cycle are calculated according to the following equations

[23, 79–81]:

Rf Nð Þ ¼ eu Nð Þ= em � 100 %

Rr:tot Nð Þ ¼ em � ep Nð Þ
� �

= em � 100 %

The micromorphology observation of the composites was

conducted through a probe atomic force microscopy

(AFM) (SPA-300HV, Seiko Instruments) in the tapping-

mode. NANOSENSORSTM PPP-SEIHR AFM probes

(Seiko Instruments/high force constant) were used. The

silicon cantilever spring constants was 15 N/m, length

225 um and resonance frequency 130 kHz. Height and

phase images were recorded simultaneously.

Results and Discussion

Thermal Properties

Figure 4 shows the DSC curves of PLLA and chitosan/

PLLA composites at different chitosan contents. All the

samples exhibit a two indistinctive glass transition feature

at about 32 and 61 �C [82, 83]. As shown in Fig. 5, the

glass transitions show as a prominent one in the cooling

scan at a cooling rate of 25 �C/min. No significant Tg

change is observed both on the heating scan and cooling

scan of chitosan/PLLA composites at different chitosan

contents.

The thermal transition as shown in Fig. 4, at around

99–112 �C is attributed to the cold crystallization of PLLA.

This crystallization exothermic peak appearing prior to the

major melting endothermic peak in the heating scans is an

additional crystallization. The cold crystallization transi-

tion temperature of the chitosan/PLLA decreases markedly

with increasing chitosan contents. This may be because

chitosan acts as a nucleating agent, promoting a faster

crystallization of PLLA [84–87].

The thermal transition at the high temperature from 150

to 170 �C showing in Fig. 4 is due to the melting transition

of PLLA [88]. The low-temperature melting endotherm of

the double-peak transition may be attributed to the melting

of the primary crystals formed during the first cooling,

while the high temperature melting endotherm is owing to

the melting of the re-crystallized crystals formed during the

heating scan [89–91]. For the pure PLLA, the first melting

transition temperature and the second melting transition

temperature are 163 and 170 �C. With increasing chitosan

content, both peak positions decrease slightly from the

melting peak of the pure PLLA.

In conclusion, the DSC results suggest that the chitosan/

PLLA composites have a two-phase structure: a crystalline

phase which has a high temperature melting transition and

a glassy state phase which has low temperature glass

transitions. The chitosan has no significant influence on the

glass transition of the PLLA. However, it decreases the
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melting temperatures of the PLLA slightly with increasing

chitosan contents.

Dynamic Mechanical Analyses

The elastic modulus (E0) and loss tangent (tan d) of the

PLLA with different chitosan contents are given in Figs. 6

and 7 respectively. The elastic modulus of all the samples

displays a sharp decrease at about 60 �C and the loss tan-

gent shows a peak at this temperature correspondingly,

which indicates the glass transition of the PLLA. At a

temperature of above 60 �C, all the samples show a plateau

elastic modulus, suggesting a rubberlike structure of PLLA

composed of both crystalline and amorphous phases. The

slight increase of the elastic modulus at above 80 �C is

attributed to the cold crystallization because, at this tem-

perature, the PLLA chains obtain enough mobility to

crystallize. This result is consistent with that obtained in

the DSC section. The elastic modulus change trend of pure

PLLA and chitosan/PLLA composites is very similar to

that of a shape memory polyurethane consisting of hard

and soft-segment phases [92]. The PLLA and its compos-

ites are like a shape memory rubber composing of both

crystalline and amorphous phases. The large modulus

decrease at the transition temperature is a prerequisite for

the material to exhibit shape memory effect.

Figure 7 also indicates that the glass transition temper-

ature of the chitosan/PLLA composites is not significantly

affected by chitosan. However, the elastic modulus of

chitosan/PLLA decreases markedly with increasing chito-

san contents at the temperature below the glass transition

temperature.

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

0 20 40 60 80 100 120 140

Temperature (°C)

E
' (

P
a)

PCH0

PCH5

PCH10

PCH15

PCH20

Fig. 6 Log E0––temperature curves of the chitosan/PLLA

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140

Temperature (°C)

Ta
n 

PCH0

PCH5

PCH10

PCH15

PCH20

Fig. 7 Tan (d)––temperature curves of the chitosan/PLLA

Fig. 8 The shape memory effect of the chitosan/PLLA (from top to bottom: permanent shape, deformed shape, and recovered shape)
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Investigation of Shape Memory Properties

Shape Memory Behavior by Field Observation

Figure 8 shows the field observation results of the shape

memory effect of chitosan/PLLA composites with different

chitosan contents. The sample wires were prepared by

using a Haake minilab extruder at 160 �C. Upon cooling to

the ambient temperature, the wires’ permanent straight

shape was cast. If the samples were put into 65 �C hot

water, they became very soft. At this temperature, the

samples were folded in the middle and cooled to ambient

temperature in air. As can be seen from Fig. 8, the

deformed shapes are well fixed. After 2 min, the folded

wires were put into 65 �C hot water to observe the shape

recovery effect. As shown in Fig. 8, they recover their

permanent straight shape quickly. However, with increas-

ing chitosan contents, the deformed specimen cannot

recover their permanent shapes completely. This suggests

that the chitosan decreases the shape recovery degree of the

PLLA.

Thermomechanical Cyclic Tensile Tests

The Shape Memory Effect of PLLA To obtain the detailed

shape memory properties of pure PLLA and chitosan/

PLLA composites, thermomechanical cyclic tensile tests

were conducted. The pre-set maximum strain em in Fig. 3

was 50, 100 and 200%, respectively. The obtained cyclic

tensile curves of pure PLLA are shown in Fig. 9, and the

data of the fixity ratio, recovery ratio and stress at the

maximum deformation strain are tabulated in Table 1.

In Fig. 9a and b, at 50 and 100% maximum deformation

strain, good shape memory effect was observed. The sig-

nificant difference between the first cycle and the remain-

ing cycles is due to the reorganization of molecules

involving molecule orientation, crystallization, or weak

point broken during deformation. After one cycle, the

stress–strain behaviors become very similar and stable.
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Fig. 9 The influence of deformation strain on the thermomechanical

cyclic tensile curves of the PLLA. a 50%, b 100%, c 200%)

Table 1 The shape memory properties of the PLLA at different

deformation strain

Circle

no.

ep(N) (%) eu [Rf(N)] (%) Stress at 100%

max deformation

strain (MPa)

Rr.tot(N) (%)

50% deformation strain

1 0.0 90.8 0.588 100.00

2 10.4 91.8 0.554 89.60

3 14.0 91.8 0.545 86.00

4 16.0 92.1 0.532 84.00

5 18.7 92.8 0.582 81.30

100 deformation strain

1 0.0 98.3 0.804 100.00

2 12.6 98.3 0.717 87.40

3 15.4 98.3 0.693 84.60

4 18.0 98.4 0.686 82.00

5 20.0 98.4 0.677 80.00

200 deformation strain

1 0.0 98.0 0.750 100.00

2 25.5 98.3 0.670 74.50

3 48.0 98.5 0.630 52.00

4 58.5 98.6 0.595 41.50

5 68.0 98.7 0.555 32.00
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However, in Fig. 9c, at 200% maximum deformation

strain, the shape recovery ratios of the PLLA decrease

significantly. In addition, the irrecoverable deformation

increases severely with increasing testing cycles. This

result indicates that the crystalline structure in PLLA which

affords the shape recovery force may be substantially

destroyed by the large deformation strain. As a result,

PLLA, as a shape memory material, is not suitable for large

deformation applications. Therefore, in the following

studies of the shape memory effect of chitosan/PLLA

composites, the maximum deformation strain was set as

100%.

The Influence of Chitosan on the Shape Memory Effect of

PLLA The thermomechanical cyclic tensile curves of the

chitosan/PLLA composites are shown in Fig. 10 and the

corresponding shape fixity and recovery ratio are tabulated

in Table 2. The chitosan has no obvious influence on the

shape fixity ratio since the shape fixity ratios of pure PLLA

and chitosan/PLLA composites are very high. However,
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Fig. 10 The thermomechanical cyclic tensile testing curves of the

chitosan/PLLA at different chitosan contents. a PCH5, b PCH10,

c PCH15, d PCH20

Table 2 The shape memory properties of chitosan/PLLA composites

with different chitosan contents

Circle

no.

ep(N) (%) eu [Rf(N)] (%) Stress at max

deformation

strain (MPa)

Rr.tot(N) (%)

PCH5

1 0.0 98.2 0.789 100.00

2 12.6 98.4 0.777 87.40

3 17.8 98.4 0.751 82.20

4 20.4 98.4 0.736 79.60

5 23.0 98.6 0.723 77.00

PCH10

1 0.0 98.2 0.755 100.00

2 13.2 98.2 0.708 86.80

3 18.0 98.3 0.673 82.00

4 21.2 98.3 0.641 78.80

5 24.0 98.6 0.633 76.00

PCH15

1 0.0 98.3 0.730 100.00

2 14.5 98.3 0.628 85.50

3 23.5 98.3 0.546 76.50

4 30.2 98.4 0.499 69.80

5 37.6 98.4 0.471 62.40

PCH20

1 0.0 98.9 0.704 100.00

2 16.8 99.2 0.477 83.20

3 30.5 99.3 0.374 69.50

4 41.0 99.4 0.305 59.00

5 46.2 99.5 0.276 53.80
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chitosan decreases the shape recovery ratio markedly

especially at high chitosan contents. As can be seen from

Fig. 10d, the chitosan/PLLA composite at 20 wt% chitosan

content has no significant shape memory effect after sev-

eral cycles.

One reason for the chitosan/PLLA having decreased

shape memory effect is the decreased elastic modulus at the

temperature below the switch temperature (glass transition

temperature). It has been widely accepted that the good

shape memory effect of polymers requires a rapid thermal

transition from glassy state to rubbery state within a narrow

temperature band, and a high elastic modulus ratio of

glassy state modulus and rubbery state modulus. The

higher the modulus ratio, the better the shape memory

behavior of shape memory polymer would be [93–95]. The

typical elastic modulus of shape memory polyurethanes is

about 800 MPa in their glassy state and 2 MPa in their

rubbery state [95–97], which means that the elastic mod-

ulus ratio of polyurethane is 400. In some special shape

memory polyurethanes, the modulus ratio of the glassy

state to the rubbery state may exceed 500. The elastic

modulus ratios of the PLLA and its composites obtained by

Table 3 The Elastic modulus ratio of glassy state to rubbery state of

chitosan/PLLA composites

Sample Glass transition Tg (8C) Elastic modulus ratioa

PCH0 61.4 300

PCH5 60.2 175

PCH10 59.8 142

PCH15 60.2 105

PCH20 60.6 94

a Elastic modulus ratio was defined as E0Tg-10 �C/E0Tg?10 �C

Fig. 11 The AFM images of

the chitosan/PLLA at different

chitosan contents (left: height

image; right: phase image).

a PCH0, b PCH5, c PCH10,

d PCH15, e PCH20
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Fig. 11 continued
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DMA are tabulated in Table 3. For the pure PLLA in this

study, as can be seen from Table 3, the elastic modulus

ratio is 300, which is lower than that of shape memory

polyurethanes reported in the literature [98–100]. There-

fore, the PLLA does not have so prominent shape memory

effect as that observed on most shape memory polyure-

thanes. Table 3 also indicates that with increasing chitosan

content, the elastic modulus ratio decreases greatly. Con-

sequently, the shape recovery ratio of the PLLA decreases

obviously with increasing chitosan contents.

Morphology Study

The AFM height and phase images of the pure PLLA and

chitosan/PLLA composites are shown in Fig. 11. The

phase images represent the variations of relative phase

shifts (i.e. the phase angle of the interacting cantilever

relative to the phase angle of the freely oscillating canti-

lever at the resonance frequency) and are thus able to

distinguish phases by the materials properties.

As can be seen in Fig. 11, no phase separation structure

is observed on the pure homopolymer PLLA as those in

segmented polyurethane copolymers with phase separation

structures [101–104]. According to the mechanism of the

shape memory effect for segmented copolymers, the for-

mation of a stable hard segment phase and high degree of

phase separation between the hard segment phase and the

reversible soft segment phase is necessary for shape

memory polymers to show good shape memory effects [80,

105–107]. The shape memory effect of PLLA is because of

the viscoelastic properties of PLLA comprising crystalline

and glassy structures. The crystalline structure having a

higher melting temperature is responsible for internal stress

storing and releasing during the shape deformation and

recovery process, while the glassy structure with a lower

glass transition acting as a switch is in charge of shape

fixity.

In AMF phase images in Fig. 11, obvious phase sepa-

ration structures are observed in the chitosan/PLLA com-

posites. The above results demonstrate that the phase

separation does not contribute to the good shape memory

effect of the PLLA. On the contrary, the phase separation

deteriorates the shape memory effect of the PLLA. With

increasing chitosan contents, the shape recovery ratio of the

composites decreases obviously.

The DMA has demonstrated that the modulus of the

chitosan/PLLA composites decreases with increasing

chitosan content. The lack of miscibility between PLLA

and chitosan may lead to the formation of pores [108, 109]

due to the debonding of the chitosan and PLLA matrix

upon the application of deformation during the cyclic

tensile testing. In the cyclic shape memory process, when

the composites is deformed and cooled to a temperature

below the glass transition temperature, due to the formation

of pores because of the immiscibility of PLLA and chito-

san, the internal stress cannot be stored efficiently in the

composites. If the composites are reheated to above the

glass transition temperature, the glassy state phase under-

goes phase transition from a glassy state to a rubbery state.

The composites modulus decrease and consequently the

stored internal stress in the composites release. Because the

composites, especially at high chitosan content, cannot

effectively store internal stress, the shape recovery ratio

decreases significantly.

Conclusions

The shape memory effect of chitosan/PLLA composites

was studied. The shape memory effect of the composites

arises from the viscoelastic properties of the PLLA com-

posed of the amorphous structure and crystalline structure.

PLLA as a shape memory polymer cannot be subject to

large deformation strains. The maximum deformation

strain should be below 200%. PLLA and chitosan were

compounded to make novel materials which may have

biodegradability and biocompatibility. Chitosan does not

significantly affect the glass and melting transition tem-

perature of the PLLA. Phase separation structures of the

composites were observed. The shape recovery ratio of the

polymer decreases dramatically with increasing chitosan

contents due to the immiscibility between chitosan and

PLLA. To obtain good shape memory effect of the com-

posites, the chitosan content should be below 15 wt%.
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