
Vol.:(0123456789)

Journal of Network and Systems Management (2024) 32:89
https://doi.org/10.1007/s10922-024-09863-3

Tri‑objective Optimization for Large‑Scale Workflow
Scheduling and Execution in Clouds

Huda Alrammah1 · Yi Gu1 · Daqing Yun2 · Ning Zhang3

Received: 18 April 2024 / Revised: 14 August 2024 / Accepted: 15 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Cloud computing has become the most popular distributed paradigm with massive
computing resources and a large data storage capacity to run large-scale scientific
workflow applications without the need to own any infrastructure. Scheduling work-
flows in a distributed system is a well-known NP-complete problem, which has
become even more challenging with a dynamic and heterogeneous pool of resources
in a cloud computing platform. The aim of this work is to design efficient and effec-
tive scheduling algorithms for multi-objective optimization of large-scale scientific
workflows in cloud environments. We propose two novel genetic algorithm (GA)-
based scheduling algorithms to assign workflow tasks to different cloud resources
in order to simultaneously optimize makespan, monetary cost, and energy consump-
tion. One is multi-objective optimization for makespan, cost and energy (MOMCE),
which combines the strengths of two widely adopted solutions, genetic algorithm
and particle swarm optimization, for multi-objective optimization problems. The
other is pareto dominance for makespan, cost and energy (PDMCE), which is based
on genetic algorithm and non-dominated solutions to achieve a better convergence
and a uniform distribution of the approximate Pareto front. The proposed solutions
are evaluated by an extensive set of different workflow applications and cloud envi-
ronments, and compared with other existing methods in the literature to show the
performance stability and superiority. We also conduct performance evaluation and
comparison between MOMCE and PDMCE for different criteria.

Keywords Workflow scheduling · Multi-objective optimization · Pareto dominance ·
Makespan · Cost · Energy consumption

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-024-09863-3&domain=pdf

 Journal of Network and Systems Management (2024) 32:89 89 Page 2 of 37

1 Introduction

Supercomputing technology has mainly changed the way of conducting basic
and applied sciences from traditional laboratory-controlled experimental meth-
odologies to modern computational paradigms, involving complex computational
analyses and extreme-scale simulations of physical phenomena, computational
biology, climatic changes, etc. Those scientific applications typically contain a
great number of tasks with precedence constraints that need to be further ana-
lyzed and processed by geographically located users and scientists, and thus are
beyond the capability of traditional standalone PCs. Traditionally, scientists run
these scientific workflows using clusters and grid platforms. Many grid projects,
such as Pegasus [1] and ASKALON [2], have designed workflow management
systems to control and execute workflows on the grids. However, these systems
are expensive and inconvenient to expand resources [3]. Cloud computing is the
latest paradigm of these distributed systems and has emerged as a promising
environment for execution of large-scale workflow applications. Although cloud
computing has shown significant benefits to the IT industry and science experi-
ments, the current technology suffers from many challenges that need to be care-
fully addressed, which calls for efficient and effective solutions to schedule and
optimize the performance of workflow applications running in the clouds with
multiple objectives. Workflow scheduling/optimization is a crucial issue in the
cloud to achieve the best resource utilization from cloud’s massive resource pool,
meanwhile optimize the performance of a workflow execution under precedence
constraints.

Scheduling frameworks need to address the issues derived from the cloud
resource features in order to meet the application objectives. Another challenge
that must be taken into account by scheduling algorithms is finding a trade-off
between performance and other competitive requirements, such as reducing mon-
etary cost, minimizing energy consumption, and delivering results as quickly as
possible, which adds more complexity to the algorithm design in the heteroge-
neous cloud environments. Workflow scheduling with multiple conflicting objec-
tives is a multi-objective optimization problem (MOP), where the optimal solu-
tion needs to consider trade-off between the objectives. A lot of existing works
consider a single or bi-objective optimization problem where the main objective
is to minimize the makespan of the workflow. It is desirable to formulate a work-
flow scheduling with MOP as cloud providers and users strive for different goals.

This paper proposes two scheduling algorithms to simultaneously minimize
makespan, cost, and energy consumption of a workflow execution in a cloud while
taking inter-task dependencies into consideration. The first algorithm, named multi-
objective optimization for makespan, cost, and energy (MOMCE), combines the
merits of genetic algorithm (GA) and particle swarm optimization (PSO) algo-
rithms, and has more diversity in the search space and a better ability to converge
towards the optimal solution. The second one, named pareto dominance for makes-
pan, cost and energy (PDMCE), is implemented based on GA and non-dominated
solutions to achieve optimum convergence and diversity of the Pareto front.

Journal of Network and Systems Management (2024) 32:89 Page 3 of 37 89

We consider a workflow application modeled as a directed acyclic graph (DAG)
and a heterogeneous cloud platform, along with a set of continuous datasets that
have to be processed by each task in a workflow. The pay-as-you-go cost model is
considered based on hourly periods and related to our energy model. Moreover, we
consider an initial boot time for a computer node as it needs some time to be avail-
able for executing users’ tasks. We formulate mathematical models and conduct an
in-depth investigation through workflow execution dynamics to ensure an accurate
performance prediction.

The rest of the paper is organized as follows. Section 2 presents related work.
Section 3 constructs cost models and formulates the optimization problem. Section 4
provides a brief introduction to the multi-objective optimization problem (MOP).
The approaches are detailed in Sect. 5. Performance evaluations are discussed in
Sect. 6. Section 7 concludes the work.

2 Related Work

Workflow scheduling in distributed systems has been widely studied over the years,
starting from homogeneous clusters and multiprocessors with a limited set of
resources [4, 5] to the most recent utility-based cloud computing with heterogeneous
resources [6–13]. Many solutions have been proposed to solve the scheduling prob-
lem using traditional techniques including first come first serve (FCFS), shortest
job first (SJF), Min-min, and round robin (RR) [14], etc., which are mostly used to
schedule parallel tasks and maintain proper utilization of resources. They are simple
and deterministic, but usually get stuck in a local optima [15]. Workflow scheduling
problems in heterogeneous distributed environments are NP-complete and involve
an extremely large search space. It is infeasible and computationally expensive to
find an optimal solution within polynomial time. Heuristic and meta-heuristic tech-
niques are used to find near-optimal solutions and investigate global optima.

Many workflow schedulers have used heuristic techniques to find near-optimal
solutions and optimize different metrics such as a single objective as the makes-
pan [8, 16, 17] or bi-objectives as makespan with cost [18–20] or makespan with
energy consumption [21, 22]. These heuristic scheduling techniques are based on
list-based scheduling. List-based scheduling is proper for the workflow of many
tasks competing for a limited number of resources, which prioritizes the tasks
and maps them based on their priorities. The second type of heuristic methods is
cluster-based algorithms [23, 24] that assume an unbounded number of machines;
therefore, they are mostly not feasible for practical use. The last type is the dupli-
cation-based algorithms [25–27], which mostly have a high time complexity. In
general, list-based scheduling is a famous type which has been used through lit-
erature. The majority of algorithms of this type consider either mono-objective or
bi-objective optimization techniques and consider other objectives as constraints.
The disadvantage of them is that the computed solution depends on workflow
characteristics as different workflow requires independent constraints, so any
change in the tasks will require recomputing these constraints. Moreover, the
user needs to have a knowledge of the workflow’s and resources’ characteristics

 Journal of Network and Systems Management (2024) 32:89 89 Page 4 of 37

to specify right constraints, for example, the user might constrain the execution
to 100Wh, while the entire energy execution requires 150Wh, which will lead to
some failures [28]. Finally, in order to modify these algorithms to handle mul-
tiple objectives, the time to compute the scheduling solution may increase tre-
mendously, so currently, many efforts move to the third scheduling algorithms
category.

Meta-heuristic methods have become popular techniques in the last decade for
multi-objective optimization problems (MOPs) to find near-optimal solutions, which
deal with a massive search space compared with heuristic techniques. Recently, a
number of nature-inspired meta-heuristic-based techniques, such as artificial bee
colony (ABC), ant colony optimization (ACO), bat algorithm (BA), differential evo-
lution (DE) [29], genetic algorithm (GA), particle swarm optimization (PSO), and
simulated annealing (SA), have been applied to the task scheduling problem. Meta-
heuristic scheduling approaches have an iteration over a population, which consists
of the scheduling solutions converging to an optimal one, instead of producing a
single final solution as in the previously mentioned methods. These schedulers con-
sider a centralized architecture that optimizes conflicting objectives. They provide a
static solution prior to the execution of the workflow and are suitable for offline or
stochastic problem types.

In the last decade, different research works have adapted the GA to solve the
workflow mapping problems [6, 30–37]. Zhu et al. [34] present an evolutionary
algorithm EMOGA based on GA, which does not take resource acquisition delay
nor energy consumption into account. Rehman et al. [35] also propose an algo-
rithm MOGA based on GA, which optimizes makespan and cost under deadline and
budget constraints, and also provides an energy-efficient solution. In [38], Taluk-
der et al. propose a scheduling approach using multi-objective differential evolu-
tion (MODE), which gives a trade-off solution for time and cost. Most works have
focused on optimizing two objectives, and lacked a comprehensive workflow sched-
uling solution that combines realistic mathematical modeling and cloud resource
characteristics. The GA encoding scheme mostly represents task-to-resource map-
ping without considering task dependencies. Also, their genetic operations consider
only the mapping string without performing any operations on the task order string.
In addition, most of them combine the objectives functions into a scalar fitness func-
tion using weights, where the selected values of these weights are critical for an
accurate solution.

Other works have adapted PSO method [9, 39–43]. In [40], Rodriguez et al. pre-
sent a static cost minimization algorithm under the deadline constraints, which com-
bines resource provisioning and task scheduling methods for executing workflows in
IaaS clouds. The algorithm considers basic cloud features such as a pay-as-you-go
model, heterogeneity and elasticity of the resources, VM performance variation, and
boot time. Differential evolution (DE) is a parallel direct search method and widely
used for solving complex MOPs [44]. There is another meta-heuristic to solve global
optimization problems named symbiotic organisms search (SOS) [45], which is

Journal of Network and Systems Management (2024) 32:89 Page 5 of 37 89

based on the interactive behavior of organisms. In [46], Anwar et al. present a hybrid
bio-inspired metaheuristic for multi-objective optimization (HBMMO) algorithm
based on PEFT algorithm [47] and SOS algorithm.

Other solutions use the Pareto front computation to generate a set of trade-
off schedules called Pareto front, which allows users to select the most appropri-
ate solution they need [48–50]. Multi-objective heterogeneous earliest finish time
(MOHEFT) algorithm [48] is an extension to HEFT algorithm that optimizes both
makespan and cost for scheduling workflows in Amazon EC2. It calculates a set of
intermediate solutions of workflow scheduling in each step for each task, instead of
one produced by HEFT. In [49], Fard et al. propose a Multi-Objective List Schedul-
ing algorithm to compute a set of Pareto-based solutions and present a four-objec-
tive case study including the makespan, economic cost, energy consumption, and
reliability. Some objectives are specified as constraints with their distances to the
dominant solutions being maximized, while others with their distances to the domi-
nant solutions being minimized. These algorithms produce good results when the
workflow size is small. Recently, some researchers have proposed hybrid multi-
objective algorithms by combining the merits of two or more approaches [42, 46,
51]. However, most of them take a long time to converge due to the random alloca-
tion of tasks for their initial population.

Our main contributions of this work are that we consider a multi-objective opti-
mization problem of makespan, cost, and energy consumption, develop realistic
mathematical models for workflows and cloud resources, and propose two schedul-
ing algorithms, MOMCE and PDMCE, to optimize workflow executions with three
objectives simultaneously. Moreover, each algorithm has unique contributions as
follows. MOMCE develops an algorithm that combines the characteristics of GA
and PSO algorithms for better diversity in search space. PDMCE develops novel
genetic operators for crossover and mutation to explore the search space more effec-
tively. It applies non-domination sorting and crowding distance to rank the solutions
and select the elite individuals for the next population, and obtains a fine Pareto front
once the termination criteria are reached. It also applies a Fuzzy-based approach to
select the best compromised solution among a set of obtained solutions.

3 Models and Problem Formulation

3.1 Workflow Model

We model a scientific workflow as a directed acyclic graph (DAG), Gw = (Vw,Ew)
where Vw = {t1, t2, ..., tm} is a set of m tasks and Ew is a set of directed edges. Each
task is characterized by its size CLti , which represents computational load expressed
in million of instructions (MI) [19]. The dependency between two tasks is mod-
eled as a directed edge eij(1 ≤ i, j ≤ m) , and data transfer size along an edge eij is zij ,

 Journal of Network and Systems Management (2024) 32:89 89 Page 6 of 37

representing the file size in Megabytes (MB). The precedence constraints ensure that
a child task cannot start execution before receiving the data from all of its parents.
We assume that a given DAG has one entry task tentry with no predecessors and one
exit task texit with no successors. For an illustration purpose, a sample workflow is
shown in Fig. 1. The number above each edge is a data transfer size and the number
inside a square is a task name, where the entry task tentry is t1 and the exit task texit is
t8 , respectively.

3.2 Cloud Resource Model

We assume a hardware platform consisting of a set of heterogeneous resources mod-
eled as a network graph, Gcn = (Vcn,Ecn) , where Vcn = {r1, r2, ..., rn} denotes a set
of n computer nodes connected by |Ecn| links. Each node has its own configuration
as represented by a three tuple rh = (prh , crh , frh) , where prh is the node processing
capacity in terms of the number of instructions the CPU can process per second,
million of instructions per second (MIPS) [19], crh is the cost per billing period ($/
hour), and frh is the CPU frequency(MHz). The link lhk between nodes rh and rk has
bandwidth bhk measured in megabits per second (Mbps) and minimum link delay
(MLD) dhk(seconds). MLD is a constant latency of each link during the transfer.
When both tasks ti and tj are allocated to the same node, data transfer time becomes
zero. We consider initial boot time Drh

 , provisioning delay, for a node as it needs
some time to boot the system and be available for execution. It is assumed that
there is no limitation on the number of resources used by a workflow application
and leased from the provider. In addition, we adopt the pricing model used in com-
mercial clouds based on a pay-as-you-go model. The number of used time intervals
(per hour) is called billing period bp. Users are charged for each time interval even
if they do not completely use the interval. For instance, for a unit of time that equals
60 min, if a resource is used for 70 min, the user will pay for two intervals of total
120 min. All nodes are located in the same data center, and internal data transfer is
free of cost [52]. Although the cloud provider may charge for the storage services,
they are not in the scope of this work. Additionally, each task is only mapped to one
node and has to wait until all its required input data arrive. We assume that all nodes
are processing on predefined configurations where the optimal CPU frequency is
already calculated [53].

Fig. 1 An example of workflow
application

Journal of Network and Systems Management (2024) 32:89 Page 7 of 37 89

3.3 Time Model

Since there is no resource sharing for task execution and the allocated resources dur-
ing the billing periods are exclusively used by the assigned task, the execution time
of a task ti running on a node rh is calculated as: Texec(ti, rh) =

CLti

prh

 . No resource shar-

ing also applies to the transfer time of a data size zij on an edge eij over a network
link lhk as: Ttrans(zij, eij, lhk) =

zij

bhk
+ dhk . Each node has a start and a finish timestamps

that should be updated during the mapping process. The start time of rh denoted as
ST(rh) is the earliest start time of the current mapped task, and the finish time FT(rh)
is the last period used by the last mapped task tl on rh . Then, the Current Leased
Period for a node CLP(rh) = [ST(rh),FT(rh)] is defined below:

where execCounter is a counter of the execution of ti , and increased by one for each
billing period, denoted as: execCounter = ⌈FT(tl,rh)

bp
⌉ , where FT(tl, rh) is the finish

time of tl , and is defined next. We define the Start Time (ST) of task ti on rh in Eq. 2,
and the Finish Time (FT) of task ti in Eq. 3.

In Eq. 2, rs is the selected node of the parent task tp , and Tavail(rh) = FT(ti, rh) is the
time at which rh is ready to execute a new task, which is dynamically changed during
the operation. The provisioning delay Drh

 can be zero if ST(ti, rh) < FT(rh) , which
means a task can start at the remaining paid period of rh and there is no waiting time
to set up rh . Otherwise, the execution will be delayed for the node to be ready. We
consider the boot time of a node is equal to 97 s based on the results obtained by
Mao and Murphy [54] for Amazon EC2 cloud [52]. Note that the actual start time
and finish time of ti on rh can differ from the expected ST(ti, rh) and FT(ti, rh) due to
performance variations. Makespan is the time from user submitting a workflow until
receiving the output, which can be defined as the finish time of the last task:

3.4 Monetary Cost Model

Our pricing model considers commercial cloud systems using hourly billing periods
based on Amazon EC2, in which partial hours are rounded up. The CPU frequency

(1)CLP(rh) = [ST(ti, rh), (ST(ti, rh) + (execCounter ∗ bp))],

(2)ST(ti, rh) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Drh , ti = tentry
max{Tavail(rh), max

tp∈pre(ti)
{FT(tp, rs)

+Ttrans(zpi, epi, lsh)}}, otherwise

(3)FT(ti, rh) = Drh
+ ST(ti, rh) + Texec(ti, rh).

(4)Makespanw = FT(texit).

 Journal of Network and Systems Management (2024) 32:89 89 Page 8 of 37

is already included in our execution model, which optimizes the speed of a resource
to finish a task earlier, allowing the remaining paid period to be used efficiently.
Therefore, when a task finishes with some remaining time in a paid period, we allow
next task to use this leased resource to save costs.

Since there is no resource sharing, we have three scenarios for the usage time
Tusage as shown in Eq. 5 and Fig. 2, where tasks t1, t2 and t3 are already mapped. tcurr
is currently being calculated for mapping, and it may fall in different scenarios illus-
trated by three nodes r1, r2 and r3 as follow:

 (i) On node r1 , the current task tcurr starts after the paid period ends, so the usage
time equals to its execution time.

 (ii) On node r2 , the usage time equals to zero as tcurr finishes before the end of an
already paid billing period.

 (iii) On node r3 , tcurr starts before the end of the paid period and ends after it. The
time slot before FT(rh) is paid by the last mapped task on this node, which is
t3 in this case. So, the current task only needs to pay the remaining time slots,
which is equal to the node’s new finish time newFT(r3) minus the current finish
time of the node FT(r3).

Then, the monetary cost of executing task ti assigned to node rh is:

Thus, the total monetary cost of the workflow execution is:

(5)Tusage(ti, rh) =

⎧⎪⎨⎪⎩

FT(ti, rh) − ST(ti, rh) FT(rh) ≤ ST(ti, rh)
0 FT(ti, rh) ≤ FT(rh)
newFT(rh) − FT(rh) otherwise

(6)Cexec(ti, rh) = ⌈Tusage(ti, rh)
bp

⌉ ∗ crh .

(7)Costw =
∑

rh∈Vcn

Cexec(ti, rh).

Fig. 2 Three scenarios of task
execution

Journal of Network and Systems Management (2024) 32:89 Page 9 of 37 89

3.5 Energy Model

We focus on optimizing CPU power utilization for servers, and the idle servers
can be put into sleep mode or switched off to save the total energy consumption
[55]. The common option for energy management is to use dynamic voltage
frequency scaling (DVFS) technique [56]. A standard DVFS enabled processor
can execute a task in a discrete set of frequencies (f1 < f2 < ... < fn − 1 < fn) .
The digital complementary metal-oxide semiconductor (CMOS) circuit power
consumption of a CPU consists of dynamic and static power consumption,
denoted as P = Pdynamic + Pstatic . Static power consumption is proportional to the
number of devices and includes the base power consumption of the CPU and
other components. Dynamic power consumption has three components, repre-
sented by Pdynamic = ACV2f , where A is the number of bits switching, C is the
power-consumption capacitance, V is the supply voltage and f is the clock fre-
quency. The dynamic power cost of CPU power consumption can be modeled
as a convex function of the frequency Prh

= �rh + �rh f
3
rh

 [57], where �rh is the
constant power consumption, which is the static power consumed by CPU and
other components such as disks, memory and I/O resources. �rh f

3
rh

 is the variable
power consumption, where �rh is a proportionality constant.

We consider the following power modes:

 (i) Active: the power consumed during the execution, with the server operating
under a discrete set of frequencies in the range of [fh,min, fh,max] , Prh,active

= Prh
.

 (ii) Idle: the power consumed during the idle time between the executions of differ-
ent tasks on the same server where it consumes only the base power, Prh,idle

= �rh .
The energy consumption of node rh in the active mode can be defined as:

where k is the number of tasks mapped to node rh . The energy consumption of node
rh for its idle periods can be defined as

where IDLErh
 is a set of idling slots on node rh , and T(rh,idle) is the time duration of

idling slot idle on rh . Therefore, the total energy consumption of node rh is:

Based on the above formulations, the total Energy Consumption of the entire work-
flow execution is:

(8)Erh,Active
=

k∑
i=1

Texec(ti, rh) × Prh,active
,

(9)Erh,Idle
=

IDLErh∑
idle=1

T(rh,idle) × Prh,idle
,

(10)Erh
= Erh,Active

+ Erh,Idle
.

 Journal of Network and Systems Management (2024) 32:89 89 Page 10 of 37

3.6 Problem Formulation

Assuming a cloud provider has a data center which consists of a set of n hetero-
geneous computer nodes, and a user submits a request for a streaming application
modeled as a DAG-structured workflow consisting of m tasks, the objective is to
find a mapping scheme that assigns each task to a cloud node (without violating
precedence constraints) to minimize the makespan, monetary cost, and energy con-
sumption simultaneously. This can be formulated as a multi-objective optimization
problem (MOP) as follows:

A scheduling solution is represented as follows: S = (R,M,Makespanw,Costw,ECw) ,
where R represents the resource pool containing a set of active computer nodes,
R = {rh, ST(rh),FT(rh)} , with each node having a start time ST(rh) and a finish
time FT(rh) . M is the scheduling plan that determines a node rh on which task ti is
mapped, with its expected start time ST(ti, rh) and finish time FT(ti, rh) , and is repre-
sented by four tuples M = (ti, rh, ST(ti, rh),FT(ti, rh)).

4 Multi‑objective Optimization: A Brief Overview

The process of simultaneously optimizing a collection of objectives is called multi-
objective optimization problem (MOP) [58]. Assuming without loss of generality
that minimization is the goal for all objectives, an MOP can be formally defined as:

where k(k ≥ 2) is the number of objective functions, and x = (x1, x2, ..., xn) is the
vector representing the decision variables, x ∈ S� where S′ is the set of feasible solu-
tions, and m is the number of constraints. The MOP of workflow scheduling in a
cloud computing environment can be defined as finding all vectors x = [x1, x2, ..., xn]
that minimize the vector F(x) = [f1(x), f2(x), ..., fk(x)] . Each component of x repre-
sents a resource to which a task is mapped [28].

4.1 Design Components

Many MOP use meta-heuristic techniques to approximate the Pareto front based on
the following search components.

(11)ECw =
∑

rh∈Vcn

Erh
.

(12)min
all possible mappings

Makespanw,

Costw,

ECw.

(13)
Minimize F(x) = [f1(x), f2(x), ..., fk(x)],

subject to gj(x) ≤ 0, j = 1, 2, ...,m

Journal of Network and Systems Management (2024) 32:89 Page 11 of 37 89

1. Fitness Assignment: Guides the search algorithm toward Pareto optimal solutions
for better convergence. A fitness function helps measure the quality of the solu-
tions according to given optimization objectives. Some classifications of fitness
assignment used by researchers in MOP are:

(a) Scalar Approach: A more traditional approach used by many algorithms
in the literature [19, 52], which transforms an MOP into a single-objective
problem using techniques such as: weighted method, distance function,
Min-Max method, or �-constraint method.

(b) Dominance-based Approach: Use the concept of dominance and Pareto
optimality during the fitness assignment process. This approach can gener-
ate a set of Pareto optimal solutions in a single run without transforming the
problem to a single-objective one. Instead of evaluating a single point at a
time as in previous approaches, it assesses the quality of a solution using
the information from previous iterations..

2. Diversity Preserving: Generate a diverse set of Pareto solutions in the objective
space. Statistical density estimation methods can be used to estimate the density
of the solutions, including the nearest-neighbor approach which uses the crowd-
ing distance concept. A higher crowding distance of a solution indicates that it is
better and more diverse.

3. Elitism: A selection strategy where the best solutions (e.g., Pareto optimal solu-
tions and best fitness values) found are chosen to build the next generation. It
allows for fast and robust performance improvement of an MOP algorithm.

4.2 Pareto Solution and Dominance Concept

In a general MOP, it is hard to find an optimal solution for all objectives simultane-
ously due to the conflict criteria. Therefore, the desired solution is considered to be
a set of potential solutions that are all optimal for one or more objectives [39, 49].
This set of all optimal solutions is called Pareto Optimal Set. We provide below a
list of the concepts for Pareto solution theory [49] used in our algorithm.

1. Pareto Dominance: a solution x1 dominates a solution x2 if x1 is at least as good
for every objective as x2 , and x1 is strictly better than x2 in at least one objective,
denoted by x1 ≻ x2 and defined as:

2. Pareto Optimality: a solution x∗ ∈ S is Pareto optimal if there are no other solu-
tions Pareto-dominates it, and it is also called an efficient, or non-dominated
solution, which is defined as:

x1 ≻ x2 ⟺ ∀ifi(x1) ≤ fi(x2) ∧ ∃jfj(x1) < fj(x2).

∄x ∈ S ∶ x ≻ x∗.

 Journal of Network and Systems Management (2024) 32:89 89 Page 12 of 37

3. Pareto Optimal Set: is a set P∗ of all the solutions that are not dominated by any
member of the solution set, and it is defined as:

4. Pareto Front: is the set of all Pareto efficient solutions, which is the line or the
boundary of the Pareto optimal set in the objective space and can be defined as:

The goal of using the Pareto and dominance approach is to find a set of solutions
that should be: (1) well-converged, meaning they should be as close as possible to
the Pareto front by minimizing the distance to it, and (2) well-diversified, meaning
they should be uniformly spread across the Pareto front and cover all possible ranges
of the optimal solution.

5 Technical Solutions

We propose two algorithms to solve the MOP for scheduling a scientific workflow in
a heterogeneous cloud environment: (1) One algorithm is based on Particle Swarm
Optimization using the scalar approach for fitness assignment; (2) The other algo-
rithm uses genetic operators and the dominance-based approach. These two algo-
rithms are described in the following subsections.

5.1 MOP‑Based Particle Swarm Optimization

We propose an algorithm based on a meta-heuristic optimization technique,
named multi-objective optimization for makespan, cost and energy (MOMCE),
which combines the merits of two popular MOP algorithms, genetic algorithm
(GA) and particle swarm optimization (PSO). PSO is effective in achieving
good results quickly but may sometimes get stuck in a local optima. GA gives
better solutions due to its diversity in the search space, while it operates in a
random-based manner, meaning that many of its steps are probabilistic which
do not guarantee that new individuals outperform the previous ones. The pro-
posed MOMCE solution leverages the strengths of both GA and PSO algo-
rithms by implementing the following steps: (i) initializing a population, (ii)
evaluating each particle using a fitness function, and (iii) repeating these steps
for a predetermined number of iterations. The pseudo-code of the algorithm is
presented in Algorithm 1, and discussed as follows.

P∗ = {x∗ ∈ S|∄x ∈ S, x ≻ x∗}.

PF∗ = {F(x) = [f1(x), f2(x), ..., fk(x)]|x ∈ P∗}.

Journal of Network and Systems Management (2024) 32:89 Page 13 of 37 89

Algorithm 1 MOMCE(G
w
,G

cn
)

1. Initialization: The first phase of the proposed optimization technique is generat-
ing an initial population of solution candidates. Here, a population is called a
swarm, and each candidate solution is called a particle. The quality of the initial
population is crucial as we need to reflect the heterogeneity of the resources
which provides a guidance to the algorithm to explore different solutions and
allows for faster convergence. All generated mapping schemes should be under
the condition that they satisfy the precedence constraints. So we define sorted-
TArray which prioritizes tasks according to their computational requirements.
One of the particles includes a mapping generated by a greedy approach which
finds a feasible solution minimizing our objectives. Another particle includes a
mapping generated by HEFT approach [17] which minimizes the makespan only.
The remaining particles are initialized randomly, Lines (1–3). Each particle is
characterized by three 1 × m vectors, where m is the number of tasks: (i) Position
(Xp) where 1 ≤ p ≤ PNum , and PNum is the swarm size, which encodes a mapping
between tasks and resources. The range of the particle movement in (Xp) equals
to n, the number of resources. (Xp) can be given as: Xp = [x1, x2, x3, ..., xm] . (ii)
Velocity (Vp) defines the particle’s movement, and all velocities are initialized to
zero for all particles. (iii) Personal Best (pBestp) records the best solution found
so far by the particle, and its position is set to be equal to the initial particle’s
position, Line 4.

 Journal of Network and Systems Management (2024) 32:89 89 Page 14 of 37

2. Fitness Function: At each generation, we evaluate particles based on the fitness
function using their positions. The Cost Function for the current task tcurr to be
mapped on resource rh is denoted as CF(tcurr, rh) . CF selects the best node that
minimizes the following expression:

 where �1 , �2 and �3 are fractional numbers (0 ≤ �1,2,3 ≤ 1) . Since three objec-
tives have the same preference, we set �1 = �2 = �3 = 1∕3 . Makespanpart(Gw) ,
Costpart(Gw) , and ECpart(Gw) are the objectives that need to be evaluated during
the partial mapping. Makespanpart(Gw) =

∑
ti∈CP

FT(ti, rh) , where CP is a critical
path from tentry to tcurr . Costpart(Gw) =

∑
ti∈M

Cexec(ti, rh) , where ti is the mapped
task whose mapping result is stored in a tuple M. ECpart(Gw) =

∑
rh∈R

Erh
 , where

rh is the resource leased in the resource pool R.
3. Update pBest and gBest: Personal best (pBest) and global best (gBest) are essen-

tial elements in PSO algorithm as the progress of the particles is based on their
values that change with each generation to ensure their movement towards the
best solution. pBest is a vector for each particle that holds the best solution found
so far by the particle, where gBest is one vector for the whole swarm holds the
best solution among all particles. We compare the particle’s current position with
its best position from the previous generation and update pBest. For gBest, it is
equal to the solution with the smallest fitness value among all.

4. Selection: Not all generated particles are evolved through the next operator.
Therefore, The top-half best particles with the minimum fitness values are marked
and regarded as (elite) parents for placing them in a mating pool for crossover
operator. We sort the swarm in an ascending order according to their fitness. Then,
select two particles as parents in Lines 9–16, and pass them to the crossover func-
tion.

5. Crossover: The occurrence of crossover is based on the crossover rate
crossProb. We use a single-point crossover to generate a new child. A ran-
dom number is selected in the range of the total number of tasks to indicate
the division point. The child’s position contains two parts which represent
the resource mapping. The first part takes the first mapping from parent1
until the division point. The second part takes the solution starting from

(14)
CF(tcurr, rh) = �1 ×Makespanpart(Gw) + �2

× Costpart(Gw) + �3 × ECpart(Gw),

Fig. 3 An example of MOMCE
crossover operator

Journal of Network and Systems Management (2024) 32:89 Page 15 of 37 89

this division point to the end of the parent2. The resulted child is saved to
the swarm, and its fitness will be evaluated and saved. An example of the
crossover operator is illustrated in Fig. 3, where a workflow of 8 tasks is
mapped to 4 computing nodes and the division point is set to 3.

6. Mutation: The use of mutation operator is needed to avoid getting stuck in a local
optima. We go through the particles, randomly select a task, and assign it to a
random resource. If the mutated particle’s fitness is better than the original one,
save the mutated one. During this iteration, we need to check and update gBest.

7. Update Velocity and Position: The basic concept of PSO lies in accelerat-
ing each particle toward the best position (pBest) found by itself, and the
global best position (gBest) obtained by any particle so far, with a random
weighted acceleration at each step. Each particle is compared with its previ-
ous pBest. If they are equal, the velocity is decreased; otherwise, the velocity
is increased. Similarly, the velocity is decreased when gBest and particle’s
position are equal; otherwise, it is increased. After that, the particle com-
putes its new position by adding the velocity vector to the position vector to
generate a new generation that has better fitness than the previous one. The
new velocity and position are updated using Eq. 15. If the updated velocity
and position exceed the search space, set them back.

 where Vp(t + 1) is the velocity of particle p at iteration t + 1 , w is the inertia
weight, c1 and c2 are acceleration coefficients, r1 and r2 are random numbers in
the range [0,1], and Xp(t + 1) is the position of particle p at iteration t + 1.

8. Termination Condition: The algorithm terminates when the maximum number of
iterations is reached. Then, the smallest fitness saved in gBest is selected as the
scheduling solution.

5.2 MOP‑Based Non‑dominated Genetic Algorithm

We present a multi-objective optimization algorithm based on pareto dominance
for makespan, cost and energy (PDMCE) using GA and non-dominated solutions
to achieve the required objectives. We further extend its operators to take both task
scheduling order and task mapping into consideration. The key idea of the pro-
posed PDMCE algorithm is illustrated below and the pseudo-code is presented in
Algorithm 2.

(15)

Vp(t + 1) = wvp(t) + c1r1(pBestp(t) − Xp(t))

+c2r2(gBest(t) − Xp(t)),

Xp(t + 1) = Xp(t) + Vp(t + 1),

 Journal of Network and Systems Management (2024) 32:89 89 Page 16 of 37

Algorithm 2 PDMCE (G
w
,G

cn
)

1. Encoding: The solution of the proposed optimization technique is called a popula-
tion, and each candidate solution - individual, is called a chromosome. Each indi-
vidual comprises of two components: scheduling order string and task mapping
string. The scheduling order string represents a DAG structure under a topological
sorting which satisfies the precedence constraints. We assign an integer index to
each task according to their precedence. Note that if task ti occurs before task tj
in the scheduling order, it does not necessarily mean the execution of ti must start
before tj . The start time of a task is determined by its predecessors and the hosting
node as shown in Eq. 2. The task mapping string indicates the mapping of a task
to a computer node. The length of both strings equals to the number of workflow
tasks.

2. Initialization: Assuming the size of a population is Pop, the initial population is
generated by different methods in order to accelerate the search procedure for

Journal of Network and Systems Management (2024) 32:89 Page 17 of 37 89

faster convergence: (i) The first individual minimizes the makespan only by a
greedy approach. (ii) The second individual finds the cheapest schedule using a
greedy approach. (iii) The third individual minimizes the energy consumption
only also by a greedy approach. In the above three strategies, we use B-rank met-
ric [17] to compute the task order which indicates the distance of the task to the
end of the workflow, and save it in the scheduling order string. (iv) For the last
initialization strategy, we prioritize the tasks according to their computational
requirements in each level. The initialization phase is shown in Lines 7–12, Algo-
rithm 2.

3. Parent Selection: We use a tournament based selection approach to select the
parent chromosomes for producing offspring in Lines 17–18, Algorithm 2. As
shown in Algorithm 3, it takes the population and another parent id as inputs. The
selection procedure randomly chooses an id from the population to include it in
a mating pool. To ensure distinct parents, the id being -1 means this is the first
parent for the parent pair, or it is not equal to the other parent id. Both parents
should have different objective values for makespan, cost and energy in Line
6, Algorithm 3. Then, we need to get the non-dominated sort for the produced
mating pool in Line 9, Algorithm 3. Finally, the algorithm returns a parent id by
randomly choosing a non-dominated chromosome in the first front.

4. Crossover: We use a two-point crossover to generate two chromosomes (child1
and child2). The occurrence of the crossover is based on the crossover rate
crossProb which equals 100% , as shown in Lines 19–21, Algorithm 2. The crosso-
ver operation defined in Algorithm 4 is applied to both the scheduling order and
task mapping strings. As shown in Algorithm 5, two random points p1 and p2
are selected such that 1 ≤ p1 < p2 ≤ m , where m is the total number of workflow
tasks. We construct a subOrder and a subMap of size (p2 − p1 + 1) . subOrder
holds the order for all tasks that fall in a range between p1 and p2 in the order
string of parent1 and arranges them according to the execution order in parent2
under the dependency constraint. subMap holds the mapping of these tasks in
subOrder as they appear in parent2. Further, copy these sub-strings to the new
child string at index (p1, .., p2). Then, copy all tasks’ orders and mappings at
index (1, .., p1 − 1, .., p2 + 1, ..,m) from parent1 to a new child. Finally, the algo-
rithm will return the new child. For example, as shown in Fig. 4, we choose two
random points: p1 = 4 and p2 = 6 from parent1. The tasks (t4, t7, t5) between p1
and p2 take their execution order from parent2, which is (t4, t5, t7) , as well as their
mapping (r3, r1, r3) from parent2, and put them into a sub-schedule. Then, copy
all tasks at indexes (1, 2, 3, 7, 8) with their orders and mappings from parent1 to
child1. Finally, add the sub-schedule into child1 at indexes (4, 5, 6). We construct
child2 in a similar way.

5. Mutation: Mutation operator is used to avoid getting stuck in a local optima. The
topological level of each task can maintain the dependency constraint of the work-
flow tasks. We choose a random number between 0 and 1, and check whether it
is less than or equal to mutation rate mutPob. If so, we perform mutation on both
generated children from the crossover operation in Lines 22–24, Algorithm 2. As
shown in Algorithm 6, a mutation that is done on the scheduling order will result
in some changes in the task mapping. Therefore, if we cannot swap the tasks’

 Journal of Network and Systems Management (2024) 32:89 89 Page 18 of 37

orders, we swap their mappings. The algorithm chooses two random numbers
p1 and p2 such that 1 ≤ p1 < p2 ≤ m , where m is the total number of workflow
tasks. When the topological level of the tasks at p1 and p2 are equal, swap the
tasks’ orders in Lines 4–5, Algorithm 6. Then, if there are any task ts , where
p1 < s < p2 , between the new swapped tasks such that level(ts) < level(tp1) and
tp1 ∈ succ(ts) , swap the tasks at p1 and s in Lines 6–9, Algorithm 6. Similarly,
we check the dependency between ts and the new task at index p2 in Lines 10–13,
Algorithm 6. Otherwise, if we cannot swap the tasks’ orders, we swap the task
mapping at indexes p1 and p2 in Lines 14–15, Algorithm 6. Finally, the mutation
procedure returns the new mutated child. An example to demonstrate the muta-
tion operator is shown in Fig. 5, where the selected random points are p1 = 4
and p2 = 7 , and level(tp1) = level(tp2) . We swap the tasks t5 and t7 , and check the
tasks at the indexes s = 5 and s = 6 , respectively. We find level(t3) < level(t7) , so
we swap task t3 with the task t7 at index p1 = 4.

6. Fitness Evaluation (next generation selection): We use the concept of dominance
and Pareto front [59]. We first combine the parent population with the children
population, and each individual is set with a rank of non-dominated sorting. Each

Fig. 4 An example of PDMCE with two point crossover

Fig. 5 An example of PDMCE
mutation operator

Journal of Network and Systems Management (2024) 32:89 Page 19 of 37 89

solution with the same rank is placed in the same front. The smaller front solu-
tions have a higher chance to maintain elitism to the next generation. Next, we go
through the ranks and calculate the crowding distance (CD) to find the solution
that maintains more diversity preserving. The selection method chooses the best
(Pop) solutions from parent and children population of size (2 ∗ Pop) as follows:
(i) For the solutions in different ranks, the solutions with lower rank are preferred;
(ii) For the solutions in the same rank, the solutions with larger crowding distance
are preferred in Lines 26–28, Algorithm 2.

7. External Archive: The algorithm maintains an external archive (EA) to store one
non-dominated chromosome found after the evaluation process in each generation
in Line 29, Algorithm 2, based on the Pareto dominance and crowding distance
discussed in step 6.

8. Termination Condition: The algorithm terminates once the maximum number of
generations is reached. When the optimization process ends, the EA is combined
with the last population, and the final set of all non-dominated solutions in the
objective space is returned as the result, which is called Pareto front. For the par-
ticular objectives in this study, a candidate solution is a Pareto front if either it is
at least as good as all other solutions for all three objectives in terms of makespan,
cost and energy consumption, or it is better than all other solutions for at least one
of these objectives.

Algorithm 3 TournamentSelection (population, otherId)

Algorithm 4 Crossover (parent1, parent2)

 Journal of Network and Systems Management (2024) 32:89 89 Page 20 of 37

Algorithm 5 twoPointCross (parent1, parent2)

Algorithm 6 Mutation (child)

6 Performance Evaluation

The proposed algorithms are implemented in C++ object-oriented framework. For a
better performance evaluation and comparison purpose, we conduct the experiments
in three categories summarized as below, and compare the performance with a set of
existing approaches in the literature.

Journal of Network and Systems Management (2024) 32:89 Page 21 of 37 89

1. Performance Comparison between the proposed MOMCE and multi-objective
discrete particle swarm optimization (MODPSO) [39].

2. Performance Comparison between the proposed PDMCE and other existing
Multi-objective Optimization Problems.

3. Performance Comparison between MOMCE and PDMCE algorithms.

6.1 Experimental Settings

In order to conduct a thorough performance comparison, we develop a workflow
and network generator program to create different sizes of workflows and networks
by varying a four-tuple (m, |Ew|, n, |Ecn|) , where m is the number of tasks, |Ew| is
the number of edges, n is the number of nodes, and |Ecn| is the number of links.
All networks are considered fully connected. We conduct a performance comparison
between MOMCE and MODPSO [39] algorithms, both of which optimize the same
objectives. We select 20 test cases with different workflow sizes and divide them
into four size groups, namely Small, Medium, Large, and XLarge, with five different
workflow sizes in each group. For example, in the “Small" group, the five workflow
sizes are (6,10), (10,18), (15,30), (19,36) and (22,44). In each pair, the first num-
ber indicates the number of tasks, and the second number represents the number
of dependency edges in a workflow. For each workflow size, we generate 20 differ-
ent workflow instances, and run each workflow instance on 4 cloud computer nodes
using the same number of particle swarm PNum = 20 and the number of iterations
GNum = 30 . The average value of each objective for the 20 workflow instances is
calculated in each test case using the same workflow size. The detailed information
of the test cases and the cloud is tabulated in Table 1.

The performance comparison of the proposed PDMCE is done with a set of simi-
lar approaches, including MOHEFT [28, 48], MODPSO [39], and MOGA [35].
The test cases for the PDMCE algorithm are grouped into four categories: Small,
Medium, Large and XLarge, varying from small to lager cases. For the illustration
purpose, we list one case from each category as shown in Table 2. For example, a
workflow in the “Small" category has 22 tasks interconnected with 44 edges, and
is mapped on 4 cloud nodes where the population size is set to 60, and the number
of generations (GNum) is set to 30. The sizes of the generated workflows vary in
the following parameters within a suitably predefined range: (i) tasks’ computational
load from 1 to 500 MI; (ii) the inter-task data transfer size from 10 MB to 10 GB.

Table 1 20 MOMCE test cases in four different size groups

Group Workflows (Task#, Edge#) Cloud Nodes# PNum GNum

Small (6,10), (10,18), (15,30), (19,36), (22,44) 4 20 30
Medium (26,50), (30,62), (35,70), (40,78), (45,96) 8 50 50
Large (50,102), (55,124), (60,240), (70,310), (80,420) 10 100 100
XLarge (90,500), (100,660), (110,720), (120,810), (150,1100) 12 100 100

 Journal of Network and Systems Management (2024) 32:89 89 Page 22 of 37

The generated workflows follow a common experimental settings used in the litera-
ture [60, 61].

We assume that the cloud data center provides 12 different types of nodes. The
processing capacity and price are self-defined. The prices are in accordance with the
processing capacity, which means that if the nodes have an ascending order of their
processing capacity: pr1 < pr2 < ... < prh < prh+1 , their prices have the same order:
cr1 < cr2 < ... < crh < crh+1 [3]. Given the trade-off between energy consumption and
performance, the optimal frequency level frh,opt for a node rh is adopted from [57, 62],
which should be within the discrete set [frh,min , frh,max] and calculated as below:

Boot time of a node is set to 97 s based on the results obtained by Mao and Murphy
[54] for Amazon EC2 cloud [52]. Table 3 summarizes the network characteristics
used in our experiments.

For PDMCE, the crossover probability is set to 1.0, the mutation probability is
set to 0.5, and tournament size is 7. For MOHEFT, the number of trade-off solu-
tions equals to Pop as shown in Table 2. For Eq. 15, learning factors are defined
as c1 = c2 = 2.0 , inertia weight w = 0.5 , and the random numbers for updating

frh,opt =
3

√
�rh

2�rh

.

Table 2 PDMCE test categories Category Node# Task# Edge# Pop GNum

Small 4 22 44 60 30
Medium 8 50 102 60 50
Large 10 100 660 80 100
XLarge 12 150 1100 100 100

Table 3 Network characteristics Resource
h

type
Capacity
(MIPS)

Cost
($/h)

�
i

�
i

f
min

f
max

1 100 0.10 60 4.0 0.5 1.0
2 150 0.20 75 5.0 0.8 1.5
3 200 0.35 65 4.5 1.0 2.0
4 250 0.46 75 4.0 1.3 2.5
5 300 0.58 90 4.4 1.5 3.0
6 350 0.73 90 4.5 1.8 3.5
7 400 0.90 105 4.4 2.0 4.0
8 450 1.05 105 6.5 2.3 4.5
9 500 1.45 110 7.0 2.5 5.0
10 550 2.02 120 7.5 2.8 5.5
11 600 2.50 150 7.0 3.0 6.0
12 650 3.00 150 7.8 3.3 6.5

Journal of Network and Systems Management (2024) 32:89 Page 23 of 37 89

velocity and position equations are r1, r2 ∈ [0, 1] . For MOGA, the crossover prob-
ability and the mutation probability are both defined as 0.5. To achieve the Pareto
optimal solutions of the algorithms in comparison, each category is repeated 50
times, and the results are obtained by taking the average.

6.2 Performance Metrics

To evaluate the performance of the proposed solutions, we need to consider the fol-
lowing two things: (i) The distance between the optimal solutions obtained by the
algorithms and the true Pareto front needs to be minimized. (ii) The distribution of
optimal solutions should be uniform and equally spaced. Based on these two consid-
erations, quality indicators are needed to evaluate the performance of the obtained
solutions, in which, generational distance (GD) for the first one and Spacing for the
second one [63] are adopted, respectively. We also measure the computational time
needed to run each algorithm. We apply a Fuzzy-based approach [64] to select the
best compromised solution among the set of solutions obtained by the algorithms.

In both indicators, we need to define the true Pareto front PF∗ , which is obtained
by merging the solutions calculated by all tested algorithms. The non-dominated
solutions from this merged set are selected, and other solutions dominated by this
true front are discarded. Then, we take the non-dominated results obtained by each
algorithm, called the algorithm’s Pareto front, for the comparison. Finally, we nor-
malize the makespan, cost and energy consumption of the true Pareto front, and
each algorithm’s Pareto front of these objectives as they are on different scales.

1. Generational Distance (GD): This indicator measures the convergence of a given
algorithm front and its proximity to the true Pareto front. GD is calculated as:

 where F is the number of non-dominated solutions obtained by an algorithm,
Pareto front, and di is the Euclidean distance in the objective space between each
solution and the nearest member of the true Pareto front. The small value of GD
reveals a better performance of the achieved solution set which indicates that the
solution set is close to the true Pareto front.

2. Spacing: This indicator provides the information about the diversity of the solu-
tion set obtained by an algorithm. Spacing metric is defined as:

 where di is the distance between two successive solutions in the obtained front
by an algorithm, and d is the mean value of the distance measure di . The smaller

(16)GD =
(
∑F

i=1 d
2

i
)
1

2

F
,

(17)Spacing =

√√√√ 1

F

F∑
i=1

(di − d)2,

 Journal of Network and Systems Management (2024) 32:89 89 Page 24 of 37

value of the spacing metric is desirable for evaluating the returned solution set,
indicating the returned set has a uniform distribution.

3. Best Compromised Solution: The solution set obtained by PDMCE and the other
tested algorithms comprises of the solutions that meet different objectives under
certain conditions. Therefore, it is desirable to find the best compromised solu-
tion among the set, which can be used as another performance criteria to decide
which algorithm produces the best result. The compromised solution can also be
an option to a decision maker. We use the merged solution set of all algorithms
through all executions without taking the non-dominated set. Then, we apply a
Fuzzy-based approach [64] using a linear membership function defined as fol-
lows:

 where �k is the membership value of the kth objective function, and f max
k

 and
f min
k

 are the maximum and minimum values of this objective, respectively. The
membership function �i for the ith non-dominated solution is defined as:

K is the number of objective functions, which is equal to 3 in this work. The best
compromised solution is the one with the maximum value of the membership �i.

6.3 Comparison Between MOMCE and MODPSO

We implement multi-objective discrete particle swarm optimization (MODPSO)
[39], which exploits the heterogeneity and the marketization of the cloud environ-
ment in order to find schedules that optimize makespan and cost using the PSO
method. In addition, it utilizes the dynamic voltage and frequency scaling (DVFS)
technique to minimize energy consumption. It initializes the voltage and frequency
of each resource randomly, and apply the HEFT algorithm [17] to all particles for
generating a feasible schedule that minimizes the makespan. However, it does not
consider intervals for the monetary cost.

(18)𝜇k =

⎧
⎪⎨⎪⎩

1 fk ≤ f min
k

f max
k

−fk

f max
k

−f min
k

f min
k

< fk < f max
k

0 fk ≥ f max
k

,

(19)�i =

K∑
k=1

�k.

Fig. 6 The average fitness of
MOMCE and MODPSO

Journal of Network and Systems Management (2024) 32:89 Page 25 of 37 89

We observe that MOMCE achieves a better fitness value in all test cases and out-
performs MODPSO in most of cases for each individual objective. Figures 6 and 7
plot the average values of 20 test cases. MOMCE achieves a better average fitness
value at around 11.6% in “Medium" category (case 10), and 59.8% in “XLarge"
category (case 20) than MODPSO in Fig. 6. In Fig. 7a, the average makespan of
MODPSO is comparable to MOMCE, and in some cases, such as cases 5 and 6,
MODPSO is better because it uses HEFT which only reduces the makespan to ini-
tialize their population. Therefore, most of the tasks are mapped to the fastest nodes
without taking cost and energy into consideration. Even if MODPSO performs a lit-
tle better (4.72% and 8.48%) on makespan in cases 5 and 6, MOMCE has significant
improvements of the cost at around 39.71% and the energy consumption at around
61.66% in cases 5 and 6, respectively, as well as the overall fitness values. In case
20, MOMCE achieves a superior performance by 9.19% for makespan, 41.85% for
cost, and 67.81% for energy consumption comparing to MODPSO.

Fig. 7 Average objectives of
MOMCE and MODPSO

 Journal of Network and Systems Management (2024) 32:89 89 Page 26 of 37

In addition, our algorithm performs a fair distribution of the workload among the
resources, while MODPSO has a low quality in terms of load balancing as there is
more overloading on some fast nodes than others. It can be concluded that MOMCE
outperforms MODPSO for better results and search efficiency.

To further investigate the robustness of MOMCE with other algorithms in com-
parison, we use 15 test cases out of the previous 20 cases to study the standard
error of the algorithms. For each problem case, we randomly generate 10 problem
instances and run each algorithm 40 times. We obtain the best fitness values for each
problem instance and calculate the mean and the standard error as shown in Fig. 8.
We observe some overlap between the two algorithms for small test cases, which
indicates small search spaces make the convergence fast. With larger search space,
MOMCE achieves a better performance with a smaller standard error. Increasing
either the number of problem instances or the number of runs typically decreases the
standard error of MOMCE furthermore. This figure has demonstrated the robustness
and the stability of MOMCE in achieving a better fitness value in terms of optimiz-
ing three objectives simultaneously for various problem scales and topologies.

6.4 Comparison Between PDMCE and Other MOP Approaches

For a more general and extensive comparison, we implement the following
algorithms.

• MOHEFT algorithm [17], which computes a set of Pareto-based schedules in
order to optimize the makespan and cost. Another version of the algorithm is
proposed to optimize the makespan and energy consumption in [28]. For each
workflow task, MOHEFT builds a set of intermediate solutions based on avail-
able cloud nodes. Then, it measures the quality of these solutions using the
dominance relationship, and ensures their diversity using the crowding distance
method.

• MOGA is based on a basic GA to optimize the same objectives simultaneously.
It works with a gap search algorithm to find the gaps between the consecutive
busy intervals of the leased resources and fills them by independent tasks [35].

• MODPSO is described in Sect. 6.3.

Fig. 8 Fitness values with
standard errors for MOMCE and
MODPSO

Journal of Network and Systems Management (2024) 32:89 Page 27 of 37 89

All test cases are executed for 50 times using the PDMCE algorithm in comparison
with three other algorithms, MOHEFT, MODPSO and MOGA. The obtained Pareto
optimal solutions are plotted in Figs. 9, 10, 11, and 12, where we observe that a
lower makespan with a faster computer node is usually associated with a higher cost.
In addition, we see that most of the solutions produced by PDMCE are lying in a
better front and better minimization region as compared to other algorithms for all
test cases.

Figure 9 shows a workflow example of 22 tasks in the “Small" category in
which all algorithms tend to compute optimal solutions easier and faster. There-
fore, MODPSO results are comparable to ours, but PDMCE still achieves a better

Fig. 9 Pareto fronts among four
algorithms for Small category
(m = 22)

Fig. 10 Pareto fronts among
four algorithms for Medium
category (m = 50)

Fig. 11 Pareto fronts among
four algorithms for Large cat-
egory (m = 100)

Fig. 12 Pareto fronts among
four algorithms for XLarge
category (m = 150)

 Journal of Network and Systems Management (2024) 32:89 89 Page 28 of 37

performance and its Pareto front is superior. As the workflow sizes get larger, the
process of reaching optimal solutions has become a challenging task. However,
PDMCE still outperforms MODPSO with a better convergence and a uniform dis-
tribution of solutions. When comparing PDMCE with MOHEFT, the superiority
is clear as MOHEFT makes more search directions in the solution space, while
PDMCE avoids unnecessary search directions. MOGA produces close solutions
to the minimization region, but it does not perform a uniform distribution of the
solution set, while PDMCE delivers more consistent performance with a better
distribution for non-dominated fronts. Moreover, when the user wants a good
trade-off among time, cost and energy consumption, the Pareto front achieved
by our PDMCE algorithm presents a large number of candidate solutions. We
observe that the best compromised solution for each test case is obtained by the
PDMCE algorithm as shown in the figures.

Table 4 presents the results of the performance metrics for the four algo-
rithms. We generate 10 problem instances for each problem category, and run
each algorithm 10 times. We then calculate the average of the GD and spacing
along with standard error (SE) [42]. As the table shows, the GD value of the pro-
posed PDMCE is smaller than other algorithms for all four cases, which indicates
that PDMCE produces a better solution set and is closer to the true Pareto front
because it uses the dominance sorting that provides a better convergence. The
spacing metric also shows that PDMCE has lower values among others, which
shows that our method has a better search efficiency due to the smooth distribu-
tion of its solutions as compared to those of MOHEFT, MODPSO and MOGA.
Moreover, this result verifies that PDMCE is able to balance between objectives
and diversity in the solution space.

Finally, the average runtime of each algorithm for the four cases is tabulated
in Table 5. We notice that MOHEFT consumes more time comparing to other

Table 4 The performance metrics (in seconds) among four algorithms

Metric PDMCE MOHEFT MODPSO MOGA

Average SE Average SE Average SE Average SE

Small
GD 0.0048 0.0011 0.2303 0.0668 0.0302 0.0068 0.0182 0.0091
Spacing 0.0307 0.0041 0.1466 0.0975 0.0537 0.0136 0.0398 0.0091
Medium
GD 0.0057 0.0009 0.1414 0.0430 0.0286 0.0126 0.0377 0.0122
Spacing 0.0221 0.0044 0.02842 0.1257 0.0324 0.0118 0.0342 0.0125
Large
GD 0.0028 0.0008 0.1322 0.1232 0.0593 0.0266 0.1494 0.0451
Spacing 0.0206 0.0039 0.0952 0.0831 0.0423 0.0137 0.0306 0.0067
XLarge
GD 0.0021 0.0018 0.4862 0.5091 0.0223 0.0122 0.1445 0.1039
Spacing 0.0261 0.0034 0.2361 0.2784 0.3002 0.4826 0.0367 0.0170

Journal of Network and Systems Management (2024) 32:89 Page 29 of 37 89

algorithms, while PDMCE algorithm delivers the best performance among all
four algorithms in comparison, with a smaller computational time.

6.5 Comparison between MOMCE and PDMCE

We conduct experiments using 20 different sizes of workflows from small to large
categories as shown in Table 6 with 4, 8, 10, and 12 resource nodes, respectively.
The node characteristics are specified in Table 3. For all test cases, the population
sizes are set to 80, and the numbers of generations are set to 50. Each scheduling
is executed 20 times, and the corresponding results are plotted in Figs. 13, 14, 15,
and 16, respectively. For example, a workflow of 22 tasks mapped onto 4 com-
puter nodes is selected from the first category in Table 6, and the scheduling results

Table 5 Runtime (in seconds)
comparison among four
algorithms

Category PDMCE MOHEFT MODPSO MOGA

Small 0.5831 1.8082 0.687 0.5912
Medium 0.7541 2.952 1.3241 0.7425
Large 1.4771 5.427 2.4973 1.5458
XLarge 5.341 14.125 10.663 5.377

Table 6 MOMCE and PDMCE
test categories

Node # Task# Edge#

4 (6, 10, 15, 19, 22) (10, 18, 30, 36, 44)
8 (26, 30, 35, 40, 45) (50, 62, 70, 78, 96)
10 (50, 55, 60, 70, 80) (102, 124, 240, 310, 420)
12 (90, 100, 110, 120, 150) (500, 660, 720, 810, 1100)

Fig. 13 Makespan, cost and
energy consumption of PDMCE
and MOMCE algorithms for
workflow case 5 (m = 22)

Fig. 14 Makespan, cost and
energy consumption of PDMCE
and MOMCE algorithms for
workflow case 10 (m = 45)

 Journal of Network and Systems Management (2024) 32:89 89 Page 30 of 37

obtained by both MOMCE and PDMCE are displayed in Fig. 13. In addition, we
further compare both algorithms’ solutions and compute the best compromised solu-
tion for each test case using Eq. 18.

We also observe that PDMCE algorithm delivers more consistent and better
performance of varied solutions in finding better trade-off solutions for minimiz-
ing the makespan, cost and energy consumption among a set of solutions. Unlike
MOMCE algorithm which produces one solution, PDMCE’s results illustrate the
basic multi-objective optimization procedure presented in Sect. 4. However, the
solution obtained by MOMCE still falls within the minimization area and is close
to the solutions obtained by PDMCE.

In order to conduct a fair comparison and analyze the effectiveness of both algo-
rithms in terms of makespan, cost and energy consumption, we follow the similar
methodology described in [39]. We compare the solution obtained by MOMCE
algorithm with one solution in the Pareto set computed by PDMCE algorithm.
We use 20 test cases, and for each one, we first run MOMCE algorithm 20 times
and calculate the average values. Then, we run PDMCE algorithm to calculate a
set of solutions in which we select the one that is the closest to MOMCE’s value
using Euclidean distance. Finally, the comparison is done in two ways to show the
performance improvement of the objectives: (i) between MOMCE’s solution and

Fig. 15 Makespan, cost and
energy consumption of PDMCE
and MOMCE algorithms for
workflow case 14 (m = 70)

Fig. 16 Makespan, cost and
energy consumption of PDMCE
and MOMCE algorithms for
workflow case 19 (m = 120)

Fig. 17 The makespan values
among PDMCE and MOMCE

Journal of Network and Systems Management (2024) 32:89 Page 31 of 37 89

PDMCE’s closest solution, and (ii) between MOMCE’s solution and the best com-
promised solution of the PDMCE algorithm. The obtained results for makespan,
cost and energy consumption are plotted in Figs. 17, 18, and 19, respectively.

We observe that MOMCE is very close to at least one solution of PDMCE, while
PDMCE consistently outperforms MOMCE in all the cases. For an illustration pur-
pose, we tabulate the improvement of all four test cases in Table 7, where the results
are reduced by 4.21% for the makespan, 3.08% for the cost, and 2.03% for the energy

Fig. 18 The cost values among
PDMCE and MOMCE

Fig. 19 The energy consump-
tion values among PDMCE and
MOMCE

Table 7 PDMCE improvement
over MOMCE in four cases

Gain over MOMCE (%)

Workflow (m, |E
w
|) Node# Makespan Cost Energy

(22, 44) 4 4.21 3.08 2.03
(45, 96) 8 0 0.32 2.70
(70, 310) 10 19.93 9.02 8.71
(120, 810) 12 1.13 3.50 8.57

Table 8 Best compromised
solution improvement over
MOMCE in four cases

Gain over MOMCE (%)

Workflow (m, |E
w
|) Node# Makespan Cost Energy

(22, 44) 4 22.80 20.07 13.36
(45, 96) 8 10.37 10.43 1.60
(70, 310) 10 43.95 3.89 21.85
(120, 810) 12 42.86 8.72 20.30

 Journal of Network and Systems Management (2024) 32:89 89 Page 32 of 37

consumption in a small workflow of 22 tasks and 44 edges running on 4 computer
nodes.

Table 8 shows the improvement of MOMCE and the best compromised solution.
PDMCE can produce a better solution that minimizes 22.80% more of the makes-
pan, 20.07% more of the cost and 13.36% more of the energy consumption for a
small workflow of 22 tasks and 44 edges over MOMCE solution. The performance
superiority of the best compromised solutions over MOMCE becomes more signifi-
cant as the workflow size increases, which is reasonable in real-life scientific work-
flow applications. In a large workflow of 120 tasks and 810 edges, the performance
of PDMCE is improved over MOMCE by about 42.86%, 8.72% and 20.30% for
makespan, cost, and energy consumption, respectively. It is foreseeable that there
will be even more performance improvements when the size of workflow applica-
tions further increases.

To further evaluate the robustness of the proposed methods, we measure the runt-
ime of the MOMCE and PDMCE algorithms by executing both algorithms for 20
generations on a Windows 10 machine equipped with Intel(R) Core(TM) i5-3337U
CPU of 1.80 GHz and 6.0 GB memory, and computing the average over 10 runs
as shown in Table 9, where MOMCE converges with less computational time than
PDMCE, as the evaluation process using non-dominated sorting in PDMCE causes
the algorithm to be slower. However, the difference in runtime is not significant
compared to the outstanding performance of PDMCE algorithm.

7 Conclusion

Cloud environment has pooled a variety of computing resources together with an on-
demand access to meet various application needs and QoS requirements. However,
the exponential growth of data size and the efficient deployment of scientific appli-
cations on those heterogeneous cloud environments have exposed new challenges
to the scientific research community. In this work, we presented a multi-objective
optimization problem in a cloud environment to minimize makespan, cost, and
energy consumption of workflow execution, and proposed two workflow scheduling
algorithms, MOMCE and PDMCE. The performance superiority of the proposed
algorithms was demonstrated in an extensive set of comparisons with other existing
algorithms in the literature. We have the following observations:

Table 9 Runtime (in seconds)
comparison of MOMCE and
PDMCE

Workflow
(m, |E

w
|)

Node# MOMCE PDMCE

(22, 44) 4 0.032 0.313
(45, 96) 8 0.043 0.315
(70, 310) 10 0.366 0.623
(120, 810) 12 3.032 3.663

Journal of Network and Systems Management (2024) 32:89 Page 33 of 37 89

• MOMCE algorithm finds a good solution that handles a trade-off between the
competitive goals with less computational overhead. When increasing the num-
ber of generations, we observe that MOMCE is getting better and closer to the
best compromised solution.

• PDMCE exhibits a large number of non-dominated solutions which provide
more flexibility for users to select a schedule that meets their needs. It may reach
a global optima solution because the mechanisms of the initialization, selection,
and evaluation are more intelligent.

• A Pareto front is an efficient tool that allows users to assess their preferences and
select the most appropriate trade-off solution based on their QoS requirements.

It would be of our future interest to test the proposed algorithms in a real cloud envi-
ronment using real-life scientific workflows. We would also like to take load balanc-
ing into consideration in our future work.

Author Contributions YG provided the research topic, guided the direction, discussed the main idea. HA
did the experiments and collected the data. HA and YG wrote the main manuscript. DY and NZ partici-
pated in the discussions and provided insights into the solution finding and constructive comments on the
paper writing and proofreading.

Data Availibility Data available upon request.

Declarations

Conflict of interest The authors declare no Conflict of interest.

References

 1. Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman,
G., Good, J., Laity, A., Jacob, J., Katz, D.: Pegasus: a framework for mapping complex scientific
workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)

 2. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.L.,
Villazon, A., Wieczorek, M.: ASKALON : a grid application development and computing environ-
ment. In: The 6th IEEE/ACM International Workshop on Grid Computing, pp. 122–131 (2005)

 3. Li, Z., Ge, J., Hu, H., Song, W., Luo, B.: Cost and energy aware scheduling algorithm for scientific
workflows with deadline constraint in clouds. IEEE Tran. Serv. Comput. 11, 713–726 (2015)

 4. Annie, S., Yu, H., Jin, S., Lin, K.C.: An incremental genetic algorithm approach to multiprocessor
scheduling. IEEE Trans. Parallel Distrib. Syst. 15(9), 824–834 (2004)

 5. Kwok, Y., Ahmad, I.: Dynamic critical-path scheduling: An effective technique for allocating task
graph to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996)

 6. Pirozmand, P., Hosseinabadi, A., Farrokhzad, M., Sadeghilalimi, M., Mirkamali, S., Slowik, A.:
Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural
Comput. Appl. 2021, 1 (2021)

 7. Mohammadzadeh, A., Masdari, M., Gharehchopogh, F.S.: Energy and cost-aware workflow sched-
uling in cloud computing data centers using a multiobjective optimization algorithm. J. Netw. Syst.
Manag. 29, 1–10 (2021)

 8. Murad, S., Badeel, R., Alsandi, N., Faraj, R., Ahmed, R., Muhammed, A., Derahman, M., Salih, N.:
Optimized min-min task scheduling algorithm for scientific workflows in a cloud environment. J.
Theor. Appl. Info. Technol. 2022, 480–506 (2022)

 Journal of Network and Systems Management (2024) 32:89 89 Page 34 of 37

 9. Farid, M., Latip, R., Hussin, M., Hamid, N.: Weighted-adaptive inertia strategy for multi-objective
scheduling in multi-clouds. Comput. Mater. Contin. 72, 1529–1560 (2022)

 10. Behera, I., Sobhanayak, S.: Task scheduling optimization in heterogeneous cloud computing envi-
ronments: a hybrid ga-gwo approach. J. Parallel Distrib. Comput. (2024). https:// doi. org/ 10. 1016/j.
jpdc. 2023. 104766

 11. Liu, B., Li, J., Lin, W., Bai, W., Li, P., Gao, Q.: K-PSO : An improved PSO-based container schedul-
ing algorithm for big data applications. Int. J. Netw. Manag. 31, e2092 (2020)

 12. Arunagiri, R., Kandasamy, V.: Workflow scheduling in cloud environment using a novel metaheuris-
tic optimization algorithm. Int. J. Commun. Syst. 34, 4746 (2021)

 13. Ma, X., Xu, H., Gao, H.: Real-time multiple-workflow scheduling in cloud environments. IEEE
Trans. Netw. Serv. Manag. 18, 4002 (2021)

 14. Singh, S.: Performance optimization in gang scheduling in cloud computing. IOSR J. Comput. Eng.
(IOSRJCE) 2, 49–52 (2012)

 15. Sharma, N., Tyagi, S.: A survey on heuristic approach for task scheduling in cloud computing. Int. J.
Adv. Res. Comput. Sci. 8(3), 1–4 (2017)

 16. Gu, Y., Wu, Q., Rao, N.S.V.: Analyzing execution dynamics of scientific workflows for latency min-
imization in resource sharing environments. In: Proceedings of the 7th IEEE World Congress on
Services, Washington DC, pp. 153–160 (2011)

 17. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002). https:// doi.
org/ 10. 1109/ 71. 993206

 18. Rodriguez, M., Buyya, R.: A responsive knapsack-based algorithm for resource provisioning and
scheduling of scientific workflows in clouds. In: the 44th International Conference on Parallel Pro-
cessing (ICPP), pp. 839–848 (2015)

 19. Verma, A., Kaushal, S.: Cost-time efficient scheduling plan for executing workflows in the cloud. J.
Grid Comput. 13(4), 495–506 (2015)

 20. Konjaang, J., Xu, L.: Multi-objective workflow optimization strategy (MOWOS) for cloud comput-
ing. J. Cloud Comput. 2021, 1–19 (2021)

 21. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S., Li, K.: An energy-efficient task scheduling algorithm
in dvfs-enabled cloud environment. J. Grid Comput. 14(1), 55–74 (2016). https:// doi. org/ 10. 1007/
s10723- 015- 9334-y

 22. Chen, H., Zhu, X., Qiu, D., Guo, H., Yang, L., Lu, P.: EONS: minimizing energy consumption for
executing real-time workflows in virtualized cloud data centers. In: 45th International Conference
on Parallel Processing Workshops, ICPP, pp. 385–392 (2016)

 23. Boeres, C., Filho, J., Rebello, V.: A cluster-based strategy for scheduling task on heterogeneous
processors. In: Proceedings of 16th Symposium on Computer Architecture and High Performance
Computing, pp. 214–221 (2004)

 24. Maurya, A.: Resource and task clustering based scheduling algorithm for workflow applications in
cloud computing environment. In: International Conference on Parallel, Distributed and Grid Com-
puting, pp. 566–570 (2020)

 25. Bajaj, R., Agrawal, D.: Improving scheduling of tasks in a heterogeneous environment. IEEE Trans.
Parallel Distrib. Syst. 15(2), 107–118 (2004)

 26. Lin, X., Wu, C.Q.: On scientific workflow scheduling in clouds under budget constraint. In: Pro-
ceedings of the 42nd International Conference on Para. Proc., pp. 90–99 (2013)

 27. Bozdag, D., Catalyurek, U., Ozguner, F.: A task duplication based bottom-up scheduling algorithm
for heterogeneous environments. In: Proceedings of the 20th International Conference on Parallel
and Distributed Processing (2006)

 28. Durillo, J., Nae, V., Prodan, R.: Multi-objective energy-efficient workflow scheduling using list-
based heuristics. Futur. Gener. Comput. Syst. 36, 221–236 (2014). https:// doi. org/ 10. 1016/j. future.
2013. 07. 005

 29. Abualigah, L., Diabat, A.: A novel hybrid antlion optimization algorithm for multi-objective task
scheduling problems in cloud computing environments. Clust. Comput. 2020, 205–223 (2020)

 30. Kumar, D., Sahoo, B., Mondal, B., Mandal, T.: A genetic algorithmic approach for energy efficient
task consolidation in cloud computing. Int. J. Comput. Appl. 118(2), 1–6 (2015). https:// doi. org/ 10.
5120/ 20714- 3066

 31. Leena, V.A., Beegom, A.S., Rajasree, M.S.: Genetic algorithm based bi-objective task scheduling in
hybrid cloud platform. Int. J. Comput. Theo. Eng. 8(1), 10 (2016)

https://doi.org/10.1016/j.jpdc.2023.104766
https://doi.org/10.1016/j.jpdc.2023.104766
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/71.993206
https://doi.org/10.1007/s10723-015-9334-y
https://doi.org/10.1007/s10723-015-9334-y
https://doi.org/10.1016/j.future.2013.07.005
https://doi.org/10.1016/j.future.2013.07.005
https://doi.org/10.5120/20714-3066
https://doi.org/10.5120/20714-3066

Journal of Network and Systems Management (2024) 32:89 Page 35 of 37 89

 32. Zhang, L., Li, K., Li, C., Li, K.: Bi-objective workflow scheduling of the energy consumption and
reliability in heterogeneous computing systems. Inf. Sci. 379, 241–256 (2016)

 33. Meena, J., Kumar, M., Vardhan, M.: Cost effective genetic algorithm for workflow scheduling in
cloud under deadline constraint. IEEE Access 4, 5065–5082 (2016)

 34. Zhu, Z., Zhang, G., Li, M., Liu, X.: Evolutionary multi-objective workflow scheduling in cloud.
IEEE Trans. Parallel Distrib. Syst. 27(5), 1344–1357 (2016)

 35. Rehman, A., Hussain, S., Rehman, Z., Zia, S.: Multi-objective approach of energy efficient work-
flow scheduling in cloud environments. Concurr. Comput. Pract. Exp. 34, e4949 (2018)

 36. Nagar, R., Gupta, D., Singh, R.: Time effective workflow scheduling using genetic algorithm in
cloud computing. Int. J. Info. Technol. Comput. Sci. 10, 68–75 (2018)

 37. Ruan, F., Gu, R., Huang, T., Xue, S.: A big data placement method using nsga-iii in meteorological
cloud platform. EURASIP J. Wireless Commun. Netw. 2019, 143 (2019)

 38. Talukder, A., Kirley, M., Buyya, R.: Multiobjective differential evolution for workflow execution on
grids. Concurr. Comput.: Pract. Exp. 21(13), 1742–1756 (2009)

 39. Yassa, S., Chelouah, R., Kadima, H., Granado, B.: Multi-objective approach for energy-aware work-
flow scheduling in cloud computing environments. Sci. World J. 2013, 350934 (2013)

 40. Rodriguez, M., Buyya, R.: Deadline based resource provisioning and scheduling algorithm for sci-
entific workflows on clouds. IEEE Trans. Cloud Comput. 2, 222–235 (2014)

 41. Garg, R., Singh, A.: Multi-objective workflow grid scheduling using �-fuzzy dominance sort based
discrete particle swarm optimization. J. Supercomput. 68(2), 709–732 (2014)

 42. Verma, A., Kaushal, S.: A hybrid multi-objective particle swarm optimization for scientific work-
flow scheduling. Parallel Comput. 62, 1–19 (2017)

 43. Beegom, A., Rajasree, M.: Integer-pso: a discrete PSO algorithm for task scheduling in cloud com-
puting systems. Evol. Intell. 2019, 227–239 (2019)

 44. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization
over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

 45. Cheng, M., Prayogo, D.: Symbiotic organisms search: a new metaheuristic optimization algorithm.
Comput. Struct. 139, 98–112 (2014)

 46. Anwar, N., Deng, H.: A hybrid metaheuristic for multi-objective scientific workflow scheduling in a
cloud environment. Appl. Sci. 8(4), 13 (2018)

 47. Arabnejad, H., Barbosa, J.: List scheduling algorithm for heterogeneous systems by an optimistic
cost table. IEEE Trans. Parallel Distrib. Syst. 25, 628–694 (2014)

 48. Durillo, J., Prodan, R.: Multi-objective workflow scheduling in amazon ec2. Clust. Comput. 17(2),
169–189 (2014)

 49. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective approach for workflow
scheduling in heterogeneous environments. In: 12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, pp. 300–309 (2012). https:// doi. org/ 10. 1109/ CCGrid. 2012. 114

 50. Zhou, X., Zhang, G., Sun, J., Zhou, J., Wei, T., Hu, S.: Minimizing cost and makespan for workflow
scheduling in cloud using fuzzy dominance sort based heft. FGCS 93, 278–289 (2019)

 51. Manasrah, A., Ali, H.: Workflow scheduling using hybrid ga-pso algorithm in cloud computing.
Wirel. Commun. Mobile Comput. 2018(1), 1934784 (2018)

 52. Ghasemzadeh, M., Arabnejad, H., Barbosa, J.: Deadline-budget constrained scheduling algorithm
for scientific workflows in a cloud environment. In: 20th International Conference on Principles of
Distributed System (OPODIS), pp. 1–16 (2017)

 53. Alrammah, H., Gu, Y., Wu, C., Ju, S.: Scheduling for energy efficiency and throughput maximiza-
tion in a faulty cloud environment. In: The International Conference on Parallel and Distributed
Systems, pp. 561–569 (2017)

 54. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud. In: 2012 IEEE
5th International Conference on Cloud Computing, pp. 423–430 (2012)

 55. Kliazovich, D., Bouvry, P., Khan, S.: DENS: data center energy-efficient network-aware scheduling.
Clust. Comput. 16(1), 65–75 (2013)

 56. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Managing server energy
and operational costs in hosting centers. Proceedings of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, pp. 303–314 (2005)

 57. Cao, F., Zhu, M., Wu, Q.: Energy-efficient resource management for scientific workflows in clouds.
In: 2014 IEEE World Congress on Services, pp. 402–409 (2014) https:// doi. org/ 10. 1109/ SERVI
CES. 2014. 76

https://doi.org/10.1109/CCGrid.2012.114
https://doi.org/10.1109/SERVICES.2014.76
https://doi.org/10.1109/SERVICES.2014.76

 Journal of Network and Systems Management (2024) 32:89 89 Page 36 of 37

 58. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct.
Multidisc. Optim. 26, 369–395 (2004). https:// doi. org/ 10. 1007/ s00158- 003- 0368-6

 59. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

 60. Wu, Q., Gu, Y.: Supporting distributed application workflows in heterogeneous computing environ-
ments. In: Proceedings of the 14th IEEE International Conference on Parallel and Distributed Sys-
tems, Melbourne, Australia, pp. 3–10 (2008)

 61. Wu, Q., Gu, Y., Zhu, M., Rao, N.S.V.: Optimizing network performance of computing pipelines in
distributed environments. In: Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium Miami, Florida (2008)

 62. Alrammah, H., Gu, Y., Wu, C., Ju, S.: Scheduling for energy efficiency and throughput maximiza-
tion in a faulty cloud environment. In: The International Conference on Parallel and Distributed
Systems, pp. 561–569 (2017)

 63. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective optimization. In:
Proceedings of Simulated Evolution and, Learning, pp. 13–20 (2002)

 64. Abido, M.: Environmental/economic power dispatch using multiobjective evolutionary algorithms.
IEEE Trans. Power Syst. 18(4), 1529–1537 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Dr. Huda Alrammah is an assistant professor in the College of Computer and Information System at
Prince Sultan University in Saudi Arabia, since August 2020. Prior to that, she graduated from Middle
Tennessee State University (MTSU) as a Ph.D. student in December 2019. This research was initially
conducted during her Ph.D. study under Dr. Yi Gu’s direct supervision at MTSU.

Dr. Yi Gu is an associate professor in the Department of Computer Science at Middle Tennessee State
University (MTSU). She received her M.S. and Ph.D. degrees in Computer Science from University of
Memphis in 2008 and 2011, respectively, and the B.S. degree in Computer Science from Jiangsu Univer-
sity, P.R. China in 2005. She worked as an assistant professor of Computer Science at University of Ten-
nessee Martin from 2011 to 2013, and then joined MTSU in 2013. Dr. Gu received her tenure in 2018.
Her research interests include parallel and distributed computing, workflow scheduling and optimization,
Cloud/Green computing, wireless sensor networks, and cyber security.

Dr. Daqing Yun is an Associate Professor in the Computer and Information Sciences (CIS) program at
Harrisburg University (HU) of Science and Technology. His research interests include high-performance
networking, distributed systems, and workflow optimization.

Dr. Ning Zhang is an Assistant Professor of Computer Science and Data Science in the Department of
Mathematics and Computer Science at Fisk University. He earned his Ph.D. in Computational Science
from Middle Tennessee State University, where he also completed an M.S. in Computer Science. Addi-
tionally, Dr. Zhang holds an M.S. in Signal and Information Processing from North China University of
Technology and a B.S. in Electronic Engineering from Qingdao University, both in China. Before joining
Fisk University in 2022, he served as an Assistant Professor of Computer Science at St. Ambrose Univer-
sity from 2019 to 2022. His research interests focus on Machine Learning, Data Mining, and Deep Learn-
ing, with an emphasis on supervised dimension reduction and neuroimaging data analysis.

https://doi.org/10.1007/s00158-003-0368-6

Journal of Network and Systems Management (2024) 32:89 Page 37 of 37 89

Authors and Affiliations

Huda Alrammah1 · Yi Gu1 · Daqing Yun2 · Ning Zhang3

 * Yi Gu
 Yi.Gu@mtsu.edu

 Huda Alrammah
 hka2f@mtmail.mtsu.edu

 Daqing Yun
 DYun@harrisburgu.edu

 Ning Zhang
 nzhang@fisk.edu

1 Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN 37132,
USA

2 Computer and Information Sciences, Harrisburg University of Science and Technology,
Harrisburg, PA 17101, USA

3 Department of Mathematics and Computer Science, Fisk University, Nashville, TN 37208, USA

	Tri-objective Optimization for Large-Scale Workflow Scheduling and Execution in Clouds
	Abstract
	1 Introduction
	2 Related Work
	3 Models and Problem Formulation
	3.1 Workflow Model
	3.2 Cloud Resource Model
	3.3 Time Model
	3.4 Monetary Cost Model
	3.5 Energy Model
	3.6 Problem Formulation

	4 Multi-objective Optimization: A Brief Overview
	4.1 Design Components
	4.2 Pareto Solution and Dominance Concept

	5 Technical Solutions
	5.1 MOP-Based Particle Swarm Optimization
	5.2 MOP-Based Non-dominated Genetic Algorithm

	6 Performance Evaluation
	6.1 Experimental Settings
	6.2 Performance Metrics
	6.3 Comparison Between MOMCE and MODPSO
	6.4 Comparison Between PDMCE and Other MOP Approaches
	6.5 Comparison between MOMCE and PDMCE

	7 Conclusion
	References

