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Abstract
Software-defined networking (SDN) provides many benefits, including traffic pro-
grammability, agility, and network automation. However, budget constraints bur-
dened with technical (e.g., scalability, fault tolerance, security issues) and, some-
times, business challenges (user acceptance and confidence of network operators) 
make providers indecisive for full SDN deployment. Therefore, incremental deploy-
ment of SDN functionality through the placement of a limited set of SDN devices 
among traditional devices represents a rational and efficient environment that can 
offer customers modern and more data-intensive services. A unique challenge is 
the flexible distribution of loads on the servers that serve these services in network 
environments. The research in this paper focuses on developing a new load balanc-
ing scheme utilizing a hybrid SDN environment built with a minimal set of SDN 
devices (controller and one switch). We propose a novel load balancing scheme to 
monitor current server load indicators and apply multi-parameter metrics for sched-
uling connections to balance the load on the servers as efficiently as possible. The 
base of the new load balancing scheme is continuous monitoring of server load indi-
cators and implementations of multi-parameter metrics (CPU load, I/O Read, I/O 
Write, Link Upload, Link Download) for scheduling connections. The testing per-
formed on servers aims to balance the server’s load as efficiently as possible. The 
obtained results have shown that this mechanism achieves better results than exist-
ing load balancing schemes in traditional and SDN networks. Moreover, a proposed 
load balancing scheme can be used with various services and applied in any client-
server environment.
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1  Introduction

Implementation of new intelligent services requires modernization of network infra-
structure and more efficient use of available network resources. Software-Defined 
Networking (SDN), as a new network paradigm, decouples the network control 
(management) plane from the data plane, centralizing the whole control logic in 
an SDN controller [1]. It supports networks and smart services’ dynamic nature 
while providing simple network management, enabling better Quality of Experience 
(QoE) for users and reducing costs [2]. Although SDN implies simplified hardware, 
software, and management, its full implementation requires replacing a large part of 
the existing traditional infrastructure. It is thus limited by budget [3] and with pos-
sible extensive downtime.

For these reasons, SDN is often deployed incrementally in large networks, build-
ing a hybrid infrastructure with a mix of a limited number of SDN-enabled and leg-
acy devices. Two principal ways of hybrid SDN deployment exist [4]: a) Introduc-
tion of SDN switches in a legacy network and b) Implementation of hybrid SDN 
switches with both SDN and legacy switching functionalities. Besides cost reduc-
tions, hybrid SDN networks also provide certain SDN functionalities without imple-
menting a full SDN network while enabling fine-grained traffic control. In that way, 
an SDN controller is free from tasks that traditional protocols can perform in hard-
ware in a much more efficient manner. Sometimes it is necessary to interconnect two 
or more SDN networks via legacy network devices, and in that case, hybrid SDN 
must be used [5]. Our research aims to maximize the usage of existing elements of 
the traditional network and their functionality (e.g., SNMP for remote insight into 
the state of server resources) and apply a higher level of programmability (e.g., in 
the network traffic load balancing). The emergence of new traffic demanding ser-
vices often leads to network resources overload and network congestion, resulting 
in reduced service availability and significantly affecting QoE. It seems necessary 
to overcome these challenges by implementing an adequate load balancing scheme. 
The load balancing in traditional networks is very demanding (both in cost and con-
figuration) and primarily based on dedicated and highly expensive hardware (often a 
proprietary solution) [6]. The SDN concept can solve these challenges (reduce cost 
and increase load balancing efficiency) by implementing traditional load balancing 
schemes [7] or their modifications (e.g., based on the server response time in the 
server cluster [8]) in the software of SDN controller.

In their research, scientists use two approaches to solve the load balancing issue 
(the deterministic and the non-deterministic). Both approaches have certain disad-
vantages, which we will discuss later. Our solution aims to mitigate these disad-
vantages. We propose a new solution for dynamic load balancing in a hybrid SDN 
network—LBORU (Load Balancing by Optimizing Resource Utilization). The tra-
ditional algorithms (e.g., Random (R), Round-Robin (RR), or Weighted Fair Queue-
ing (WFQ)) are relatively simple and do not use metrics based on the server’s cur-
rent resource occupancy. Our research focuses on a hybrid SDN network (with a 
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minimum number of SDN-enabled components) and the deployment of a new pro-
grammable load balancing scheme. This scheme uses a Simple Network Manage-
ment Protocol (SNMP) mechanism for collecting server currently utilized resource 
information for the requests scheduling. We have performed this research in the 
Laboratory of School of Computing in Belgrade, Serbia. We have used an emulated 
virtualized network infrastructure as a testbed environment, added a POX SDN con-
troller [9], and a hybrid SDN switch responsible for the load balancing in communi-
cation to the server cluster (other traffic is managed traditionally).

Our load balancing scheme starts from the observation that different services have 
different resource requirements and, for this reason, uses a metric based on multiple 
parameters (CPU load, I/O Read, I/O Write, Link Upload, Link Download). These 
parameters describe well the load on server resources, such as CPU, storage, and 
network links. We have evaluated our solution, comparing it to traditional methods 
and server response time-based load balancing scheme (LBBSRT) [8]. By ensur-
ing a better balance in resource load, we have achieved improved system response. 
Our mechanism monitors the current CPU values and network resources load and 
makes better load balancing decisions than the existing mechanisms used for the 
comparison.

In our previous research [3], we presented a flexible network architecture for 
hybrid SDN infrastructure with a minimum number of SDN components (one SDN 
controller and one SDN switch per network [10]. Within such a very elastic envi-
ronment, we have conducted research and accomplished the following contributions 
that we present in this paper:

•	 Design and implementation of a novel load balancing scheme based on the 
multi-parameter metric

•	 Proving the efficiency of our solution by comparison with traditional and LBB-
SRT load balancing methods.

The rest of the paper is organized as follows: Sect.  2 reviews the SDN concept, 
describes hybrid SDN network architecture and traditional load balancing schemes. 
Section  3 gives an overview of load balancing schemes in SDN networks. Sec-
tion 4 details the design of our proposed load balancing scheme in a hybrid SDN 
network. Section 5 describes the implementation and presents a performance evalu-
ation method. Section 6 gives test results and performance analysis. Section 7 pre-
sents results discussion. Finally, we conclude the paper with an overview of possible 
future work.

2 � Background

Traditional network management’s complexity and the large number of functionali-
ties defined in the hardware lead to a lack of flexibility for solving users’ requests 
and costly implementation. Migration to the SDN concept reduces computer net-
work management’s complexity and in some cases reduces network latency, as well 
as introduces a higher degree of reliability and programmability [11]. SDN achieves 
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this improvement using dynamic resource allocation following service requirements 
and fast and easy service implementation, the so-called “service provisioning on the 
fly” [12].

2.1 � The SDN Concept

The SDN architecture has a three-layer structure, including application, control, and 
data [13] (Fig. 1). There are different user requirements, and it is necessary to imple-
ment various so-called northbound APIs on the application layer, providing differ-
ent functionalities [14]. An SDN controller is a central part of the SDN architecture 
responsible for controlling and managing underlying infrastructure by offering net-
work-wide visibility and direct control [15]. OpenFlow is the first standard protocol 
(southbound API) that uses the concept of flows for traffic identification based on 
matching rules defined by the SDN controller [16]. The SDN controller will cre-
ate, either statically or dynamically, a rule for packet processing that updates SDN 
switches’ flow tables and perform appropriate action accordingly. In that way, the 
SDN controller manages all the switches’ flow tables simultaneously, enhancing the 
network performance and significantly reducing the network complexity [17].

Recently, SDN technologies have been deployed in different network environ-
ments (e.g., data centers, enterprise networks, 5G networks, Industry 4.0) to sup-
port the efficient implementation of network virtualization and Network functions 
virtualization (NFV). They allow administrators to control and manage their virtual-
ized resources and network without detailed knowledge of the hardware technolo-
gies (simplified data plane and abstraction rather than specialized hardware) [18]. 
The process of virtualization introduces a higher degree of scalability and security 
in data centers. It enables the automation of virtual machine migrations, positively 

Fig. 1   Traditional vs SDN architecture
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affecting the utilization of server and network resources [19]. The SDN applies well-
defined data plane abstraction, including packet forwarding abstraction models, cir-
cuit switching abstraction models, wireless integration, and an evolved packet core 
support [18].

With NFV, functions that traditionally run on dedicated equipment (e.g., firewalls 
and load balancers) can be virtualized and placed closer to the desired point in a 
network, containerized with an application. NFV allows multiple logical networks to 
run on common physical infrastructure. In [20], the authors propose a new resource 
allocation for industry 4.0 based on SDN and NFV technologies, machine learn-
ing tools, and network slicing depending on service requirements regarding band-
width, delay, and reliability. In [21], besides network slicing, the authors point to an 
increase in the Industrial Internet of Things (IIoT) computational capacity and pro-
pose architectural improvements to efficiently accommodate diverse QoS demands 
on shared network infrastructure, such as data privacy. They recognize that federated 
reinforcement learning (RL) has become a promising approach that distributes data 
acquisition and computation tasks over distributed networks exploiting local compu-
tation capacities and agents’ self-learning experiences. They propose a novel deep 
RL scheme to provide federated and dynamic network management and resource 
allocation for differentiated QoS services in IIoT networks.

2.2 � The Hybrid SDN Concept

The technical, financial, and business challenges accompany SDN’s full implemen-
tation. The hybrid SDN infrastructure can be an intermediate solution, representing 
the integration of legacy and SDN devices working in parallel and taking advantage 
of traditional and SDN networks. It is necessary to develop an incremental deploy-
ment strategy to implement such an infrastructure [22]. Hybrid SDN networks con-
sist of both centralized and decentralized architectures that must communicate with 
each other to obtain optimal performance and QoE through network configuration, 
control, and management. Hybrid SDN architecture relies on a 3C model [22]: a) 
Coexistence—heterogeneity of infrastructure in the data plane, control plane, or 
both data and control plane; b) Communication—the interaction of legacy and SDN 
devices in order to enable understanding and functionality sharing and distribution 
at data plane, control plane or both data and control plane; c) Crossbreeding—a 
combination of different network paradigms with complementary characteristics to 
minimize budget, simplify the transition, automation, and traffic policy definition, 
and provide high-level scalability and robustness.

In [23], four hybrid SDN models are defined (Fig. 2):

•	 Topology-based hybrid SDN model—This implies partitioning the network into 
zones where each device can be a member of only one zone (legacy or SDN). A 
zone is composed of multiple devices controlled by the same network paradigm.

•	 Service-based hybrid SDN model—Legacy and SDN devices provide different 
services. For end-to-end services, it can be necessary that two network para-
digms control a set of devices concurrently (controlling a different portion of the 
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Forwarding Information Base—FIB) of each device) and, at the same time, some 
devices can be controlled by only one network paradigm.

•	 Class-based hybrid SDN model—This implies partitioning the network traf-
fic into classes that can be controlled by legacy or SDN paradigm. All network 
devices usually have both legacy and SDN functionalities.

•	 Integrated hybrid SDN model—SDN is responsible for all the network services, 
and it uses legacy network protocols as an interface to device FIBs. A legacy 
paradigm that is controlled by the SDN controller manages the device FIBs.

The implementation of a hybrid SDN infrastructure has certain limitations [22]. 
One of the limitations is the heterogeneous control plane’s management complex-
ity, where the reconfiguration process causes forwarding inconsistency and, conse-
quently, can provoke forwarding loops and traffic black holes [24]. The other limita-
tion is data plane complexity, where a translation of protocol from legacy to SDN 
and vice versa leads to performance degradation related to latency and processing 
time. SDN controller limitations are related to implementing two or more controllers 
within the hybrid SDN infrastructure (which can cause a problem with latency, traf-
fic engineering, scalability, and security). Implementing adequate traffic engineering 
methods can also be a big challenge, mainly if each device does not support flow 
abstraction [25]. Nevertheless, hybrid architectures can be a suitable solution for 
achieving the required QoS (Quality of Service) levels in convergent networks [26].

The deployment of hybrid SDN infrastructure includes the placement of SDN 
devices in a traditional network. In [27], the Panopticon approach creates a hybrid 
SDN network by interconnecting legacy and SDN devices with the idea to force all 
traffic to traverse an SDN switch controlled by the SDN controller. Although not 
all networking aspects (e.g., traffic engineering and load balancing) were consid-
ered, this research showed a performance increase compared to the original net-
work. Internet service providers can also use the advantages of incremental deploy-
ment of SDN network infrastructure to achieve a higher level of programmability 
and traffic engineering [28]. They classify network traffic into programmable and 
non-programmable depending on whether the traffic traverses through an SDN 
switch. Sometimes, deployment of hybrid SDN infrastructure implies adding SDN 
devices instead of replacing legacy devices [29]. The SDN devices connect to legacy 

Fig. 2   Hybrid SDN models, based on the classification in [22]
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devices, and both distributed routing protocols and the SDN controller process the 
traffic. The SDN functionality can also be implemented by installing SDN shim 
hardware in legacy devices [30] to enable communication between an SDN control-
ler and a modified legacy device. In [31], the authors present a service-based hybrid 
SDN wireless network model, which gives better performance, especially related to 
resiliency to path failures.

In practice, there are many other interesting scenarios of the hybrid SDN imple-
mentation. A hybrid SDN based architecture for vehicular ad hoc networks provides 
end-to-end data transmission with flexibility, scalability, and programmability fea-
tures. It can solve problems in traditional traffic management systems with variable 
traffic network conditions [32]. For a compute-intensive scenario in a framework 
dedicated to computing and analysis of data on the wire”, i.e., while the data is still 
in transit, researchers plan to achieve acceleration using a hybrid SDN testbed with 
graphics processing units and field-programmable gate arrays [33].

2.3 � Traditional Load Balancing

Network overload problems can be mitigated by applying different load balancing 
schemes and improving network efficiency and reliability (e.g., increasing scalabil-
ity and throughput, decreasing response time and resource consumption, avoiding 
overload of any single resource) [34]. Static or dynamic traffic balancing, or a com-
bination of both, can be implemented using some of the four traditional load balanc-
ing schemes [35]. The first scheme refers to the clients that collect server running 
parameters to schedule requests to different servers and achieve a certain load bal-
ancing level. The second scheme is based on the reverse proxy server deployment on 
the middle layer, combining the load balancing technology with the caching tech-
nology to enhance the access speed. The third scheme is DNS-based, where multi-
ple IP addresses in the server clusters can use a single domain (domain name serv-
ers use a pooling method to schedule clients’ requests to different servers). Despite 
this scheme’s simplicity, the DNS server is not aware of the difference among the 
servers, and it cannot reflect the current state of the servers [36]. The load balanc-
ing at the transport layer represents the fourth scheme based on the communication 
between the clients and the load balancing server, which forwards clients’ requests 
to the backend servers according to policies (e.g., Linux Virtual Server [37]). This 
approach is efficient but expensive since it often requires additional hardware.

3 � Related Work

3.1 � SDN Load Balancing

The SDN controller, which makes the forwarding decision for every new flow, has 
a crucial role in SDN load balancing and is responsible for Real-time Least loaded 
Server selections (RLSs) [38]. However, centralizing logic in a single control-
ler can be a problem regarding responsiveness, reliability, and scalability [39]. A 
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deterministic approach to load balancing in the SDN always gives the same output 
for a specific input, whereas the values of parameters and the initial situations make 
the output. A non-deterministic approach represents an algorithm that has different 
results on different runs for the same input. The authors in [34] summarize both 
approaches’ main advantages and disadvantages (Fig. 3).

Regardless of the load balancing approach implemented in the network, the 
appropriate metrics must be defined. Various qualitative parameters can be used for 
load balancing scheme evaluation in SDN [34], e.g., resource utilization (choice of 
optimal load balancing algorithm can maximize resource utilization [40]), latency 
(e.g., direct routing based load balancing algorithms minimize latency [41]), packet 
loss rate, response time, throughput, migration cost, workload (load balancing of 
workloads among controllers [42]), energy consumption (choice of suitable load 
balancing scheme can reduce energy consumption [43]), forwarding entries (it is 
necessary to decrease the number of forwarding entries to save memory resources 
[44]), and execution time. Interesting research about the SDN bringing a higher level 
of dynamics and programmability to the network describes load balancing using the 
algorithms for client traffic partitioning based on load balancing weights [45]. Given 
the growing complexity of infrastructure and traffic volume, in [46], the possibility 
of multiple load balancer deployment for different services is discussed (e.g., one for 
web traffic and the other for email). In [47], the authors point to a load imbalance 
state in the network that may occur when there are multiple SDN controllers and 
can notably degrade service levels in some parts of the network. They propose a new 
load balancing scheme based on the integer linear programming technique (ILP). 
The authors in [48] propose a load balancing scheme in SDN and implement a new 
algorithm introducing the load-driven penalty concept to optimize the switch-to-
controller assignment problem and achieve a trade-off between the round trip time 
and the controller load.

3.2 � Load Balancing in Hybrid SDN Networks

Given that the deployment of SDN is not possible in the short term and that hybrid 
SDN represents a reasonable solution, we opt that solving the load balancing issue 

Fig. 3   Main advantages and disadvantages of the deterministic and non-deterministic approaches to the 
load balancing in the SDN, based on the classification in [31]
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should focus on hybrid SDN networks. In [49], the authors propose an innovative 
routing and flow scheduling method using link utilization and CPU time as metrics. 
This approach has some limitations since it is focused only on solving the problem of 
Open Shortest Path First (OSPF) network congestion. The improvement of traffic flow 
management is the subject of research in [50]. The authors suggest flow management 
based on a splitting mechanism where the path for every flow must go through the 
SDN switch to achieve better flow control and traffic engineering (they use link utiliza-
tion and latency as metrics). Since these approaches do not consider the QoS, they can 
result in routing process inefficiency.

As can be seen from the previous approaches, no load balancing scheme uses all 
QoS parameters. Therefore, it could be interesting to investigate how to choose QoS 
parameters to optimize traffic balancing decisions in different service scenarios. Some 
authors go further and investigate the possibilities of hybrid SDN deployment within 
data centers. To realize efficient traffic forwarding, the authors in [51] use QoS aware 
routing with metrics based on packet loss, delay, and bandwidth. The main constraints 
of this approach are high complexity regarding computation and possible processing 
delay increase.

A significant limitation in many load balancing schemes is that they do not include 
continuous detection of resource load in the decision-making process, which is essen-
tial considering the nature of new communications (e.g., IoT and M2M) and the grow-
ing trend of Internet users. The reason is that these proposed methods balance traffic 
using traffic metrics (e.g., link metric, bandwidth, and RTT) and do not consider ser-
vice resource requirements. Our goal is to develop a load balancing scheme that we can 
customize regarding service resource usage.

4 � Novel Load Balancing Scheme

The traditional networks commonly use simple traffic distribution mechanisms such 
as RR or WFQ algorithms. They do not consider the server’s resource utilization but 
only allocate traffic based on the previous connection distribution. Thus, they can 
not achieve optimal network performances in terms of scalability and reliability. By 
implementing programmable logic for network traffic management, the possibility of 
retrieving external information such as, e.g., server load, thus increasing the efficiency 
of the decision in balancing traffic. Our research introduces a minimum set of compo-
nents (e.g., SDN-aware switch and SDN controller) in the traditional network to keep 
an acceptable implementation cost. In this way, we can apply new technologies and 
enable a higher level of programmability to realize load balancing. Although the solu-
tion we propose contains a minimum set of devices, we can apply it in any production 
environment. There it is necessary to implement redundant components to provide the 
system’s required fault tolerance.
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4.1 � A Proposed Hybrid SDN Architecture

As shown in Fig. 4, we propose replacing the switch connecting to servers with 
the SDN-aware switch for partial implementation of the SDN functionality. 
Besides using existing traffic forwarding methods, we have created conditions for 
traffic forwarding based on the SDN controller instructions (using OpenFlow pro-
tocol). The implementation of SDN functionality aims to implement a schedul-
ing mechanism that, in combination with existing technologies, collects real-time 
information about server load and, using this information, performs scheduling 
tasks and balances traffic. Thus, the SDN switch performs tasks related to load 
balancing in the SDN part of the network, while all other traffic is processed tradi-
tionally. We can apply the proposed architecture in any client-server environment.

It is essential to highlight that the SDN controller examines the servers’ loads 
via the SNMP protocol to identify the lowest load one. The controller’s task is to 
form flow instructions after processing each first packet. Following the instruc-
tions, the SDN switch should forward the traffic. In other words, the SDN con-
troller decides on which server the SDN switch should route all future packets of 
the same connection.

The solution shown in Fig. 4 aims to enable a more optimal distribution of user 
requests by applying dynamic network control and make the network itself more 
agile. Based on multi-parameter load analysis on servers, this approach should 
support a more significant number of simultaneous user requests and reduce 
response time on different servers in LAN networks and Data Centers.

Fig. 4   The example of hybrid network infrastructure with a minimum number of SDN components
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4.2 � Multi‑parameter Load Balancing Scheme

The load balancing scheme that we propose requires a new protocol to regulate com-
munication between clients and servers in a hybrid SDN network. The main idea is 
that the SDN controller allocates a single virtual IP (vIP) and MAC address (vMAC) 
for all servers whose traffic needs to be balanced. To avoid the potential problem of 
ARP caching, which can impair load balancing efficiency, we have provided per-
sistent mapping of a vIP address to a vMAC address. This vIP address, as a desti-
nation address in clients’ packets, is the address to which clients send requests for 
specific resources. When it comes to new connections, the SDN switch must for-
ward requests to the SDN controller responsible for requests forwarding to a spe-
cific server (for existing connections, the SDN switch forwards packets according 
to existing records in the flow table). In this way, the SDN controller directly imple-
ments the load balancing functionality (Fig. 5).

The SDN controller decides to forward a specific connection by accepting the 
first packet of that connection (OpenFlow PacketIn), identifying the server with 
the least load, and then creating the appropriate flow instructions (OpenFlow Pack-
etOut). Following these instructions, the SDN switch must: 

1.	 modify the packet and change the destination vIP and vMAC address to the real 
addresses (rIP and rMAC) of the server with the least load, and forward the modi-
fied packet to the appropriate server;

Fig. 5   Novel load balancing scheme
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2.	 upon receipt of the reply packet from the server, the server’s real address (source 
packet parameters) is retranslated into vIP and vMAC, and the packet forwarded 
to the client.

The SDN switch caches the translation information for a certain period. Each subse-
quent packet of the same connection is processed directly on the SDN switch follow-
ing the flow table records. The SDN controller has two processes: collecting infor-
mation about server load via the SNMP protocol and making decisions about traffic 
forwarding to a specific server. The messages exchange flow diagram is shown in 
Fig. 6.

The SDN controller collects information about server load using the following 
algorithm: The round-robin mechanism selects one of the defined servers. The SDN 
controller checks servers’ SNMP availability, and if it is not available, it moves on 
to the next one. The SDN controller collects CPU load, I/O Read, I/O Write, Link 
Upload, and Link Download data via SNMP protocol and stores them in a local 
matrix variable. SNMP polling intervals should enable us to acquire resource load 
data often enough to ensure proper load balance. However, polling intervals could 
introduce unnecessary overhead load on the server too often. We propose a one-
second interval as a balance between speed of resource usage evaluation and SNMP 
polling overhead. In order to obtain faster resource balancing, we could use lower 

Fig. 6   Connection flow diagram
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polling intervals. In this way, the SDN controller can perform a fast performance 
comparison with other available servers (Algorithm 1).

To decide which server to forward the connection to, the SDN controller needs 
to compare the load values of the corresponding parameters for each server. For 
this comparison, it is necessary to form a matrix A (1) from the collected param-
eters whose elements are aij , where i represents the ordinal number of the parameter 
(parameter 1—CPU, parameter 2 - I/O Read, parameter 3—I/O Write, Parameter 
4—Link Upload, Parameter 5—Link Download), and j is server number (j = 1, ..., 
n):

For each parameter, it is necessary to find a server or servers with a same, minimum 
value and assign a value according to (2):

By applying this relation, we obtain a matrix B (3) with elements bij representing 
the points that are assigned to the servers for each parameter:

Each row in matrix B can have one or more bij elements, whose value is differ-
ent from zero (multiple servers have the same, minimum value of load aij for the 

(1)A =
���aij

���(5∗n)) =

⎛
⎜⎜⎜⎜⎜⎝

acpu1 acpu2 ... acpun
aior1 aior2 ... aiorn
aiow1

aiow2
... aiown

aup1 aup2 ... aupn
adw1

adw2
... adwn

⎞⎟⎟⎟⎟⎟⎠

(2)bij =

⎧
⎪⎨⎪⎩

1, aij = min(aij)
j=1,...,n

0, aij > min(aij)
j=1,...,n

(3)B =
‖‖‖bij

‖‖‖(5∗n)
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observed parameter). The goal is to find the server with the least load at a given 
time. Thus, we must emphasize that each parameter (CPU, I/O Read, I/O Write, Link 
Upload, Link Download) does not have an equal impact on every service. Therefore, 
it is necessary to valorize the impact of each parameter. In other words, depending 
on the type of service, we can define weight factor ki for each parameter. So, element 
bij in matrix B is multiplied by ki , such that k i [0,1] for every i=1,...,5. The default ki 
value is 1 and could be modified to adjust the parameter impact. For example, in the 
case of database load balancing, we would define greater significance on k factor for 
I/O read and write usage than on Download/Upload parameters (k values vector as 
following—CPU=0.5, I/O Read=1, I/O Write=1, Upload=0.2, Download=0.2) to 
obtain better database performance and responses.

The load balancing scheme defines that the server with the least load is the server 
with the most points. Therefore, it is necessary to calculate the total number of 
points for each server by relation (4):

By applying relation (4), the vector is obtained: Sj = [S1, S2, ..., Sn]. It is necessary 
to perform maximization by finding the element W (index of the server), with the 
maximal value using the relation (5):

Thus, by obtaining information about the server’s index with the least current load, 
the SDN controller becomes aware of the rIP address it should forward the traffic to 
and generates instructions for the SDN switch to perform translation from vIP to rIP 
address.

5 � Implementation and Evaluation

We have defined a testing scenario and created a testbed environment that realisti-
cally reflects the traditionally organized network with an on-site data center to effec-
tively implement and evaluate the proposed load balancing scheme in a hybrid SDN 
network. Our research has used a virtual environment emulation method, with vir-
tualized hardware, while the software applied has been the same as it would be on 
physical devices.

5.1 � Testbed Environment

We have used the EVE-NG platform [52] to build a testbed environment with virtual 
servers and other network resources and create a proof of concept. We have imple-
mented the following virtual components (Fig. 7):

(4)Sj =

5∑
i=1

kibij, j = 1, ..., n

(5)W =

{
j ∣ Sj = max(Sm)

m=1,...,n

}
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•	 SDN-Switch—an Linux OVS router with the role of SDN-aware switch
•	 Six virtual machine instances (VM) with Linux Ubuntu servers
•	 Web Server 1 (WS1), Web Server 2 (WS2)—VM instances for Web Servers
•	 Web client 1 (WC1), Web client 2 (WC2), Web client 3 (WC3)—VM instances 

for web clients
•	 SDN-Controller—VM instance with POX SDN controller
•	 Router—an instance of the Mikrotik ROS router with L3 functionality
•	 Net—Internet connection.

Today’s implementation of most companies’ services uses web communication, 
which offers high flexibility by relying on the web as a mature technology. Web 
technology enables dynamic scaling of resources and supports a high level of ser-
vice performance. It is necessary to enable dynamic traffic balancing between serv-
ers having the same function to perform dynamic scaling of resources. Therefore, we 
have set up two web servers in our testbed environment and implemented a dynamic 
load balancer for scheduling connections of multiple web clients.

As shown in Fig. 7, we have connected all virtual machines (with Linux OS) to 
the SDN switch, with the Open vSwitch (OVS) platform [53] managing flows via 
the OpenFlow protocol. We have implemented a router with DHCP server function-
ality to enable dynamic and persistent IP addresses assignment. In the emulated net-
work, we have had to install the appropriate software on virtual machines (e.g., Java, 
Apache, SNMP) and connect the router to the public Internet via the Net interface. 
The physical host with the emulated environment forwards packets through real 
physical networks.

We have configured the OVS in a way that we merged all SDN switch interfaces 
into one virtual SDN bridge (‘br-sdn’). As a network entity, this bridge obtains its IP 

Fig. 7   EVE-NG testbed environment
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address via a DHCP from the router. Before the IP address on the SDN controller is 
configured, OVS behaves like a traditional switch. Thus, the OVS performs the L2 
forwarding process of populating flow tables based on the original MAC address 
and forwards the frames based on the learned flows, and if necessary, it also floods 
the frames. From the moment the IP address is configured on the SDN controller, 
the SDN switch is forwarding every packet to the SDN controller for further pro-
cessing due to missing instruction in the flow table.

The virtual machine with SDN controller functionality has a control function in 
this virtual environment. Various OpenFlow controllers have been publicly released 
(e.g., POX, NOX, Floodlight, IRIS, OpenDaylight, Jaxon, NodeFlow, Helios) [54]. 
We have decided to implement a POX controller [9] in Python because it has simple 
implementation and support for many libraries. We have developed a POX control-
ler module to implement the functionalities described in Sect. 4.

5.2 � Hybrid SDN Implementation

From the moment the OVS connects to the SDN controller, the SDN controller 
processes all new OVS flows. The SDN controller must perform proactive flow 
insertion to edit the traffic forwarding policy and define which of the flows will be 
managed by the SDN controller and which traditionally. Specifically, these are the 
proactive flows:

•	 (P1) ARP → PacketIn, Normal packets sent to a broadcast address will be for-
warded to the SDN controller and then processed in the traditional way

•	 (P2) DstIP: vIP → PacketIn, PRI: 1000 packets sent to vIP will be forwarded to 
the SDN controller unless there is a higher priority flow (smaller number)

•	 (P3) Any → Normal, PRI: 500 all other packets are traditionally processed unless 
there is a higher priority flow.

The Normal instruction aims to indicate to the SDN device that the flow should be 
processed traditionally. The flow processing depends on the SDN device’s primary 
function, i.e., whether the SDN functionality executes on a switch (L2 forwarding) 
or a router (L3 routing process).

The fact is that proactive flows can define rules, which change the OVS SDN 
bridge’s default behavior. Therefore, the idea is to send to the SDN controller only 
packets with destination vIP address (P2) and ARP packets (P1). All other pack-
ets will be automatically processed by traditional L2 forwarding on the SDN switch 
itself without the controller actions (P3) unless there is a higher priority flow.

5.3 � ARP Handling

We need to resolve the vIP address to the vMAC address to implement the load bal-
ancing method proposed in Sect. 4. Before sending the packet to the vIP, the web 
server must have information about the destination MAC address. For this reason, 
it sends an ARP request for resolving the vIP to the vMAC. The SDN controller 
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must also receive this ARP request (RA). At this request, the SDN controller forms 
a PacketOut with an ARP response containing a predefined mapping of the vIP 
address to the vMAC address and forwards it to the SDN switch. Upon receiving 
a PacketOut with an ARP response, the SDN switch forwards the ARP response to 
the port from which the ARP request has come. After the server receives the ARP 
response for the vIP, it can populate the destination MAC address with the vMAC 
and prepare the packet to send.

Thus, the SDN controller forms a reactive flow in this way:

•	 (RA) PacketOut(ARP response, DST: ARP req SRC MAC) → DPort: Req SPort.

We should mention that the SDN controller ignores any other ARP request because 
these requests will be processed traditionally (flooding).

5.4 � Load Balancing Procedure

As discussed in Sect. 4, the packet sent to the vIP arrives at the SDN switch, which, 
since it is a new connection, still does not have a reactive flow instruction in its flow 
table. Therefore, it executes the proactive instruction (P2), sends the packet to the 
SDN controller, performs the load balancing procedure, and decides which server 
rIP address it should use for this request. The SDN controller creates two reactive 
flows:

•	 (R1) DstIP: vIP, SrcIP: srcIP, SrcTCPPort: srcTCPPort → Modify(DstIP: 
rIP(srvN), DstMAC: rMAC(srvN)), Normal, PRI: 1500

•	 (R2) SrcIP: rIP(srvN), DstIP: srcIP, DstTCPPort: srcTCPPort → Modify(SrcIP: 
vIP, SrcMAC: vMAC), Normal, PRI:1500

with the following elements:

•	 srcIP—rIP client address (in our case rIP address of Web1, Web2, Web3—
Fig. 7)

•	 srcTCPPort—client’s application source port (a different port for each new TCP 
connection)

•	 srvN—the ordinal number of the server where the request is to be forwarded 
(e.g., 1 for WS1 and 2 for WS2)

•	 rIP(srvN)—rIP address of the server where the request is to be forwarded
•	 rMAC(srvN)—rMAC address of the server where the request is to be forwarded.

The reactive flow instruction (R1) represents the response of the SDN controller to 
the PacketIN request. It instructs the SDN switch to match the packet of a particular 
connection sent to the server’s virtual IP address and then modify it by replacing the 
virtual destination address parameters (vIP and vMAC) with the real server param-
eters to which the request should be forwarded. After modification, the switch for-
wards the packet using the existing L2 forwarding mechanism. By defining a higher 
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priority (1500) for the reactive flow instruction (R1), compared to the proactive flow 
instruction (P2), each future packet with the same parameters (source IP address, 
port, and vIP destination address) will be forwarded immediately without SDN con-
troller action.

Since the server’s response should be returned to the request’s sender, the SDN 
controller with the reactive flow (R2) instructs the SDN switch to modify each 
packet coming from the observed server by replacing rIP and rMAC server addresses 
with virtual parameters (vIP and vMAC). The reactive flow instruction (R2) priority 
is higher than the proactive flow instruction (P3) priority, so the switch will forward 
the modified packet by the L2 forwarding mechanism to the sender without SDN 
controller action.

5.5 � Testing Methodology

The proposed load balancing scheme evaluation in hybrid SDN networks has aimed 
to gain an accurate insight into its capabilities. Therefore, it has been necessary to 
perform the testing in conditions that largely correspond to the real environment sit-
uation. Given the increase in web services, we have decided to check the new load 
balancing scheme’s efficiency on web servers. We have tested the proposed mech-
anism in an emulated environment with virtual client instances, web servers, and 
SDN components (SDN controller and hybrid SDN switch). To obtain the most reli-
able results, we have performed testing in a controlled manner, gradually including 
an increasing number of users connections to maximize the load of the web serv-
ers and check the effectiveness of several load balancing mechanisms, including the 
proposed LBORU method.

For this reason, we have developed a testing tool that sends web requests and con-
sists of two components:

•	 Job component—Establishes a connection with the web server, executes a single 
request transaction, and reports on the time required for its completion. The Job 
component procedure is executed in an infinite loop to simulate a single compet-
ing user, constantly performing transactions.

•	 Concurrency component—Increases the number of parallel users in a controlled 
manner, records the response time for each transaction, and performs statistical 
calculations.

The Job component has been sending web requests, while the Concurrency compo-
nent has been collecting testing parameters such as:

•	 The number of concurrent connections
•	 Average time required to complete the single request
•	 The number of completed transactions per second.

To get a realistic insight into the proposed solution’s performance, instead of com-
mercial web servers (e.g., Apache or NginX), which already have some of the 
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mechanisms to optimize the use of their resources, we have created our web server. 
Our goal has been to obtain the interpretable measurements, which will be useful 
regardless of the optimization mechanisms’ existence. This server is written in the 
Java programming language and does not have any resource optimization mecha-
nisms (all tools developed for testing purposes are available on GitHub [55]. The 
goal of testing has been to load the created JAVA servers with a large number of 
service requests. We have started by observing that various services require a differ-
ent level of server resource engagement (e.g., CPU, RAM, and network resources) 
during the response generation process. In other words, the response generation is 
loading Java servers depending on the requests.

We have compared other commonly used load balancing schemes such as Ran-
dom, Round Robin, and LBBSRT to gain a clear insight into the proposed scheme’s 
possibilities. In the case of Random or Round Robin load balancing, which are 
implemented directly on several web clients, the requests come through Random 
distribution from the server’s perspective (web clients do not know how much each 
server is loaded). We have introduced the SDN controller and applied the Round 
Robin, LBBSRT, and LBORU mechanism, to create conditions for centralized con-
trol of client requests and connections scheduling in front of the web servers.

6 � Test Results and Performance Analysis

We perform the testing in a realistic environment with virtual machines in the EVE-
NG testbed environment (6 repetitions). There is an element of temporal load vari-
ations in the quality of the results, which indicates that increasing the number of 
repetitions would only introduce noise into the results. In the initial testing phase, 
we will analyze the influence of processing overhead on each first packet and iden-
tify the value of an initial processing delay in the SDN network. After that, we will 
analyze the relationship between the number of transactions and concurrent clients 
(connections). This analysis aims to identify how the SDN concept’s initial delay 
affects the transaction number and average transaction time. Also, we must assess 
the efficiency of our load balancing scheme and analyze servers’ resource load dis-
balance (primarily CPU load) as one of the efficiency indicators for load balancing 
mechanisms.

For an objective analysis of the obtained results, we must consider that direct 
connections from web clients to available web servers have a certain advantage over 
the SDN approach because of initial packet processing in SDN connections. The 
SDN switch must send this packet to the SDN controller to process it and decide 
(give instruction) on further forwarding [1]. Therefore, we assume that the direct 
connections scheduled by the Random load balancing mechanism are the baseline 
for the performance evaluation.

Figure 8 shows the influence of processing overhead on each TCP SYN packet 
in SDN (the first packet of each connection), through an initial processing delay of 
approximately 1000 ms. The graph shows the results for 30 transactions in the same 
connection. It is important to note that each subsequent packet’s processing delay 
has a similar value as for the direct connection.
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We analyze the results obtained by testing the previously described load balanc-
ing mechanisms (R, RR, LBBSRT, and LBORU) in the environment described in 
section  4. One of the key parameters analyzed is the number of transactions and 
their dependence on the number of concurrent clients (connections), as shown in 
Fig. 9. The conclusion is that despite the initial delay present in the SDN concept, 
the Random mechanism did not have a significant advantage in terms of transactions 
number compared to the SDN. There is a linear dependence between the number of 
transactions per second and the number of concurrent connections up to 40 concur-
rent connections. Further increase in the number of concurrent connections leads to 
losing this dependence due to resource overload on both servers. Once the resource 
overload occurs on servers, there is no significant advantage of any tested load bal-
ancing mechanisms.

Analysis of the average transaction time (Fig.  10) shows that the first packet’s 
overhead in the SDN concept does not have a significant impact.

To gain insight into each of the tested load balancing mechanisms’ efficiency, 
we have analyzed the data describing a server load. Thus, Fig. 11 shows the CPU 

Fig. 8   Initial processing delay of SDN controlled connections

Fig. 9   Transactions per second comparison
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load disbalance (CPU load difference between WS1 and WS2) as one of the effi-
ciency indicators for load balancing mechanisms. The smaller disbalance means a 
more uniform CPU load on servers.

The Random load balancing causes a significant CPU disbalance, primarily 
because the web client is not aware of the CPU resource load on the web servers. 
However, with the increase in the number of concurrent connections, it comes 
to server overload, and then the disbalance becomes less noticeable. On the 
other hand, the Round Robin mechanism has shown satisfying results for CPU 
load balancing up to the moment of server overload. Due to the inconsistency of 
individual requirements regarding the engagement of CPU resources generating 
responses on web servers, it is noticeable that this mechanism creates an increas-
ing disbalance with the increase in the number of concurrent connections. To 
accurately analyze the results obtained using the LBBSRT mechanism, we must 
consider that this mechanism relies on the value of the RTT parameter. The fact 
is that measuring the RTT parameter’s value via the ICMP protocol requires little 
resources on the server (there is a quick response to each server query). However, 
the test results indicate that the LBBSRT mechanism cannot detect disbalance in 
a sufficiently precise way and timely equalize the CPU load on web servers.

Fig. 10   Average transaction time comparison

Fig. 11   Comparison of CPU disbalance
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The mechanism proposed in this paper (LBORU) monitors several operating 
system parameters. The decision to forward requests to a specific server is based 
on these parameters’ values in real-time, collected using the SNMP protocol. The 
obtained results indicate a maximum CPU load disbalance of about 10%, which can 
be considered very low. More importantly, such value of CPU disbalance remains 
within these limits even after the server’s overload.

Fig.  12 shows the cumulative CPU disbalance, representing the sum of CPU 
disbalance (in percent), based on Fig.11. It is noticeable that the LBORU mecha-
nism gives the best results in terms of CPU balancing on servers. At the same time, 
Round Robin has similar characteristics since the largest part of the values (75%) is 
obtained in the period before the server overload.

Figures  13 and 14 show the results related to the disbalance in the upload of 
network resources. Namely, each response engages a different amount of these 
resources, which is a significant challenge for assessing each load balancing mecha-
nism’s effectiveness.

In our tests, the Random scheduling mechanism for web clients’ connections gave 
solid CPU disbalance results. However, there is a significant disbalance observed 
from the aspect of network traffic. In contrast, the RR mechanism implemented 
on the SDN controller, despite not being aware of the links’ state, still managed to 
ensure a satisfying network traffic balance. From the LBBSRT mechanism aspect, 

Fig. 12   Cumulative CPU disbalance

Fig. 13   Comparison of upload disbalance
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we have expected better results in network traffic balancing. The reason is that the 
load on the network interface and the interface queue impact on RTT value increase 
and can indicate a disbalance, thus initiating more efficient traffic balancing on the 
controller. The obtained results show that this is not enough for a significant change 
in the RTT parameter value so that the LBBSRT mechanism can make better deci-
sions. Tests have shown that the LBORU mechanism, which monitors the current 
CPU values and network resources load, makes better decisions about load balanc-
ing on servers.

7 � Discussion

New technologies, the emergence of intelligent and more demanding services, new 
types of communications, and more numerous users demand to define a more effi-
cient method to balance traffic. By analyzing the existing load balancing schemes 
described in Sect.  3, we recognized certain limitations. These schemes do not 
include continuous resource load detection in the decision-making process. There-
fore, we have decided that the foundation of our solution is continuous detection of 
resource load and implementation of a mechanism that allows customization of load 
balancing schemes regarding service resource usage.

The obtained results indicate the influence of processing overhead on each first 
packet and identify the value of an initial processing delay in the SDN network. Fur-
ther analysis of the relationship between the number of transactions and concurrent 
connections showed that the SDN concept’s initial delay did not significantly affect 
the transaction number and average transaction time. There is a linear dependence 
between the number of transactions per second and the number of concurrent con-
nections. To assess the efficiency of our load balancing scheme, we analyzed serv-
ers’ resource load disbalance (primarily CPU load) as one of the efficiency indica-
tors for load balancing mechanisms. The analysis shows that increasing the number 
of concurrent connections and server load makes the disbalance less noticeable.

Fig. 14   Cumulative upload disbalance
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We have discussed in the previous section the possible reasons for poor results 
obtained using the LBBSRT mechanism. To make it easier to compare the test 
results, we calculated the cumulative CPU disbalance. It is noticeable that our mech-
anism gives the best results in terms of CPU balancing on servers. Also, we have 
presented a similar disbalance analysis of the upload of network resources because 
it is a significant challenge in assessing each load balancing mechanism’s effective-
ness. The test results have shown that our mechanism, which monitors the current 
CPU values and network resources load (which is most significant for our test case), 
makes better load balancing decisions than tested mechanisms.

8 � Conclusion

The rapid growth in the number of Internet users and the increasingly complex 
nature of their requirements impose the need for faster development of network tech-
nologies. Implementation of new services based on machine learning, IoT, neural 
networks, and other advanced technologies and realization of smart environments 
(e.g., smart city, smart traffic, smart industry) require rapid and efficient network 
infrastructure modernization. It is necessary to introduce a higher level of program-
mability and simplify network management in a heterogeneous network infrastruc-
ture. This way, we can provide the required level of flexibility and scalability in 
implementing existing and future services.

The SDN technology imposes itself as a logical solution in this regard. However, 
the complexity of full migration to SDN and the implementation costs are key chal-
lenges that impose the need to define the process of transition from the traditional to 
SDN network architecture in a sufficiently clear and precise way. In this sense, the 
incremental approach to the introduction of SDN functionality in the network infra-
structure is the only economically rational and technically efficient solution today 
and is based on the selective implementation of SDN-aware devices and building a 
hybrid SDN architecture. This research shows that one can realize the hybrid SDN 
architecture by adding only a hybrid SDN switch and SDN controller while pre-
serving all the traditional network’s functionalities (e.g., routing, switching, DHCP, 
ARP, SNMP). In this way, we combine the proactive flows, which leave most of the 
computer network’s management to traditional mechanisms, with the inserted reac-
tive flows, used only for additional SDN functionalities.

We have evaluated our load balancing scheme in a hybrid SDN network based 
on the SNMP protocol for monitoring the current load of web server resources. We 
have applied multi-parameter metrics in the process of deciding which server to for-
ward a connection to. This decision-making method uses many more parameters 
than traditional load balancing technologies and some new SDN schemes. By ana-
lyzing the obtained results, we can conclude that implementing the proposed scheme 
for load balancing achieves better balance in resource load and ensures efficient 
services implementation. Although we have tested our solution on web servers, our 
approach is generally applicable and can efficiently perform load balancing regard-
less of the traffic type.
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We recognize certain limitations of our study. They are caused by how we have 
performed the testing according to the proposed methodology. In laboratory condi-
tions, we have carried out the test scenario in which the testbed environment was 
composed of a minimum number of devices needed to realize the project objectives. 
This approach produces a particular limit in terms of results—they could be differ-
ent if we had performed the testing in a realistic or cloud environment.

Our future research will focus on developing additional functionalities based on 
SDN technology, which will improve traditional computer networks’ functioning 
and solve problems, such as IP mobility in heterogeneous networks, more efficiently. 
In that sense, we will direct special attention to developing new weights distribution 
models for coefficients, especially its influence on a large number of servers. Fur-
thermore, part of future research will be related to a more precise identification of 
the impact of the proposed load balancing scheme on low latency traffic.
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