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Abstract
Network function virtualization (NFV) makes the realization of specific network 
functions no longer depend on inherent hardware by executing virtual network func-
tions (VNFs), but realizes network functions in a more flexible programming man-
ner, thereby reducing the pressure of resource allocation on the underlying network. 
Service function chain (SFC) is composed of a set of fixed order VNFs. These VNFs 
need to be deployed on appropriate physical nodes to meet user function require-
ments, i.e., the placement of SFC. Traditional solutions mostly use mathematical 
models or heuristic methods, which are not applicable in the context of large-scale 
networks. Secondly, the existing methods do not integrate intelligent learning algo-
rithms into the service function chain placement (SFCP) problem, which limits 
the possibility of obtaining better solutions. This paper presents a multi-objective 
optimization service function chain placement (MOO-SFCP) algorithm based on 
reinforcement learning (RL). The goal of the algorithm is to optimize the resource 
allocation mode, including several performance indexes such as underlying resource 
consumption revenue, revenue cost ratio, VNF acceptance rate and network latency. 
We model the SFCP as a Markov decision process (MDP), and use a two-layer pol-
icy network as an intelligent agent. In the training stage of RL, the agent compre-
hensively considers the optimization objectives and formulates the optimal physi-
cal node mapping strategy for VNF requests. In the test phase, the whole SFCP is 
completed according to the trained node mapping strategy. Simulation results show 
that the algorithm proposed in this paper has excellent performance in the aspects of 
underlying resource allocation revenue, VNF acceptance rate and so on. In addition, 
we prove that the algorithm has good flexibility by changing the delay constraint.
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1 Introduction

Internet architecture has effectively served the development of science and tech-
nology society in the past decades [1]. With the advent of the intelligent era, the 
traditional Internet architecture has gradually become rigid. A typical feature of 
the modern network environment is that user function requests arrive on a scale 
of hundreds of millions. Internet service providers (ISPs) need to allocate specific 
network resources to massive user requests in a short period of time. The actual 
result is that the ISPs’ network resource scheduling method will always lead to 
higher capital expenditure and operating expenditure, and the resource allocation 
method is extremely inflexible [2, 3]. What is exciting is that network virtualiza-
tion (NV) technology came into being, which redefines the allocation of physical 
network resources [4, 5]. Based on network function virtualization (NFV), virtual 
network function (VNF) can replace manufacturer’s dedicated hardware. NFV 
performs the same functions as proprietary hardware through software program-
ming, thus effectively improving the flexibility of the physical network [6–8].

Service function chain placement (SFCP) is a typical network service para-
digm, which is composed of a set of fixed and orderly VNFs. Network traffic 
is required to flow through the VNFs in a predefined order [9]. Therefore, the 
essence of SFCP is the allocation process of physical network resources. It is nec-
essary to explore an efficient SFCP method to improve the efficiency of network 
resource orchestration. Its purpose is to improve the revenue of resource alloca-
tion and reduce the cost of resource consumption on the basis of receiving as 
many VNF requests as possible. SFCP is a NP hard problem [10]. Traditional 
solutions include establishing mathematical model or using heuristic methods. 
However, with the continuous expansion of the scale of underlying network, the 
applicability and time efficiency of the solution based on mathematical model 
are getting lower and lower. In addition, heuristic methods lack strict theoretical 
proof, and the results often fall into local optimal solutions [11].

In recent years, machine learning (ML) algorithm has been paid enough atten-
tion, and it has made breakthrough progress in finance, medicine, automation and 
Internet [12]. As a typical representative of ML, reinforcement learning (RL) has 
won the favor of researchers with its excellent decision-making ability, and plays 
a crucial role in decision-making in high-dimensional space [13]. RL consists of 
three main elements, action a, state s and reward r. The performer of the action is 
called an agent. It continuously carries out interactive learning (training process) 
with the environment, and finally obtains a mapping from the environment to the 
action. In this process, the state of environment has changed. The goal of learning 
is to maximize the cumulative reward. It can try to master the characteristics of 
network resources with the excellent learning ability of RL, so as to effectively 
manage network resources and provide the good solution for SFCP.

In general, the following key challenges are faced in the implementation of 
SFCP under virtual network architecture [14]. Firstly, the Internet structure 
is composed of a large number of physical and hardware devices. Heterogene-
ous network resources (CPU, memory, bandwidth, etc.) are stored in various 
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distributed storage devices in a decentralized state. In addition, the network 
resource state will change constantly due to the user function request, and the 
network topology will even be in dynamic change. Second, how to select the best 
target physical node for VNF requests, while taking into account performance 
such as revenue, cost, and load balancing. Therefore, the VNF placement problem 
under virtual network architecture has a broad research space.

Network resource allocation is the core business and key of network function exe-
cution. Many network performance problems and defects can be solved by means 
of network resource scheduling. However, the multi-objective optimization of net-
work resource allocation, i.e., the SFCP in virtual network architecture, has not been 
effectively solved. The algorithm of multi-objective optimization service function 
chain placement (MOO-SFCP) based on RL is divided into training stage and run-
ning stage. Firstly, we model the SFCP as a Markov decision process (MDP). After-
wards, based on RL theory, we use a two-layer policy network as an intelligent agent 
and make it participate in training, with the purpose of making the optimal decision 
for SFCP. The main function of RL is to improve the efficiency of the algorithm.

The main contributions of this paper are as follows. 

1. We analyze the problem of SFCP in virtual network architecture, focusing on 
optimizing multiple goals such as network resource distribution revenue, resource 
consumption costs, VNF request acceptance rate and load balancing.

2. We model the SFCP as a MDP and use RL method to solve this problem. In this 
paper, a self built two-layer policy network is used as the agent to participate in 
the training and operation process, in order to derive the optimal strategy of SFCP.

3. Through comparative experiments, we prove the excellent performance of the 
MOO-SFCP algorithm based on RL. In terms of improving resource revenue and 
request acceptance rate, and reducing resource consumption costs, the algorithm 
proposed in this paper has advantages over other virtual network algorithms. In 
addition, the flexibility of the algorithm is verified by changing the latency con-
straint.

The structure of the paper is as follows. Section 2 introduces the research progress 
of VNF and SFCP. Section 3 describes the related concepts and gives the system 
model. Section 4 formulates the problems related to the SFCP. Section 5 introduces 
the implementation process of MOO-SFCP algorithm based on RL. In Sect. 6, the 
experimental simulation is carried out and the results are analyzed. Finally, we sum-
marize the whole paper in Sect. 7.

2  Related Work

As a promising future network architecture, virtual network has attracted the atten-
tion of the industry, and relevant personnel have carried out extensive research on 
VNF request and SFCP. On the whole, there are three solutions for VNF request and 
SFCP. The first is to establish a mathematical model for the problem and provide a 
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solution from the perspective of mathematical optimization. The second is the heu-
ristic method, and the third is the solution based on ML algorithm. The following 
analyzes the research status of SFCP from these three aspects.

The existing researches usually define the problem as integer linear programming 
(ILP) model [15–17], mixed integer linear programming (MILP) model [18–21] or 
binary integer programming (BIP) model [22–24].

Li et  al. [15] studied the placement of VNFs in edge computing networks. 
Because the edge computing network is a hierarchical network, there are many 
restrictions on placing VNFs in it. The authors modeled the problem as an ILP 
model and took minimizing energy consumption as the goal. When the virtual net-
work had fewer functions, the optimization solver was used to obtain a more ideal 
result. In addition, they also transferred the VNF placement problem to the cloud 
data center for research [16]. With the goal of minimizing the number of physical 
machines, they proposed a two-stage heuristic method using greedy algorithm and 
adjustment algorithm. The simulation results showed that the algorithm can effec-
tively improve the utilization of network resources. Qi et al. [17] solved the problem 
of non-scalability of VNFs. By limiting a small searchable range, the search space 
of VNFs was effectively reduced, and the efficiency of SFCP was improved.

Tang et al. [18] introduced a specific method to implement dynamic VNF place-
ment. Specifically, they put forward a traffic prediction method by analyzing the 
business characteristics of network operators, and then realized the expansion of 
dynamic VNFs through VNF positioning algorithms. Hawilo et  al. [19] modeled 
VNF placement as a MILP model, and proposed a central scheduling algorithm to 
optimize the end-to-end latency of SFC. In addition, the authors also verified the 
reliability and service quality of the algorithm by adjusting the number of VNFs, 
and analyzed the complexity of the algorithm in detail. Reference [20] studied the 
VNF mapping problem in the space-air-ground integrated network, and applied it 
to Internet of vehicles scenarios. The authors modeled the real-time migration of 
VNFs as MILP, and then proposed two heuristic algorithms based on tabu search. 
The results showed that the proposed scheme was close to the optimal solution.

Pei et al. [22–24] unified the modeling of VNF placement as BIP model. From 
many perspectives, the dynamic release of VNFs, the consumption of SFC request 
resources, and the minimization of end-to-end latency of each VNF were studied. 
The SFCP scheme based on mathematical model is convenient and effective when 
dealing with small-scale problems, and has high accuracy and efficiency. But it can-
not be ignored that this method will increase the complexity and reduce the effi-
ciency when solving large-scale network problems.

Heuristic method is an effective solution to deal with the SFCP in large-scale 
network. Bari et  al. [25] proposed a heuristic algorithm based on dynamic pro-
gramming to orchestrate VNF instances. After that, the authors conducted a sim-
ulation in a real network environment, and the results proved that the network 
operating cost was greatly reduced. Based on feature decomposition method, 
Mechtri et al. [26] proposed a custom heuristic greedy algorithm to find the best 
placement of VNFs. In addition, the algorithm also effectively solved the con-
nection problem of the SFC. Reference [27] proposed a method based on Markov 
approximation to solve the problem of flow perception and cost minimization of 
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VNFs. In order to optimize the time performance, the authors proposed to com-
bine the matching theory with the Markov approximation method. The results 
proved that the cost of resource allocation can be reduced. Although the heuristic 
method effectively lifted the time limit for the SFCP, its feasibility still needs to 
be rigorously proved by theory.

ML, as a new learning paradigm, is more and more used in real life. Scholars 
have also carried out relevant research on the VNF request and SFCP based on ML. 
Santos et al. [28] investigated the impact of different SFCP policies on traffic and 
latency in highly distributed scenarios, and discussed several representative SFCP 
scenarios and techniques. Reference [29] considered the problem of VNF relocation. 
Taking into account the user location and the resource status of the currently placed 
nodes, the authors proposed a dynamic VNF migration method, which effectively 
reduced the blocking rate of SFCP. Pei et al. [30] proposed a SFCP algorithm based 
on dual-depth Q-network. Based on DRL, the algorithm model can determine the 
best scheme from the huge search space, and then placed or released VNF instances 
based on threshold rules. The evaluation showed that the algorithm has excellent 
performance in throughput, delay and load balancing. The authors of reference 
[31] optimized the search space of VNFs based on RL and explored the application 
effects of new learning techniques in VNF forwarding graphs. The authors found 
through practice that general learning methods cannot effectively search large-scale 
spaces. So from the perspective of satisfying QoS, they designed a VNF forwarding 
graph allocation scheme based on RL. Sun et al. [32] considered the resource opti-
mization and service quality issues of VNF placement. The authors tried to combine 
deep reinforcement learning (DRL) with graph neural network (GNN), and explored 
a new VNF placement scheme.

In order to solve the problems of high deployment latency of VNF service chain 
and difficulty in network management, Li et al. [33] proposed a resource pre-deploy-
ment management framework. The framework was essentially a discrete time sys-
tem. In pre-deployment phase, the deep learning (DL) model was used to predict 
VNF service requests, and the SFC was deployed in execution phase. Troia et  al. 
[34] studied the resource allocation of dynamic SFC based on RL in core optical 
networks. RL agent can learn resource allocation strategies from dynamically chang-
ing networks, and independently construct self-learning systems that can solve high-
dimensional complex problems. RL agent made the best resource allocation deci-
sion based on the network status and historical traffic conditions. The authors of [35] 
studied the SFCP in mobile edge computing systems with the goal of minimizing 
latency. The authors first modeled SFCP as a flexible job-shop scheduling problem, 
and then proposed an adaptive scheduling algorithm based on DRL with the goal of 
minimizing the system latency, which realized the efficient scheduling of SFC. Xiao 
et al. [36] proposed an adaptive online SFC deployment algorithm based on DRL 
to deal with the changes of network and service requests. The authors used MDP 
model to capture the real-time changing network state, and then used serialization 
backtracking method to deal with large discrete space. Finally, it effectively reduced 
the cost of network operators and improved the system throughput. We also use 
MDP to model SFC, but we use a new method to characterize the underlying net-
work state, and we are different from this work in terms of optimization objectives.
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The obvious disadvantage of SFCP scheme based on the mathematical model is 
that it is not suitable for large-scale networks. Although the heuristic-based solution 
can effectively make up for this shortcoming, the results of this method often fall 
into the local optimal solution, and it cannot guarantee that the solution obtained is 
the optimal strategy for the placement of the service function chain. The solution 
based on ML has obvious advantages, but the existing research ignores the multi-
objective optimization of network resource allocation. Moreover, most of them 
ignore the dynamic change of the underlying network and user requests, and do 
not show the specific situation of network resources. The SFCP algorithm based on 
RL is proposed in this paper, which focuses on the multi-objective optimization of 
resource allocation, and the RL agent can extract time-varying network information 
as training data effectively. Therefore, the work done in this paper is obviously dif-
ferent from the existing work.

3  Problem Description and Network Model

3.1  Problems Related to SFCP

Generally speaking, in a network scenario, a data stream usually flows through mul-
tiple network devices, such as firewalls, intrusion detection/defense systems (ID/PS), 
load balancers, etc., and finally reaches the destination. The beginning to the end 
of the data flow can be seen as a complete SFC. SFC is a popular network service 
paradigm, which consists of a set of VNF sequences, and the data flow needs to flow 
through specific network functions in a prescribed order. Therefore, under the condi-
tion of limited physical resources, how to select appropriate physical network nodes 
for VNFs for mapping, and how to construct a reasonable SFC path for data traffic 
has become a key issue. A typical example of SFC is shown in Fig. 1. Many studies 
have shown that SFCP is a NP-hard problem. There are usually two ways to solve 
the problem of SFCP, one is horizontal solution, the other is vertical solution. The 
former refers to the number of VNF requests that can be operated in the virtual net-
work, but the resource amount of each function request is constant. The latter refers 
to the number of resources requested by each VNF that can be operated, but the 
number of VNF participating in the service function chain remains unchanged. This 
paper mainly adopts the first research idea, that is to study the resource optimization 
problem of SFCP under the variable number of VNF requests.

3.2  Reinforcement Learning and Markov Decision

RL treats the learning process as a trial and error process. The agent exerts an 
action on the environment. When the environment is stimulated by the action, the 
state will change, and a reward signal will be generated to feed back to the agent. 
After that, the agent will choose the next action according to the size or positive 
or negative of the reward signal, in order to maximize the cumulative reward sig-
nal. The essence of RL is the mapping from environmental state to action. Thanks 
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to the agent’s autonomous learning ability, RL can achieve good decision-mak-
ing effect, so it is widely used in decision-making problems in high-dimensional 
space.

Markov decision is a typical RL algorithm model, which can maximize the 
agent’s reward through dynamic programming or random sampling. MDP can be 
expressed as a quadruple M = (st, at, pstat , rt) , where s ∈ S represents the state set, 
and st represents the state of the environment at time t. a ∈ A represents a set of 
actions, and at represents the actions taken by the agent at time t. pstat indicates 
that in state st , by applying action at to the environment, the environment state 
transitions to other probability distributions. For example, p(st+1|st ,at ) indicates the 
probability of transition to state st+1 when action at is applied to the environment 
in state st . rt represents the reward that the agent will get when the environment 
applies action at in state st , namely st × at ↦ rt.

RL has the characteristics of delayed reward, so for any previous state st and 
action at , the immediate reward function rt(st, at) may not be able to prove the 
advantages and disadvantages of the current strategy, so a value function needs 
to be defined to indicate the long-term impact of the strategy �t in the current 
state. In the SFCP problem, the strategy indicates the specific SFCP method. We 
list the commonly used RL value functions in Table 1, where V�(s) represents the 
value function of the state s obtained by adopting the strategy � , and rt represents 
the immediate reward at time t.

Given strategy �t , state st and action at , turning to state st+1 with probability 
p(st+1|st, at) at the next moment, then the state value function can be defined as,

(1)V�t (st) =
∑
st+1∈S

p(st+1|st, at)[r(st+1|st, at) + �V�t (st+1)].

Fig. 1  Typical service function chain placement example
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The action value function is defined as follows,

The main difference between the two value functions is that the action of state value 
function is determined by strategy �t and state st , while the action of action value 
function is artificially defined. Therefore, our ultimate goal is to find the strategy �∗ 
that can maximize the value function in the initial state s0.

3.3  Physical Network Model

The physical network is represented by an undirected graph model 
Gp = {Np,Ep,Ap} . The element Np represents the node collection of the physical 
network, Ep represents the link collection of the physical network, and Ap repre-
sents the resource attribute collection of the physical network. Specifically, we 
take CPU, bandwidth and delay as the measurement of network resource attrib-
utes, namely Ap = {C,B,D} . The above three attributes are important resource 
attributes in physical network. First, we need to measure the revenue and cost of 
resource allocation in terms of CPU and bandwidth. Second, we need to use delay 
to test the flexibility of the algorithm. We use np to represent a specific physical 
node, and Cnp represents the CPU resource capacity of node np . We use ep

(x,y)
 to 

represent the physical link between node npx and node npy , and Bp

(x,y)
 represents the 

bandwidth resource capacity of the physical link between node npx and node npy . In 
order to simplify the network structure, we integrate the physical link attributes 
into the adjacent physical nodes, and use Dnp to represent the delay attribute value 
of node np.

(2)
Q�t (st, at) = E[

∞∑
t=1

� trt|s0 = st, a0 = at]

=
∑
st+1∈S

p(st+1|st, at)[r(st+1|st, at) + �V�t (st+1)].

(3)�∗ = argmax�tV
�t (st).

Table 1  Reinforcement learning value function

Function Description

V�(s) = E�[
T∑
t=0

rt�s0 = s]
When the strategy � is adopted, the sum of the expected 

immediate reward in the future time T

V�(s) = limT→∞ E�[
1

T

T∑
t=0

rt�s0 = s]
The average reward expected when the strategy � is used

V�(s) = E�[
∞∑
t=0

� trt�s0 = s]
The most common form of value function. � ∈ [0, 1] 

is called the conversion factor, which indicates the 
importance of future rewards relative to the current 
rewards
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3.4  Service Request Model

The resource requirements that users send to the physical network are called user 
requests. In the virtual network environment, this request is called a VNF request. 
Therefore, the SFC can be seen as a series of user requests. The SFC is represented 
by a directed acyclic graph Gf = {Nf ,Ef ,Rf } . The element Nf  represents the VNF 
collection of the SFC, Ef  represents the link collection between the VNFs, and Rf  
represents the resource requirement attribute collection of the SFC. In particular, 
Rf = {RC,RB,RD} . We use nf  to represent a specific VNF, and RCnf to represent the 
CPU resource demand of the VNF nf  . We use ef

(i,j)
 to represent the link between the 

VNF nf
i
 and the VNF nf

j
 , and RBf

(i,j)
 represents the bandwidth resource requirement 

of the link between the VNF nf
i
 and the VNF nf

j
 . RDnf represents the delay require-

ment of the VNF nf
i
.

We summarize all relevant network symbols in Table 2.
We abstract the typical SFCP situation as the network structure shown in Fig. 2. The 

circle represents the physical node and the hexagon represents the VNF request node. 

Table 2  Network symbols

Symbol Description Symbol Description

GP physical network NP Collection of physical nodes
EP collection of physical links AP Collection of physical network attributes
C CPU resources of physical nodes B Bandwidth resources of physical links
D delay attributes of physical nodes Gf Service function chain

Nf virtual network function nodes Ef User request links between VNF nodes

Rf resource requirements attribute of SFC RC CPU resource requirements of VNF
RB bandwidth resource requirements of 

user request links
RD Delay requirements of VNF

Fig. 2  Service function chain placement model and possible placement
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The purpose of SFCP is to map the VNF request nodes to the physical nodes that meet 
the requirements of resource attributes, and the link resource attributes between nodes 
also meet the requirements. The number next to the physical node represents CPU 
resource, CPU resource unit price and delay attribute in turn, and the number next to 
the link represents bandwidth resource and bandwidth resource unit price in turn. The 
number next to the VNF represents CPU resource demand and delay demand in turn, 
and the number on the SFC link represents bandwidth demand. Figure 2 shows the 
possible placement of two SFCs. Because the two adjacent VNFs may not be mapped 
to the two adjacent physical nodes, the SFC link segmentation may occur, which is the 
second case shown in Fig. 2. This situation will lead to the consumption of more link 
resources.

4  Problem Formulation

4.1  Constraint Condition

The mapping of SFC to the underlying physical network will occupy the corresponding 
part of network resources. In addition, SFC has a certain life cycle. Only when SFC 
leaves, the occupied network resources will be released. Therefore, the SFC cannot be 
mapped to the physical network indefinitely, and it needs to follow specific constraints. 
At a certain time t, the available CPU resource capacity of physical node np and the 
available bandwidth resource capacity of physical link ep

(x,y)
 are defined as follows,

In Eq. (4), nf
i
↑ np represents the VNF nf

i
 mapped to the physical node np , and m rep-

resents the total number of virtual nodes mapped to the np . In Eq. (5), ef
(i,j)

↑ e
p

(x,y)
 

represents that the SFC link ef
(i,j)

 is mapped to the physical link ep
(x,y)

.
In the time after time t, CPU and bandwidth resource consumption of the SFC 

cannot exceed the resource capacity available in the current physical network, and 
the delay of physical node cannot exceed the highest delay requirement of the cor-
responding VNF, which is expressed as,

(4)R_Cnp = Cnp −

m∑
n
f

i
↑np

RC
n
f

i

, n
f

i
∈ Nf ,

(5)
R_Be

p

(x,y)
= Be

p

(x,y)
−

∑
e
f

(i,j)
↑e

p

(x,y)

RB
f

(i,j)
, e

f

(i,j)
∈ Ef .

(6)
∑
n
f

i
∈Nf

�np

n
f

i

RC
n
f

i

≤ R_Cnp ,

(7)
∑

e
f

(i,j)
↑e

p

(x,y)

�
e
p

(x,y)

e
f

(i,j)

RB
e
f

(i,j)

≤ R_Be
p

(x,y)
,



1 3

Journal of Network and Systems Management (2022) 30: 58 Page 11 of 25 58

In Eq. (6), �np

n
f

i

 is a binary variable. If the VNF nf
i
 is mapped to np , then �np

n
f

i

= 1 , oth-

erwise it is equal to 0. The �
e
p

(x,y)

e
f

(i,j)

 in Eq. (7) is also a binary variable. If the SFC link 

e
f

(i,j)
 is mapped to ep

(x,y)
 , �

e
p

(x,y)

e
f

(i,j)

= 1 , otherwise it is equal to 0. Eq. (8) shows that the 

delay value of the target physical node np of the VNF nf
i
 cannot be greater than the 

highest delay requirement of nf
i
.

In addition to resource capacity constraints, SFCP also needs to follow service 
provision constraints. For a specific SFC, the VNFs can only be mapped to different 
physical nodes, i.e.,

The service chain between adjacent VNFs may be mapped to one physical link, or it 
may be mapped to multiple physical links due to path division, which is defined as,

4.2  Multi Objective Optimization Model

SFCP will bring many impacts to infrastructure providers (InPs), service provid-
ers (SPs) and users. Service level agreement (SLA) play an important role in the 
deployment of SFC. SLA provides an agreement between SPs and user requests, or 
between SPs to guarantee QoS. SLA stipulates that SPs must provide users with ser-
vices in accordance with service levels and performance. In the SFCP problem, SLA 
allows SPs to freely control network resources while guaranteeing user QoS require-
ments. The InP and the SP can negotiate to deploy the physical nodes required by 
the user request. For InPs and SPs, they want to receive as many VNFs as possible 
to improve revenue, so they need to improve the acceptance rate of SFC requests. 
For users, they want to reduce the cost of resource consumption, so they need to 
select the physical node with sufficient resource capacity and low unit price for map-
ping. All parties put forward different optimization objectives for the algorithm, and 
then form a multi-objective optimization problem.

For a SFC Gf  , the total revenue that its successful embedding can bring to InP is 
calculated as follows,

(8)�np

n
f

i

RD
n
f

i

≥ Dnp .

(9)
∑
n
f

i
∈Nf

�np

n
f

i

= 1,Nf ∈ Gf .

(10)
∑

e
f

(i,j)
∈Ef

�
e
p

(x,y)

e
f

(i,j)

≥ 1,Ef ∈ Gf .

(11)
R(Gf ) =

∑
n
f

i
↑np

PCnp
× RC

n
f

i

+
∑

e
f

(i,j)
↑e

p

(x,y)

PB
e
p

(x,y)

× RB
e
f

(i,j)

,
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where PCnp
 is the CPU resource unit price of physical node np and PB

e
p

(x,y)

 is the band-

width resource unit price of physical link ep
(x,y)

 . Therefore, the revenue of InP is 
determined by the resource demand of VNF. At the same time, the cost of resource 
consumption to InP is calculated as follows,

where h(ef
(i,j)

) represents the number of hops of the user request link. Because in the 
SFC process, a user request link may require more than one physical link to provide 
resources.

One of the goals is to increase revenue while reducing costs, so it can be unified 
into revenue consumption ratio, which is defined as,

In the case of a certain unit price of resources, the means to increase the revenue of 
resource consumption is to increase the number of successfully embedded SFCs. 
Therefore, another goal is to increase the acceptance rate of SFCs, which is defined 
as,

among them, the binary variable �Gp

Gf
 indicates whether the SFC Gf  is successfully 

mapped to physical network, if it is successful, �Gp

Gf
= 1 , otherwise �Gp

Gf
= 0 . NUM 

represents the number of SFCs that arrive in the time range [0, t].
Therefore, our ultimate goal is to maximize the revenue consumption ratio and 

acceptance rate, i.e.,

5  Service Function Chain Placement Algorithm Based 
on Reinforcement Learning

5.1  Reinforcement Learning

Before establishing the RL model, it is necessary to clarify the various elements 
of RL. RL agent is the main body of algorithm training and running. We use a 
self-built two-layer policy network as an agent to participate in the above process. 
Its structure is shown in Fig.  3. In addition to the basic input layer and output 

(12)
C(Gf ) =

∑
n
f

i
↑np

PCnp
× RC

n
f

i

+
∑

e
f

(i,j)
↑e

p

(x,y)

PB
e
p

(x,y)

× RB
e
f

(i,j)

× h(e
f

(i,j)
),

(13)T1 =
R(Gf )

C(Gf )
.

(14)T2 = lim
T→∞

T∑
t=0

�G
p

Gf
NUM(Gf , t)

T∑
t=0

NUM(Gf , t)

,

(15)maximizeUT = T1 + T2.
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layer, the policy network also contains two main functional layers, namely, the 
convolution layer and the probability calculation layer. The convolution layer 
evaluates the strategy vector of each physical node, and obtains the standard strat-
egy vector format corresponding to each physical node through convolution oper-
ation. The calculation method is,

where � represents the weight of the convolution kernel, and bios represents the 
deviation.

The main function of probability calculation layer is to calculate the mapped 
probability for each physical node, in which softmax function plays an important 
role. The calculation method of the mapped probability of the physical node np

i
 is,

Therefore, when the SFC arrives, the two-layer policy network will perform a com-
plete calculation and get the mapped probability and resource status of each physical 
node.

The environment where the agent is located is a real physical network. Only 
when the RL agent is trained in the physical network can it achieve good results. 
Therefore, we use the way of physical network information extraction to build a 
“real” physical network environment for agent. State refers to the current situ-
ation of physical network resource capacity. Because the arrival of SFC will 

(16)s_vnp
i
= � × v_np

x
+ bios,

(17)
Probnpx =

e
s_v

n
p
x

�Np�∑
k=1

e
s_v

n
p

k

.

I 1 C1 P1 O1

O2P2C2

C
|N p|

M (G p)
I 2

I
|N p|

P
|N p| O

|N p|

Fig. 3  Two-layer policy network model
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occupy some network resources, the physical network state is in dynamic change. 
Reward signal directly affects the working mode of the agent, and then affects the 
performance of the algorithm. We take the total optimization target UT defined 
before as the reward signal of the agent. If the action taken by the agent at time 
t is satisfactory, it can obtain a larger UT and continue to motivate the agent to 
move in a better direction. Therefore, the incentive effect of reward signal and 
agent is positive feedback.

We build a physical network environment for RL agent by extracting neces-
sary network resource information from the physical network. We select the four 
network attributes of the physical node’s current available CPU resource capacity, 
delay value, degree and the sum of the bandwidth of the link connected to the physi-
cal node. These four attributes relate to all the elements of the algorithm optimi-
zation goal. Delay refers to the internal delay of a physical node. Only when the 
delay of the physical node is less than the delay requirement of the requesting node 
can resources be allocated. Degree is the number of links connected to the physical 
node. The larger the degree, the more link choices may be obtained by selecting the 
physical node. The sum of the bandwidth connected to the physical node refers to 
the sum of the available bandwidth resources of all links connected to the physical 
node. For the physical node npx , its four corresponding network attributes are Cn

p
x
 , 

Dn
p
x
 , DEGn

p
x
 and SUM_Bn

p
x
 respectively. We concatenate them into a strategy vector, 

which is expressed as,

where |Np| represents the total number of physical nodes. After combining the strat-
egy vectors of all physical nodes, the strategy matrix of the physical network Gp can 
be obtained, which is expressed as,

When each SFC reaches the underlying network, the policy network will extract a 
strategy matrix from the physical network as the input, so that the RL agent can 
fully learn the resources of the physical network, and then make the optimal SFCP 
decision.

(18)v_np
x
= [Cn

p
x
,Dn

p
x
,DEGn

p
x
, SUM_Bn

p
x
], x = 1, 2, ..., |Np|,

(19)

M(Gp) = [v_n
p

1
, v_n

p

2
, ..., v_n

p

�Np�]
T =
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5.2  Training Process and Running Process

The purpose of training is to make RL agent adapt to the physical network environ-
ment quickly, i.e., to learn the detailed distribution of physical network resources. 
Only when the agent obtains stable performance in training phase, can it obtain 
satisfactory experimental results in the final run time. The agent always explores 
in the direction of the largest reward signal. We directly take the final optimization 
goal calculated by Eq. (15) as the reward signal of agent training. Therefore, there 
is always a positive feedback relationship between agent action and reward signal. 
We can get the mapped probability of each physical node through the calculation of 
the two-layer policy network. According to this probability, we arrange the physical 
nodes in descending order, and then map the arriving VNFs to the physical nodes in 
turn.

In order to reduce the loss of training accuracy, the distance between the objec-
tive function and the truly optimal strategy needs to be calculated,

Therefore, the probability value obtained by log calculation is the softmax value of 
the physical node npx . Then we use backpropagation to calculate the parameter gradi-
ent, which is defined as,

where � is the learning rate, which controls the size of the gradient and the training 
speed of the algorithm.

We give the complete process of RL agent training in Algorithm 1. Line 12 rep-
resents the mapping process of the VNF, and line 13 represents the mapping process 
of the SFC link.

(20)
Lnpx = − logProbnpx = − log(

e
s_v

n
p
x

�Np�∑
k=1

e
s_v

n
p

k

).

(21)g = � × UT = � × (T1 + T2).
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According to the probability obtained by training, the VNF request in each SFC is 
sequentially embedded in the operation phase. After that, the shortest path algorithm 
is used to connect each VNF. The overall process of the operation of the MOO-
SFCP algorithm based on RL is shown in Algorithm 2. Line 2 is the mapping pro-
cess of the VNFs, and the line 4 is the mapping process of the SFC links.
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6  Performance Evaluation

6.1  Experimental Setup

We use Pycharm 2018 to build a Tensorflow-based platform to simulate simula-
tion experiments [37, 38]. All experiments are performed on a Windows 8 system 
equipped with Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz.

We generate a text file through CodeBlocks programming to save the relevant 
information of physical network [39], including key information such as the num-
ber of physical nodes, node connection relationships, node resource capacity and 
attributes, link resource capacity and other key information. In addition, we have 
also generated 2,000 SFC request files through programming simulation, and the 
related information of the SFC is also stored in these files. Among them, 1,000 
are used as the training set and the rest are used as the test set. The main infor-
mation contained in the SFC file includes the number of SFC requests, the con-
nection relationship between virtual network requests, the number of resource 
requests for VNFs, and the number of resource requests for SFCs. The detailed 
experimental parameter settings are shown in Table 3.

Table 3  Parameter setting Parameter Value Minimum Maximum

Physical nodes 100 – –
Physical links 600 – –
Physical CPU resource – 50 Gflops 100 Gflops
Physical delay attribute – 1 ms 10 ms
Physical bandwidth attribute – 50 Mbps 100 Mbps
SFC requests 2000 – –
VNF requests – 2 10
VNF CPU request – 1 Gflops 20 Gflops
VNF delay request – 1 ms 10 ms
VNF link bandwidth request – 1 Mbps 20 Mbps
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We use the RLVNE algorithm proposed in [40] and the Baseline algorithm pro-
posed in [41] as the main comparison algorithms. The former is a virtual network 
embedding (VNE) algorithm based on RL, and the latter is a heuristic VNE algo-
rithm based on node ranking. Because the essence of VNE algorithm is also the 
allocation of network resources, they can be used as contrast algorithms for MOO-
SFCP algorithm based on RL [42]. The above two comparison algorithms partici-
pate in the comparison from two different perspectives of ML and heuristic, so they 
are more comprehensive. We summarize the related information of the MOO-SFCP 
algorithm based on RL and the above two algorithms in Table 4.

6.2  Experimental Results and Analysis

In order to illustrate the effectiveness of the two-tier policy network training, we test 
the resource revenue generated by the SFCP and the request acceptance rate of the 
SFC. The experimental results are shown in Fig. 4. We conduct 80 epoch training on 
the training set containing 1,000 SFC request files. Figure 4a and b show the training 

Table 4  Algorithm Comparison

Algorithm Description

MOO-SFCP Consider the optimization of multiple goals such as resource revenue, cost, service 
function request, etc. The SFC is modeled as MDP. The mapping probability of 
physical nodes is deduced by using the RL model of double-layer policy network, and 
the link mapping of SFC is completed according to the shortest path algorithm

RLVNE [40] The neural network model is trained by using the historical data of virtual network 
request, and the mapping probability of each physical node is derived by using the 
strategy gradient training method of automatic optimization. The virtual link mapping 
is completed by using the breadth first strategy

Baseline [41] The formula H(np) = CPU(np)
∑

ep∈Ep B(E
p) is used to sort the underlying network 

nodes, the availability concept of the underlying nodes is defined, and the shortest 
path algorithm is used to complete the virtual link mapping process

Fig. 4  Training results
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changes in resource revenue and acceptance rate, respectively. In the first 20 epochs, 
since the agent has added a new training environment, it is unfamiliar with the sur-
rounding resource attribute status, so its performance is not stable at this time. In the 
middle of training, the agent adapts to the environment after a period of learning, 
and some actions taken may get positive reward signals, so the performance of the 
agent tends to stabilize at this time. In the last 20 epochs, the agent’s performance is 
stable within a certain range. On the one hand, the agent thoroughly understands the 
underlying network environment, and long term learning enables it to take actions 
that are beneficial to itself. On the other hand, because the complexity of the prob-
lem that the two-layer policy network can handle is limited, when the training is 
long enough, the performance of the agent reaches its limit.

In the algorithm operation stage, directly use the training results to perform the 
SFCP operation. Figures  5 and 6 respectively show the performance comparison 
between the RL-based MOO-SFCP algorithm and the other two algorithms in terms 
of resource revenue and request acceptance rate. First of all, the overall trend of 
the three algorithms is gradually decreasing. In the early stage of algorithm opera-
tion, the physical network resources are relatively sufficient, and most of the SFC 
requests reached at this time can obtain the required service resources, so the request 
acceptance rate at this time is relatively high. Due to the large number of success-
fully embedded VNFs at this time, InPs and SPs will obtain more substantial reve-
nue. The performance of the following three algorithms all show a downward trend, 
and the reduction in the number of available physical resources is the direct cause. 
The performance of the three algorithms has obvious differences. This is because 
our algorithm not only combines with RL, but also pays more attention to the multi-
objective optimization process, so it is better than the other two algorithms in terms 
of specific performance.

Figure  7 shows the comparison of the three algorithms in terms of resource 
revenue-cost ratio. Our algorithm has achieved better results than the other two 

Fig. 5  Resource consumption revenue
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algorithms. The revenue-cost ratio reflects the degree of utilization of physical net-
work resources. We take the two-layer policy network as an intelligent agent to par-
ticipate in the training. The training environment is composed of physical resource 
conditions. Therefore, the agent can obtain better training results and then make the 
optimal resource allocation strategy. The experimental results also show that our 
algorithm has advantages over general resource allocation algorithms based on ML 
and heuristic methods.

We try to explore the possible impact on algorithm performance by changing the 
demand attributes of VNFs. Specifically, the CPU resource demand and bandwidth 
demand requested by the SFC remain unchanged. We set the delay attribute value of 

Fig. 6  VNF request acceptance rate

Fig. 7  Revenue cost ratio
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the VNF to be less than or equal to 10 ms, less than or equal to 7 ms, and less than or 
equal to 4 ms. The changes in resource consumption revenue and request acceptance 
rate under extended demand conditions are shown in Figs. 8 and 9, respectively.

It can be seen that with the decrease of VNF delay demand level, the resource 
consumption revenue and request acceptance rate of the algorithm decrease as a 
whole. Because when the delay requirement of VNF request is reduced, the num-
ber of physical nodes that can meet the mapping conditions will be reduced, and 
the number of SFCs that can be successfully embedded in the physical network 
will be reduced, so the experimental results are in line with the expected and actual 
situation.

Fig. 8  Resource consumption revenue in different delay demand

Fig. 9  VNF request acceptance rate in different delay demand
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The difference of resource revenue cost ratio under different delay requirements 
is obvious (Fig. 10). Because the revenue cost ratio is determined by the revenue 
and cost of network resource allocation, it will not show an obvious upward or 
downward trend due to the change of available resources. When the delay demand 
is high, the number of qualified physical nodes decreases, and the revenue and cost 
of resource allocation are reduced, but the revenue cost ratio is relatively low. When 
the delay demand is low, the number of qualified physical nodes increases, and the 
revenue and cost of resource allocation increase, but the revenue cost ratio is rela-
tively high. Therefore, it can be shown that the MOO-SFCP algorithm based on RL 
has certain flexibility in dealing with the changes of network environment.

7  Conclusion

As a new type of future network architecture, virtual network architecture has broad 
application prospects. To a large extent, the function requests of network users 
depend on the effective allocation of virtual network resources. The essence of 
SFCP is the allocation process of physical network resources, and it can effectively 
cope with dynamic changes of physical resources and complex network topologies. 
Combined with the latest developments in ML, we model the SFCP as a MDP, and 
propose a MOO-SFCP algorithm based on RL. Based on the realization of the basic 
VNF request mapping, the optimization of multiple algorithm goals is realized. In 
RL algorithm, we use a self-defined two-layer policy network as an agent, and the 
information matrix extracted from the physical network is used as the agent’s train-
ing environment. The purpose is to obtain the mapped probability of each physi-
cal node. The SFCP is completed according to the probability. The final simula-
tion experiment verify the excellent performance of the algorithm from multiple 

Fig. 10  VNF revenue cost ratio in different delay demand
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indicators of revenue, cost and acceptance rate. In addition, we also explore the 
impact of the change of the delay attribute on the flexibility of the algorithm.

As part of our future work, we will continue to explore the possible role of dif-
ferent ML models in the field of SFCP. In addition, we also plan to deeply mine 
the resource information of the physical network, deduce the internal relationship 
between different resource attributes, and explore the impact of extracting other 
resource attributes on the algorithm. Last but not least, it is necessary to conduct in-
depth research on using vertical solutions to solve SFCP problems.
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