
Vol.:(0123456789)

Journal of Network and Systems Management (2024) 32:95
https://doi.org/10.1007/s10922-024-09868-y

Availability and Performance Assessment of IoMT Systems:
A Stochastic Modeling Approach

Thiago Valentim1 · Gustavo Callou2 · Cleunio França1 · Eduardo Tavares1

Received: 10 May 2024 / Revised: 3 August 2024 / Accepted: 30 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Internet of Things (IoT) allows distinct elements of an environment to be remotely
monitored using existing network infrastructures, creating a prominent integration of
disparate computing systems. Such an integration commonly results in efficient data
collection and processing. Indeed, the adoption of IoT can improve communication
in gathering and transmitting data, especially in locations that deal with connectivity
challenges. For instance, hospitals have adopted IoT to collect and transmit patient
data to health professionals, as critical patients must be monitored uninterruptedly.
As a consequence, healthcare systems typically require high availability, in which
connectivity is essential for critical medical decisions. Some works have conceived
techniques to assess the availability of Internet of Medical Things (IoMT) systems,
but the joint assessment of performance and availability is generally neglected. This
paper presents a modeling approach based on stochastic Petri nets (SPN) and reli-
ability block diagrams (RBD) to evaluate IoMT systems. The proposed technique
evaluates availability and response time of the communication between devices in
an IoMT architecture. Experimental results show the practical feasibility of the pro-
posed approach, in which a sensitivity analysis is adopted to indicate the compo-
nents with the most significant impact on the system operation. Our approach con-
tributes to the state of the art as an additional technique to evaluate different system
designs before modifying or implementing the real system or a prototype.

Keywords  Analytical models · Availability · Performance evaluation · IoMT

1  Introduction

Internet of Things (IoT) is a technological framework that has fostered progress in sev-
eral aspects of human society. This paradigm has been applied to weather prediction
systems, drones, waste management, intelligent agriculture, and smart hospitals [1, 2].

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-024-09868-y&domain=pdf

	 Journal of Network and Systems Management (2024) 32:95 95   Page 2 of 22

The growing interest in IoT devices has directly impacted investments in this field. Cur-
rent projections indicate the IoT market will reach US$ 771 billion dollars in 2026,
and, by 2030, there will be 500 billion objects connected to the Internet [3]. The adop-
tion of IoT can improve communication in collecting and transmitting data, especially
in locations that face connectivity challenges. For instance, hospitals have adopted IoT
to collect and transmit patient data to health professionals, as critical patients must be
monitored uninterruptedly [4].

Particularly, global investment in IoT-based medical systems reached US$217.34
billion in 2022, and it is expected to be around US$960.2 billion by 2030. The huge
investment also concerns acquiring sensors and computing devices for remote patient
monitoring (RPM) [5]. Consequently, the term Internet of Medical Things (IoMT) has
been coined to highlight the importance of IoT in medical applications. IoMT systems
may be critical because system failures affect patient lives. Therefore, over the years,
research has been carried out to conceive techniques to improve availability in IoMT
applications [6]. Besides, the need for real-time data sharing, security and confidential-
ity of patient data highlights the importance of private clouds.

Availability evaluation of IoMT systems is essential due to the critical operation
of healthcare services, demanding the readiness of such systems. Indeed, unavailabil-
ity can result in delays in patient monitoring and inaccurate diagnoses, which could
result in risks to patient life [7]. The integrated availability and performance assess-
ment, namely, performability, is fundamental for the analysis of IoMT systems. Adopt-
ing stochastic models, the unified evaluation allows non-functional requirements to be
analyzed using distinct system configurations before implementing the real system [8].
Prominent works [9–13] have evaluate availability and performance of IoMT systems,
but the joint evaluation is usually neglected.

This paper presents a modeling approach based on reliability block diagrams (RBD)
and stochastic Petri nets (SPN) to evaluate the availability and performance of IoMT
systems. Our proposed SPN model assumes an IoMT system in a private cloud, con-
sidering software and hardware components that compose the architecture (e.g., virtual
machine, microcontroller, and sensor). Our proposal analyzes the interaction between
IoMT devices to jointly estimate response time and system availability. Experimental
results show the practical feasibility of the proposed approach, in which a sensitivity
analysis is adopted to indicate the components with the most significant impact on sys-
tem operation.

The remainder of this paper is organized as follows. Section 2 presents related work,
and Sect. 3 introduces prominent concepts for a better understanding of this work.
Section 4 describes the adopted methodology. Section 5 presents the adopted IoMT
architecture, and Sect. 6 describes performability and availability models for assessing
IoMT systems. Section 7 presents experimental results. Finally, Sect. 8 concludes this
work.

Journal of Network and Systems Management (2024) 32:95 	 Page 3 of 22  95

2 � Related Work

Over the last years, some researches have been carried out to evaluate availability
and performance of IoMT systems. Availability is often overlooked, but it is a prom-
inent attribute to ensure system operation.

For the sake of readability, this section is divided into two subjects: (i) availabil-
ity and (ii) performance.

2.1 � Availability

The distinct demands for IoT systems have created challenges to availability evalua-
tion, as those systems may require continuous data gathering and transmission.

Shen et al. [14] propose an availability assessment mechanism for IoT systems
utilizing edge computing. The approach adopts a modeling technique based on
Markov matrix to represent malware infection. Rahmani et al. [15] present a fail-
ure detection method for IoMT systems using neural network. Whenever a failure
occurs, the conceived mechanism searches for operational servers and moves them
to the cluster to restore the system service. Despite the importance of such a work,
a sensitivity analysis is not utilized, which could indicate prominent system param-
eters. Santos et al. [16] detail a multi-objective optimization algorithm adopting sto-
chastic models to analyze the influence of failures on an e-health system.

Nguyen et al. [17] propose a hierarchical modeling approach to assess IoMT
infrastructures. The approach adopts fault trees and Markov chains, focusing on
availability and security issues. The approach evaluates an IoMT architecture com-
posed of cloud and edge computing components. Santos et al. [18] propose an
approach based on SPN to assess IoT systems based on cloud computing, focus-
ing on system throughput. Clemente et al. [19] presents a hierarchical modeling
approach to evaluate the availability of private cloud systems, taking into account
connectivity, virtualization, and storage components. Results indicate the redun-
dancy strategies that improve availability.

Andrade et al. [20] propose a SPN approach to evaluate IoT systems based on
fog and cloud computing. The metrics of interest are response time and availability.
Results indicate that fog computing components significantly influence availability,
but nothing is stated about IoMT architectures. Lima et al. [21] describe a SPN-
based technique to carry out a disaster recovery analysis of IoMT systems. The pro-
posed model aims to identify the components with the highest influence on system
restoration.

2.2 � Performance

Mallick et al. [22] propose a blockchain framework to reduce network bandwidth
usage and processing time in IoMT systems adopting fog computing. In that
approach, fog computing moves data processing to the edge of the network, mini-
mizing the load on central servers. In addition, blockchain provides a reliable

	 Journal of Network and Systems Management (2024) 32:95 95   Page 4 of 22

method for recording transactions. A case study utilizes simulation to assess the
framework performance. El Kafhali et al. [23] present a Markov chain model to
assess the required number of fog nodes to deal with the workload of IoT devices.
The focus is on the improvement of response time and resource utilization. For vali-
dation, the authors adopted a simulation tool to compare the results.

Djahafi et al. [24] propose a formal approach using stochastic Petri nets for ana-
lyzing IoT systems, taking into account publish/subscribe communication and
response time. Experiments indicate the communication broker has a prominent
influence on system performance. Ghosh et al. [25] present an IoMT architecture for
constrained network bandwidth. A monitoring system based on machine learning
is described, which redirects data processing in the fog when the patient is in criti-
cal condition. Experiments demonstrate improvements in latency for monitoring of
patients requiring close attention.

Nakayama et al. [26] propose a communication architecture for IoMT systems in
order to ensure service continuity for patients requiring transport to another facility.
The architecture focuses on increasing communication reliability and meeting per-
formance constraints. In [27], the authors present an analytical approach to assess
the influence of load balancing on the performance of medical information systems.
Stochastic reward nets are adopted.

In [28], the authors detail a fog-based IoT architecture for monitoring patient
health. The work focuses on reducing response time using Bayesian networks. The
technique adopts a measurement approach to analyze system performance, compar-
ing the proposed technique with a similar approach using cloud computing. Ezhila-
rasi et al. [29] describe a framework for healthcare services that incorporates three
layers: IoT, fog computing, and cloud storage. The framework aims to improve
resource utilization.

Unlike previous works, this paper proposes a modeling approach based on SPN
and RBD to jointly evaluate performance and availability of IoMT systems using a
private cloud. Table 1 depicts an overview of related work compared to our tech-
nique, taking into account the adopted strategy and evaluated metrics. The pro-
posed approach provides models that can be adopted as an additional tool by system
designers to assess distinct system configurations regarding availability and per-
formability even before implementing the actual infrastructure.

3 � Background

This section introduces essential concepts to better understand this work.

3.1 � IoT Architecture

IoT allows distinct elements of an environment to be remotely monitored using
existing network infrastructures, creating a prominent integration of disparate com-
puting systems. Such an integration commonly results in efficient data collection
and processing [30].

Journal of Network and Systems Management (2024) 32:95 	 Page 5 of 22  95

A basic IoT architecture [31] is divided into four layers (Fig. 1): devices, commu-
nication, processing and presentation. Devices perform data gathering and contem-
plate, for instance, sensors and microcontrollers. The communication layer carries
out data transfer using standard protocols, such as LoRA, MQTT, and ZigBee, for
further processing [32, 33]. The processing layer manipulates data to execute system
services, and the presentation layer provides mechanisms for end-user interaction.

3.2 � Availability

IoMT systems usually deal with critical data, and, thus, high availability is an impor-
tant attribute for those systems [34]. For instance, an equipment failure cannot cause

Table 1   Related work

Work Strategy Metrics

Shen et al. [14] Markov Matrix Availability
Rahmani et al [15] Neural network Availability
Santos et al. [16] SPN Availability
Nguyen et al. [17] Markov chains Availability
Santos et al. [18] SPN Availability, throughput
Clemente et al. [19] SPN Availability
Andrade et al. [20] SPN Availability, response time
Lima et al. [21] SPN Availability
Mallick et al. [22] Simulation Bandwidth, data traffic
El Kafhali et al. [23] Markov chain Response time, loss rate, throughput
Djahafi et al. [24] SPN Response time
Ghosh et al. [25] Machine Learning Latency, energy
Nakayama et al. [26] Simulation using Mininet Throughput, bandwidth
Nguyen et al. [27] SRN Response time, throughput, discard probability
Gupta et al. [28] Measurements Response time
Ezhilarasi et al. [29] Measurements Response time
This work Measurements, SPN and RBD Availability, downtime and response time

Fig. 1   IoT basic architecture

	 Journal of Network and Systems Management (2024) 32:95 95   Page 6 of 22

severe consequences for a patient (e.g., a monitoring device failure cannot lead to a
false alarm).

Availability is the probability of a system being in a functioning state [8]. Steady-
state availability (A) is commonly utilized, which takes into account the relationship
between the system’s mean time to failure (MTTF) and mean time to repair (MTTR​)
[8]:

M(t) is the cumulative distribution function representing the probability that a repair
will occur within time t. R(t) is the reliability function, which is the probability of a
system performing its functions without failures for period t.

3.3 � Petri Nets

Petri nets (PN) are a graphical and mathematical modeling tool that can be adopted
to represent several system types. For instance, parallelism, concurrency, asynchro-
nous, and non-deterministic activities are naturally expressed in a PN model [35].

A Petri net is a bipartite directed graph in which places denote local states and
transitions represent actions. Arcs connect places to transitions and vice versa.
Tokens may reside in places denoting a state (e.g., marking). An inhibitor arc repre-
sents the unavailability of tokens in places, and the semantics of a PN is defined in
terms of a token game (e.g., tokens are generated and consumed due to the firing of
transitions).

This work adopts a specific PN extension, namely, generalized stochastic Petri
nets (GSPN), which allows the addition of probabilistic delays to timed transitions
or zero delays (and guard expressions) to immediate transitions. Stochastic Petri nets
(SPN) are commonly adopted to denote all stochastic extensions of PN formalism,
and for the sake of simplicity, the term SPN is utilized henceforth.

The state space of an SPN model can be translated into a continuous-time Markov
chain (CTMC), and simulation techniques can also be adopted as an alternative to
the generation of CTMCs [8].

As an example, Fig. 2 presents a model with a physical machine (left) and a
virtual machine (right). A token in place HostUp (VMUp) indicates the physi-
cal device (VM) is operational, and a token in place HostDown (VMDown)
denotes the device is unavailable. The firing of transition tHostFail (tVMFail)
consumes a token from place HostUp (VMUp) and generates a token in place
HostDown (VMDown), representing the device inoperability. Similarly, the firing

(1)A =
MTTF

MTTF +MTTR

(2)MTTF = ∫
∞

0

R(t)dt

(3)MTTR = ∫
∞

0

1 −M(t)dt

Journal of Network and Systems Management (2024) 32:95 	 Page 7 of 22  95

of transition tHostRepair (tVMRepair) denotes the maintenance (recovery) of
a device. In case of physical machine failure, the VM is also not operational.
More specifically, immediate transition t1 is enabled due to the inhibitor arc,
and the respective firing represents the VM failure (i.e., token generated in place
VMDown).

As usually adopted in SPN, operator # represents the number of tokens in a place
(e.g. #HostUp), and P{exp} indicates the probability of inner expression exp . These
operators are utilized in Sect. 6.

3.4 � Reliability Block Diagram

A reliability block diagram (RBD) is a combinatorial modeling formalism that rep-
resents conditions that make a system operational regarding the structural relation-
ship between the system components [8]. RBD assumes that each component fail-
ure (and maintenance) is independent of other counterparts. This formalism can be
graphically represented by a set of blocks (rectangles), in which each block denotes
a system component (device). Arcs connect the blocks, and the system is operational
if there is at least one path from the beginning node to the end node. In general, the
components can be configured in series or parallel. Figure 3 illustrates two examples
in which the blocks are arranged in series (Fig. 3a) and in parallel (Fig. 3b).

In the serial arrangement, the system becomes non-operational if just one com-
ponent fails. For a system with n independent components, reliability or steady-state
availability ( Ps)is calculated as follows:

in which Pi is the reliability or steady-state availability of a component i.
Regarding parallel arrangement, the system remains operational as long as at

least one of the components is operational. Considering a system with n independent
components, reliability or steady-state availability ( Ps ) is calculated as follows:

(4)Ps =

n
∏

i=1

Pi

Fig. 2   GSPN example

	 Journal of Network and Systems Management (2024) 32:95 95   Page 8 of 22

in which Pi is the reliability or steady-state availability of a component i.

4 � Methodology

This section presents the adopted methodology (Fig. 4) to evaluate availability and per-
formance of IoMT architectures using a private cloud. The first step concerns system
understanding, in which the designer indicates the system components (and the respec-
tive interactions). Next, metrics are defined (e.g., availability) in order to quantify sys-
tem behavior.

Data gathering carries out an initial measurement of system activities (on a proto-
type or real system). Whenever a measurement is not feasible (e.g., a system in produc-
tion), the designer may adopt values, for instance, from datasheets.

The fourth step performs model creation, which also takes into account component
interactions and the defined metrics. Assuming independent components and availabil-
ity, reliability block diagrams (RBD) are adopted, as the computational cost to evalu-
ate the system is shorter due to closed-form equations. Regarding complex interactions
or performance metrics, a state-based representation, more specifically, stochastic Petri
nets, is utilized to represent the system.

(5)Ps(t) = 1 −

n
∏

i=1

Pi

(

1 − Pi

)

(a) (b)

C1 C2 Cn Cn

C1

C2

Fig. 3   RBD arrangements. a Series, b parallel

Fig. 4   Methodology

Journal of Network and Systems Management (2024) 32:95 	 Page 9 of 22  95

Afterward, model validation is adopted to verify whether the model produces
estimates close to a target system. This step adopts statistical methods to ensure
the model results are equivalent to the data measured in the real system. If the
model does not provide accurate estimates, the designer must review the con-
ceived model.

Finally, the models are adopted to assess distinct system designs. A design
may adopt a sensitive analysis (e.g., an effects analysis) to identify the compo-
nents that have a greater influence on availability or performance.

5 � IoMT Architecture

An IoMT architecture defines a smart environment that contemplates electronic
devices and sensors to monitor physiological signals from patients that may or
may not be hospitalized [36].

The architecture should allow physicians to access and analyze patient data
in real-time, making better-informed decisions about patient care. The respective
system usually includes communication protocols, data storage, data analytics,
visualization tools, and other hardware and software components to enable medi-
cal personnel to monitor and remotely manage patient health. Additionally, the
architecture can collect data from various sources, such as wearable and mobile
devices, providing a comprehensive view of patient status [37].

Figure 5 represents the IoMT architecture adopted in this work, which is based
on [38] and has four layers. The sensor layer is composed of sensors responsi-
ble for collecting patients’ physiological data. The data gathering layer is com-
posed of devices that transmit data provided by sensors using the public network
(i.e., the Internet). The private cloud layer is responsible for storing patient data
for future assessment. Such a layer deals with the cloud computing infrastruc-
ture, which includes the adopted virtual machines. A private cloud is required,
as patient data are sensitive and must be managed and securely stored by health
facilities.

Fig. 5   IoMT basic architecture

	 Journal of Network and Systems Management (2024) 32:95 95   Page 10 of 22

6 � Availability and Performability Models

This section presents the proposed availability and performability models. For this
work, reliability block diagrams (RBD) are utilized to estimate system availability
and downtime. SPN models are adopted to estimate response time under the influ-
ence of each layer availability.

6.1 � Availability Model

The conceived availability model is based on reliability block diagrams (RBD),
which represent an IoTM system adopting the architecture described in Sect. 5. In
this work, the system is operational if all components are working. In other words,
a single component failure makes the system non-operational. Figure 6 depicts
the RBD model, taking into account the sensor layer (SNS), data gathering layer
(MCU), public network layer (NT), and private cloud layer (CLD).

A single component is adopted for the SNS, MCU, and NT. For the latter, a net-
work switch is assumed. For the sake of readability, CLD block is an abstraction to
another RBD model (Fig. 7), which is composed of hardware (HW), an operating
system (OS), a hypervisor (HYP), and a virtual machine (VMb). Such a model can
also be reduced to a single block with an approximate MTTF and MTTR [39].

6.2 � Performability Model

This section presents the conceived model (Fig. 8) for the unified evaluation of per-
formance and availability assessment. The metric of interest is response time, which
contemplates the delay for the private cloud layer in receiving data from the sensor
layer. Availability may significantly influence response time, as system components
can fail.

For a better understanding, the model is divided into blocks. Taking into
account the adopted architecture (Sect. 5) and RBD model, each layer has an
availability block (in red) that abstracts the adopted components. Place XUp (e.g.,
PsUp) indicates the layer (or component) is operational, whereas place XDown

Begin End

SNS MCU NT CLD

Fig. 6   RBD model: system

Begin End

HW OS HYP VMb

Fig. 7   RBD models private cloud layer

Journal of Network and Systems Management (2024) 32:95 	 Page 11 of 22  95

denotes the respective failure. Transitions tXFailure and tXRestore represent the
failure and maintenance of a (set of) devices in the layer, and the respective delays
correspond to the device MTTF and MTTR. System availability may be estimated
as P{(#psUp > 1 ) and ( #pmUp > 1 ) and ( #pnUp > 1 ) and ( #pcUP > 1)} . If any
layer is not operational, the system fails.

The performance block (in blue) represents data transmission. A token in place
pSensor indicates data was obtained by a sensor, and it is immediately (transition
T3) acquired by the microcontroller (place pMicro). The microcontroller and the
sensor are connected to the same board, and thus, the respective delay is con-
sidered negligible. Transition T3 has an inhibitor arc, which does not allow data
acquisition when the sensor is down.

The microcontroller then transmits patient data over the network (transition
tProcessingNetwork), and then, the sensor data is received at the private cloud
(firing of transition tProcessingCloud). Place (pCPC) represents the processing
capacity for receiving data in the private cloud. For instance, one token limits
the capacity to one request at a time, and additional tokens ( #pCPC > 1 ) allow
the assessment of dealing with multiple requests simultaneously. Similar to the
sensor, transition T1 and T2 verify if the components are down. In case of failure,
data transmission is not carried out. Regarding data being received in the cloud,
data is lost in case of failure (transition T2).

Besides, Little’s law [8] is adopted to estimate the mean response time
(R), which is calculated as follows: R =

L

�
 . L is the average number of mes-

sages on the system, and � is the processing throughput. More, specifically,

Fig. 8   Integrated availability and performance model

	 Journal of Network and Systems Management (2024) 32:95 95   Page 12 of 22

L = E{#pSensor} + E{#pMicro} + E{#pNetwork} + E{#pRequestCloud} and
𝜆 = P{#pRequestCloud > 0} × 1∕W(tProcessingCloud).

6.2.1 � Redundant Components

Redundant components can be represented by adding tokens in a place XUp . For
instance, two tokens in place pcUp ( #pcUp = 2 ) indicate two working machines:
the primary and a spare. Besides, transitions need to adopt infinite-server semantics,
which is utilized to represent parallel activities. In this case, the firing rate of a tran-
sition is linearly increased according to its enabling degree. The reader is referred
to [40] for more details.

7 � Experimental Results

This section presents experimental results to demonstrate the feasibility of the pro-
posed technique. Initially, model validation is described, and next, the experiments
are presented.

7.1 � Experimental Setting

Figure 9 illustrates the evaluation system utilized in this work, which contemplates
two physical machines (a client and a server with a virtual machine) and one switch.
The client machine, adopting JMeter [41], simulates the microcontroller and also
collects data regarding the server response time. The server hosts a virtual machine
and is connected to a switch. Message queuing telemetry transport (MQTT) [42]
protocol is adopted for the communication between the client and server, as such
a protocol is commonly adopted for systems with constrained computing resources
[43].

The client machine utilizes an Intel i3-10110U 2.59 GHz processor with 24 GB of
RAM and 500 GB of storage. The server adopts an AMD Ryzen 5 3500X 3.59 GHz
processor with 16 GB of RAM and 1 TB of storage. Both machines utilize CentOS
7. Apache Cloudstack has been adopted as the private cloud computing platform,
and Mosquitto is utilized as the broker in the server for the communication using
MQTT.

Fig. 9   Evaluation system

Journal of Network and Systems Management (2024) 32:95 	 Page 13 of 22  95

7.2 � Validation

This section presents the validation of the conceived SPN and RBD models. The
main idea is to verify whether the models produce estimates close to a real sys-
tem. The SPN model has been evaluated using TimeNet [44], and Mercury [45]
has been adopted for RBD evaluation.

7.2.1 � Availability

Availability validation considers a RBD model composed of a sensor, microcon-
troller, switch, and a private cloud using series arrangement (Fig. 6). The adopted
approach utilizes fault injection [46] in the network interface to represent system
failures, and Table 3 presents each component MTTF and MTTR​.

For each component, a thread is created using Algorithm 1 [47], which is a
script responsible for injecting failures. cTime represents the current monitoring
time (in hours), and maxTime is the maximum observation period (in hours). In
each iteration, a time to failure ( ttf  ) is generated using the exponential distribu-
tion and the component MTTF (line 5). The thread sleeps for the time defined
in ttf (line 6), and then, the network interface is disabled. Similarly, the algo-
rithm generates a time to repair ( ttf  ) (line 8), sleeps, and, next, the component
is restored to the working state. cTime is incremented (increment(cTime)) taking
into account the elapsed time (i.e., the sum of ttf and ttr ). Whenever cTime is
greater than or equal to maxTime, the thread concludes the execution.

Algorithm 1   Fault Injection

Algorithm 2 [47] depicts the script for monitoring the system state (available or
unavailable). A loop performs periodic communications with the network Inter-
face. If a change in the respective state is detected, the system status is recorded
to estimate system availability. The observation period was 34 h, which is close
to one year, assuming an acceleration factor of 100. In other words, MTTF and
MTTR are divided by 100 to reflect the acceleration in failure and repair.

	 Journal of Network and Systems Management (2024) 32:95 95   Page 14 of 22

Algorithm 2   Availability Monitor

Using the collected data and the technique described in [48], a 95% confidence
interval is obtained: [0.99329, 0.99493]. Utilizing the RBD model, availability is
estimated as 0.99470. Since such a value is contained in the interval, there is no sta-
tistical evidence to refute the equivalence between the proposed model and the real
system.

7.2.2 � Performability

For performance, the proposed approach utilizes the SPN model presented in Fig. 8
without component failures. Using the system depicted in Fig. 9, 30 samples were
collected to estimate the mean delays for each timed transition and the system
response time. Such a sample size is related to the central limit theorem [49]. The
estimated delays are 0.001 s and 0.14133 s for transition tProcessingNetwork and
tProcessingCloud , respectively.

Adopting stationary analysis [8], the proposed model obtains 0.01513 s for the
system response time. Utilizing the data collected in the real system, [0.013962,
0.016305] represents the 95% confidence interval for response time using Student’s t
distribution. As 0.01513 s is contained in the interval, there is no statistical evidence
that the model does not represent the real system.

7.3 � Experiments

Two experiments are carried out to evaluate system availability and response time.
A design of experiments (DoE) approach [49] is adopted, assuming a two-level ( 2k )
factorial design.

The following sections present results using rank of effects. Effect [49] is the
change in response due to a change in the factor level. All ranks are presented

Journal of Network and Systems Management (2024) 32:95 	 Page 15 of 22  95

in descending order, considering the absolute values of all effects. Besides, this
work considers main effects and second-order interactions since higher-order
interactions are usually negligible.

7.3.1 � Availability

This section presents the experiment for assessing the adopted architecture using
the conceived RBD models. The experiment evaluates the influence of distinct
MTTF values of each component on system availability. To isolate the impact of
component failures, MTTR values are kept constant for all treatments.

Table 2 depicts the adopted factors (e.g., MTTF SNS). Level 1 denotes
the actual value, and Level 2 represents an improved component with a 50%
increase in the mean time to failure. SNS represents the sensor, MCU denotes the
microcontroller, NT is the network, and HW is the hardware of the private cloud.
For each treatment (i.e., a combination of factor levels), a model is created (see
Fig. 6) to conduct the availability analysis. Table 3 shows the base MTTF and
MTTR values adopted, which are based on [50–52].

Table 4 presents system availability (A) and downtime ( D = [1 − A] × 8760 )
for each treatment in a year (8760 h). Table 5 depicts the rank of effects. HW is
the most important factor since improving its MTTF, availability increases by
0.06% (4.5 h of downtime). Other factors also have a significant effect, and they

Table 2   Factor and levels Factor Level 1 Level 2

MTTF SNS 44,957 67,435.5
MTTF MCU 28,011 42,016.5
MTTF NT 10,000 15,000.0
MTTF HW 8760 13,140.0

Table 3   MTTF and MTTR of
model components

Module Input parameters

Component MTTF MTTR​

Microcontroller MCU 44,957.0 5.0
Sensor SNS 28,011.0 5.0
Network NT 10,000.0 1.0
Private cloud HW 8760.0 1.66

SO 2893.0 0.25
KVM 2990.0 1.0
VM 217.8 0.94

	 Journal of Network and Systems Management (2024) 32:95 95   Page 16 of 22

are followed by the microcontroller as well as the interaction of the sensor and
network.

7.3.2 � Performability

This section presents the experiment that jointly quantifies the impact of distinct
workloads on availability and response time. In this case, the conceived SPN model
(Fig. 8) is utilized.

Table 6 depicts the adopted DoE, assuming 5 factors. pSensor denotes the work-
load, which represents the number of concurrent messages transmitted by the micro-
controller to the private cloud. psUp, pmUp, pnUp and pcUp contemplate the pres-
ence of redundancy (level 2) or not (level 1) regarding the sensor, microcontroller,
network, and private cloud, respectively. The factor name also indicates the place in
the model, and the level denotes the marking (e.g. #psUP = 2 ). This experiment also
adopts the MTTF and MTTR depicted in Table 3.

Table 4   Treatments and results—availability

Treatment MTTF SNS MTTF MCU MTTF NT MTTF HW Availability Downtime

1 44,957.0 28,011.0 10,000.0 8760.0 0.9994209 5.0754
2 67,435.5 28,011.0 10,000.0 8760.0 0.9994580 4.7506
3 44,957.0 42,016.5 10,000.0 8760.0 0.9994804 4.5542
4 67,435.5 42,016.5 10,000.0 8760.0 0.9995175 4.2294
5 44,957.0 28,011.0 15,000.0 8760.0 0.9994543 4.7834
6 67,435.5 28,011.0 15,000.0 8760.0 0.9994913 4.4586
7 44,957.0 42,016.5 15,000.0 8760.0 0.9995137 4.2622
8 67,435.5 42,016.5 15,000.0 8760.0 0.9995508 3.9374
9 44,957.0 28,011.0 10,000.0 13,140.0 0.9994841 4.5221
10 67,435.5 28,011.0 10,000.0 13,140.0 0.9995211 4.1973
11 44,957.0 42,016.5 10,000.0 13,140.0 0.9995435 4.0008
12 67,435.5 42,016.5 10,000.0 13,140.0 0.9995806 3.6760
13 44,957.0 28,011.0 15,000.0 13,140.0 0.9995174 4.2301
14 67,435.5 28,011.0 15,000.0 13,140.0 0.9995544 3.9053
15 44,957.0 42,016.5 15,000.0 13,140.0 0.9995768 3.7088
16 67,435.5 42,016.5 15,000.0 13,140.0 0.9996139 3.3840

Table 5   Rank of effects—
availability

Availability Downtime

Factor/interaction Effect Factor/interaction Effect

MTTF HW 0.000063 MTTF HW − 0.5533
MTTF MCU 0.000059 MTTF MCU − 0.5212
MTTF SNS 0.000037 MTTF SNS − 0.3248
MTTF NT 0.000033 MTTF NT − 0.2920

Journal of Network and Systems Management (2024) 32:95 	 Page 17 of 22  95

Table 6   Factor and levels Factor Level 1 Level 2

pSensor 1 5
psUp 1 2
pmUp 1 2
pnUp 1 2
pcUp 1 2

Table 7   Treatments and results—availability and response time

Treatment pSensor psUp pmUp pnUp pcUp Availability Response time

1 1 1 1 1 1 0.99477030 0.02840677
2 5 1 1 1 1 0.99477029 0.08516914
3 1 2 1 1 1 0.99488092 0.02840835
4 5 2 1 1 1 0.99488092 0.08517690
5 1 1 2 1 1 0.99494783 0.02840930
6 5 1 2 1 1 0.99494783 0.08518161
7 1 2 2 1 1 0.99505847 0.02841088
8 5 2 2 1 1 0.99505847 0.08518938
9 1 1 1 2 1 0.99486976 0.02840817
10 5 1 1 2 1 0.99486976 0.08517614
11 1 2 1 2 1 0.99498039 0.02840975
12 5 2 1 2 1 0.99498039 0.08518391
13 1 1 2 2 1 0.99504732 0.02841071
14 5 1 2 2 1 0.99504732 0.08518861
15 1 2 2 2 1 0.99515797 0.02841229
16 5 2 2 2 1 0.99515797 0.08519638
17 1 1 1 1 2 0.99958689 0.02833791
18 5 1 1 1 2 0.99958689 0.08482677
19 1 2 1 1 2 0.99969805 0.02833948
20 5 2 1 1 2 0.99969804 0.08483450
21 1 1 2 1 2 0.99976528 0.02834043
22 5 1 2 1 2 0.99976528 0.08483918
23 1 2 2 1 2 0.99987646 0.02834200
24 5 2 2 1 2 0.99987646 0.08484691
25 1 1 1 2 2 0.99968684 0.02833931
26 5 1 1 2 2 0.99968683 0.08483374
27 1 2 1 2 2 0.99979801 0.02834088
28 5 2 1 2 2 0.99979800 0.08484147
29 1 1 2 2 2 0.99986525 0.02834183
30 5 1 2 2 2 0.99986525 0.08484615
31 1 2 2 2 2 0.99997644 0.02834340
32 5 2 2 2 2 0.99997644 0.08485388

	 Journal of Network and Systems Management (2024) 32:95 95   Page 18 of 22

For each treatment, a model based on Fig. 8 is created, and stationary analysis
has been utilized to estimate availability and response time. Table 7 depicts the
system availability and response time for each treatment, and Table 8 presents the
rank of effects. Psensor is the most important factor for response time. For instance,
comparing treatment 1 (one message) to treatment 2 (5 concurrent messages), the
response is increased by 199%. The private cloud is the most important factor for
availability. For instance, by adding a spare component to this device (treatment 17),
system availability improved, reducing downtime by approximately 20% (from 4.57
h to 3.62 h).

The conceived technique represents an additional tool for designers to assess the
influence of each component on system performability and availability.

7.4 � Remarks

As presented, results indicate devices with a longer time to fail significantly increase
system availability, which is prominent in keeping continuous patient monitoring.
Additionally, hot standby redundancy may significantly decrease downtime (around
20%), whenever such a technique is adopted to the components with the highest
influence on system operation.

Regarding performability, Psensor is an important factor due to its direct influ-
ence on response time. Experiments indicate concurrent messages may increase
response time by 199%. Redundancy also reduces response time, as system down-
time is shorter.

The proposed approach contributes to state-of-the-art as an additional technique
for designing IoMT systems. Distinct designs can be assessed, taking account the
concomitantly evaluation of dependability attributes (e.g., MTTF) and performance
(e.g., response time).

8 � Conclusion

This paper presented a modeling approach based on stochastic Petri nets and reli-
ability block diagrams to evaluate IoMT architectures. The models were validated
using a real testbed system, demonstrating that our approach provides performance

Table 8   Rank of effects—
response time and availability

Response time Availability

Factor/interaction Effect Factor/interaction Effect

Psensor 0.056640 pcUp 0.004818
pmUp 0.000007 pmUp 0.000178
Psensor*pmUp 0.000005 psUp 0.000111
psUp 0.000005 pnUp 0.000001
pnUp 0.000004 – –
Psensor*pnUp 0.000026 – –

Journal of Network and Systems Management (2024) 32:95 	 Page 19 of 22  95

and availability estimates close to those of a real system. The conceived models
make it possible to evaluate distinct system designs before modifying or implement-
ing the actual system or prototype.

Two experiments were presented to show the applicability of our approach.
Results demonstrate the influence of distinct designs, and a sensitivity analysis indi-
cates the components with the highest influence on system availability. As a future
work, a response time index will be proposed as an alternative technique to identify
the device with the highest influence n system response time.

References

	 1.	 Sorri, K., Mustafee, N., Seppänen, M.: Revisiting IoT definitions: a framework towards comprehen-
sive use. Technol. Forecast. Soc. Chang. 179, 121623 (2022)

	 2.	 Pawar, N., Bourgeau, T., Chaouchi, H.: Study of IoT architecture and application invariant function-
alities. In: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp.
667–671. IEEE (2021)

	 3.	 Cisco, T., Internet, A.: Cisco: 2020 CISO benchmark report. Comput. Fraud Secur. 2020(3), 4–4
(2020)

	 4.	 Verma, D., Singh, K.R., Yadav, A.K., Nayak, V., Singh, J., Solanki, P.R., Singh, R.P.: Internet of
things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosens.
Bioelectron.: X 11, 100153 (2022)

	 5.	 Research, P.: Internet of things in healthcare market. https://​www.​prece​dence​resea​rch.​com/​inter​net-​
of-​things-​in-​healt​hcare-​market. Accessed 10 Sept 2023 (2023)

	 6.	 Tang, S., Xie, Y.: Availability modeling and performance improving of a healthcare internet of
things (IoT) system. IoT 2(2), 310–325 (2021)

	 7.	 Xing, L.: Reliability in internet of things: current status and future perspectives. IEEE Internet
Things J. 7(8), 6704–6721 (2020)

	 8.	 Maciel, P.R.M.: Performance, Reliability, and Availability Evaluation of Computational Systems,
Volume I: Performance and Background. Chapman and Hall/CRC (2022)

	 9.	 Wai, K.T., Aung, N.P., Htay, L.L.: Internet of things (IoT) based healthcare monitoring system using
NodeMCU and Arduino UNO. Int. J. Trend Sci. Res. Dev. (IJTSRD) 3(5), 755–759 (2019)

	10.	 Pokorni, S.J.: Reliability and availability of the internet of things. Vojnotehnicki glasnik/Mil. Tech.
Cour. 67(3), 588–600 (2019)

	11.	 Ruman, M.R., Barua, A., Rahman, W., Jahan, K.R., Roni, M.J., Rahman, M.F.: IoT based emer-
gency health monitoring system. In: 2020 International Conference on Industry 4.0 Technology
(I4Tech), pp. 159–162. IEEE (2020)

	12.	 Athira, A., Devika, T., Varsha, K., et al.: Design and development of IoT based multi-parameter
patient monitoring system. In: 2020 6th International Conference on Advanced Computing and
Communication Systems (ICACCS), pp. 862–866. IEEE (2020)

	13.	 Valentim, T., Callou, G., Vinicius, A., França, C., Tavares, E.: Availability assessment of internet of
medical things architecture using private cloud. In: Anais do L Seminário Integrado de Software e
Hardware, pp. 13–23. SBC (2023)

	14.	 Shen, Y., Shen, S., Wu, Z., Zhou, H., Yu, S.: Signaling game-based availability assessment for edge
computing-assisted IoT systems with malware dissemination. J. Inf. Secur. Appl. 66, 103140 (2022)

	15.	 Rahmani, A.M., Hosseini Mirmahaleh, S.Y.: Flexible-clustering based on application priority to
improve IoMT efficiency and dependability. Sustainability 14(17), 10666 (2022)

	16.	 Santos, G.L., Gomes, D., Kelner, J., Sadok, D., Silva, F.A., Endo, P.T., Lynn, T.: The internet of
things for healthcare: optimising e-health system availability in the fog and cloud. Int. J. Comput.
Sci. Eng. 21(4), 615–628 (2020)

	17.	 Nguyen, T.A., Min, D., Choi, E., Lee, J.-W.: Dependability and security quantification of an internet
of medical things infrastructure based on cloud-fog-edge continuum for healthcare monitoring using
hierarchical models. IEEE Internet Things J. 8(21), 15704–15748 (2021)

https://www.precedenceresearch.com/internet-of-things-in-healthcare-market
https://www.precedenceresearch.com/internet-of-things-in-healthcare-market

	 Journal of Network and Systems Management (2024) 32:95 95   Page 20 of 22

	18.	 Santos, L., Cunha, B., Fé, I., Vieira, M., Silva, F.A.: Data processing on edge and cloud: a perform-
ability evaluation and sensitivity analysis. J. Netw. Syst. Manag. 29(3), 27 (2021)

	19.	 Clemente, D., Pereira, P., Dantas, J., Maciel, P.: Availability evaluation of system service hosted
in private cloud computing through hierarchical modeling process. J. Supercomput. 78(7), 9985–
10024 (2022)

	20.	 Andrade, E., Nogueira, B., Farias Júnior, I.d., Araújo, D.: Performance and availability trade-offs in
fog-cloud IoT environments. J. Netw. Syst. Manag. 29, 1–27 (2021)

	21.	 Lima, L.N., Sabino, A., Barbosa, V., Feitosa, L., Brito, C., Araujo, J., Silva, F.A.: Dependability
analysis and disaster recovery measures in smart hospital systems. J. Reliab. Intell. Environ. 1–17
(2024)

	22.	 Mallick, S.R., Goswami, V., Lenka, R.K., Sharma, S., Barik, R.K.: Performance evaluation of
queueing assisted IoMT-fog-blockchain framework for healthcare organizations. In: 2022 IEEE 9th
Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineer-
ing (UPCON), pp. 1–6. IEEE (2022)

	23.	 El Kafhali, S., Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. J. Supercom-
put. 73, 5261–5284 (2017)

	24.	 Djahafi, M., Salmi, N.: Using stochastic petri net modeling for self-adapting publish/subscribe IoT
systems. In: NOMS 2023—2023 IEEE/IFIP Network Operations and Management Symposium, pp.
1–4. IEEE (2023)

	25.	 Ghosh, A., Saha, R., Misra, S.: Persistent service provisioning framework for IoMT based emer-
gency mobile healthcare units. IEEE J. Biomed. Health Inform. 26(12), 5851–5858 (2022)

	26.	 Nakayama, F., Lenz, P., Nogueira, M.: A resilience management architecture for communication on
portable assisted living. IEEE Trans. Netw. Serv. Manag. 19(3), 2536–2548 (2022)

	27.	 Nguyen, T.A., Fe, I., Brito, C., Kaliappan, V.K., Choi, E., Min, D., Lee, J.W., Silva, F.A.: Perform-
ability evaluation of load balancing and fail-over strategies for medical information systems with
edge/fog computing using stochastic reward nets. Sensors 21(18), 6253 (2021)

	28.	 Gupta, A., Chaurasiya, V.K.: Efficient task-offloading in IoT-fog based health monitoring system.
In: 2022 OITS International Conference on Information Technology (OCIT), pp. 495–500. IEEE
(2022)

	29.	 Ezhilarasi, M., Kumar, A., Shanmugapriya, M., Ghanshala, A., Gupta, A.: Integrated healthcare
monitoring system using wireless body area networks and internet of things. In: 2023 4th Interna-
tional Conference on Innovative Trends in Information Technology (ICITIIT), pp. 1–5. IEEE (2023)

	30.	 Islam, M.M., Nooruddin, S., Karray, F., Muhammad, G.: Internet of things: device capabilities,
architectures, protocols, and smart applications in healthcare domain. IEEE Internet Things J. 10(4),
3611–3641 (2022)

	31.	 Jara, A.J., Zamora, M.A., Skarmeta, A.F.: An architecture for ambient assisted living and health
environments. In: International Work-Conference on Artificial Neural Networks, pp. 882–889.
Springer, Berlin (2009)

	32.	 Rahmani, A.M., Gia, T.N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., Liljeberg, P.: Exploit-
ing smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach.
Futur. Gener. Comput. Syst. 78, 641–658 (2018)

	33.	 Loh, F., Mehling, N., Metzger, F., Hoßfeld, T., Hock, D.: LoRaPlan: A software to evaluate gateway
placement in LoRaWAN. In: 2021 17th International Conference on Network and Service Manage-
ment (CNSM), pp. 385–387 (2021). IEEE

	34.	 Joyia, G.J., Liaqat, R.M., Farooq, A., Rehman, S.: Internet of medical things (IoMT): applications,
benefits and future challenges in healthcare domain. J. Commun. 12(4), 240–247 (2017)

	35.	 Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
	36.	 Hireche, R., Mansouri, H., Pathan, A.-S.K.: Security and privacy management in internet of medical

things (IoMT): a synthesis. J. Cybersecur. Privacy 2(3), 640–661 (2022)
	37.	 Askar, N.A., Habbal, A., Mohammed, A.H., Sajat, M.S., Yusupov, Z., Kodirov, D.: Architecture,

protocols, and applications of the internet of medical things (IoMT). J. Commun. 17(11) (2022)
	38.	 Vishnu, S., Ramson, S.J., Jegan, R.: Internet of medical things (IoMT)—an overview. In: 2020 5th

International Conference on Devices, Circuits and Systems (ICDCS), pp. 101–104. IEEE (2020)
	39.	 Buzacott, J.A.: Finding the MTBF of repairable systems by reduction of the reliability block dia-

gram. Microelectron. Reliab. 6(2), 105–112 (1967)
	40.	 Balbo, G.: Introduction to stochastic petri nets. In: Lectures on Formal Methods and PerformanceA-

nalysis: First EEF/Euro Summer School on Trends in Computer Science Bergen Dal, The Nether-
lands, July 3–7, 2000 Revised Lectures 1, pp. 84–155 (2001)

Journal of Network and Systems Management (2024) 32:95 	 Page 21 of 22  95

	41.	 Halili, E.H.: Apache JMeter (2008)
	42.	 Standard, O.: Mqtt version 5.0. Retrieved June 22, 2020 (2019)
	43.	 Alshammari, H.H.: The internet of things healthcare monitoring system based on MQTT protocol.

Alex. Eng. J. 69, 275–287 (2023)
	44.	 Zimmermann, A., et al.: Towards version 4.0 of TimeNET. In: 13th GI/ITG Conference—Measur-

ing, Modelling and Evaluation of Computer and Communication Systems, pp. 1–4 (2006)
	45.	 Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J., Lobo, A., Alves,

V., Maciel, P.: Mercury: An integrated environment for performance and dependability evaluation
of general systems. In: Proceedings of Industrial Track at 45th Dependable Systems and Networks
Conference, DSN, pp. 1–4 (2015)

	46.	 Hsueh, M.-C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer 30(4), 75–82
(1997)

	47.	 Gomes, C., Tavares, E., Junior, M.N.d.O., Nogueira, B.: Cloud storage availability and performance
assessment: a study based on NOSQL DBMS. J. Supercomput. 78(2), 2819–2839 (2022)

	48.	 Keesee, W.: A method of determining a confidence interval for availability. Technical report, Naval
Missile Center Point (1965)

	49.	 Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. John Wiley &
Sons (2010)

	50.	 Tang, D., Kumar, D., Duvur, S., Torbjornsen, O.: Availability measurement and modeling for an
application server. In: International Conference on Dependable Systems and Networks, 2004, pp.
669–678. IEEE (2004)

	51.	 Kim, D.S., Machida, F., Trivedi, K.S.: Availability modeling and analysis of a virtualized system.
In: 2009 15th IEEE Pacific Rim International Symposium on Dependable Computing, pp. 365–371.
IEEE (2009)

	52.	 Novacek, G.: Tips for predicting product reliability. https://​circu​itcel​lar.​com/​cc-​blog/​tips-​for-​predi​
cting-​produ​ct-​relia​bility/. Accessed 10 Sept 2023 (2022)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Thiago Valentim  graduated with a degree in Information Systems in 2015 and received his M.Sc. in
Applied Computer Science from the Universidade Federal Rural de Pernambuco (UFRPE) in 2019. He
is currently a Ph.D. candidate in Computer Science at the Center for Informatics, Universidade Federal
de Pernambuco (UFPE), and a Professor at the Instituto Federal de Pernambuco. His research interests
include computer networks, information security, Internet of Things, cloud computing, performance and
dependability evaluation, Petri nets, and formal models.

Gustavo Callou  holds a Ph.D. in Computer Science, which was obtained in 2013 from the Federal Uni-
versity of Pernambuco (UFPE). Between 2010 and 2011, he was a student researcher at the University of
Wuppertal, Germany, and between 2023 and 2024, he completed a postdoctoral fellowship at the Univer-
sity of Coimbra, Portugal. He is currently an Associate Professor in the Department of Computing at the
Federal Rural University of Pernambuco (UFRPE). He has extensive experience in the field of Computer
Science, with a focus on Performance Evaluation and System Optimization. His primary research inter-
ests include performance and dependability modeling, cloud computing, data centers, energy efficiency,
and sustainability.

Cleunio França  graduated with a degree in Computer Engineering in 2010 and received his M.Sc. in
Computer Science from the Universidade Federal de Pernambuco (UFPE) in 2013. Currently, he is a
Ph.D. candidate at the same university. His research interests include the internet of things, artificial intel-
ligence, machine learning, performance and dependability evaluation, Petri nets, formal models, and real-
time systems.

https://circuitcellar.com/cc-blog/tips-for-predicting-product-reliability/
https://circuitcellar.com/cc-blog/tips-for-predicting-product-reliability/

	 Journal of Network and Systems Management (2024) 32:95 95   Page 22 of 22

Eduardo Tavares  graduated in Computer Science in 2002, and he received his M.Sc. as well as Ph.D.
degrees in Computer Science from Universidade Federal de Pernambuco (UFPE) in 2006 and 2010,
respectively. Since 2011, he has been a member of Center for Informatics - UFPE, where he is currently
Associate Professor. His research interests include performance and dependability evaluation, Petri nets,
formal models, and real-time systems.

Authors and Affiliations

Thiago Valentim1 · Gustavo Callou2 · Cleunio França1 · Eduardo Tavares1

 *	 Thiago Valentim
	 tvb@cin.ufpe.br

	 Gustavo Callou
	 gustavo.callou@ufrpe.br

	 Cleunio França
	 cbff@cin.ufpe.br

	 Eduardo Tavares
	 eagt@cin.ufpe.br

1	 Centro de informática, Universidade Federal de Pernambuco, Recife, Pernambuco 100190,
Brazil

2	 Departamento de computação, Universidade Federal Rural de Pernambuco, Recife,
Pernambuco 10587, Brazil

	Availability and Performance Assessment of IoMT Systems: A Stochastic Modeling Approach
	Abstract
	1 Introduction
	2 Related Work
	2.1 Availability
	2.2 Performance

	3 Background
	3.1 IoT Architecture
	3.2 Availability
	3.3 Petri Nets
	3.4 Reliability Block Diagram

	4 Methodology
	5 IoMT Architecture
	6 Availability and Performability Models
	6.1 Availability Model
	6.2 Performability Model
	6.2.1 Redundant Components

	7 Experimental Results
	7.1 Experimental Setting
	7.2 Validation
	7.2.1 Availability
	7.2.2 Performability

	7.3 Experiments
	7.3.1 Availability
	7.3.2 Performability

	7.4 Remarks

	8 Conclusion
	References

