
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30:30
https://doi.org/10.1007/s10922-022-09642-y

1 3

Hybrid SDN Networks: A Multi‑parameter Server Load
Balancing Scheme

Teodor Malbašić1  · Petar D. Bojović2  · Živko Bojović1  · Jelena Šuh3  ·
Dušan Vujošević2 

Received: 31 March 2021 / Revised: 11 September 2021 / Accepted: 2 January 2022 /
Published online: 27 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Software-defined networking (SDN) provides many benefits, including traffic pro-
grammability, agility, and network automation. However, budget constraints bur-
dened with technical (e.g., scalability, fault tolerance, security issues) and, some-
times, business challenges (user acceptance and confidence of network operators)
make providers indecisive for full SDN deployment. Therefore, incremental deploy-
ment of SDN functionality through the placement of a limited set of SDN devices
among traditional devices represents a rational and efficient environment that can
offer customers modern and more data-intensive services. A unique challenge is
the flexible distribution of loads on the servers that serve these services in network
environments. The research in this paper focuses on developing a new load balanc-
ing scheme utilizing a hybrid SDN environment built with a minimal set of SDN
devices (controller and one switch). We propose a novel load balancing scheme to
monitor current server load indicators and apply multi-parameter metrics for sched-
uling connections to balance the load on the servers as efficiently as possible. The
base of the new load balancing scheme is continuous monitoring of server load indi-
cators and implementations of multi-parameter metrics (CPU load, I/O Read, I/O
Write, Link Upload, Link Download) for scheduling connections. The testing per-
formed on servers aims to balance the server’s load as efficiently as possible. The
obtained results have shown that this mechanism achieves better results than exist-
ing load balancing schemes in traditional and SDN networks. Moreover, a proposed
load balancing scheme can be used with various services and applied in any client-
server environment.

 *	 Petar D. Bojović
	 petar.bojovic@paxy.in.rs

1	 Faculty of Technical Sciences, University of Novi Sad, 6 Trg Dositeja Obradovića, Novi Sad,
Serbia

2	 The School of Computing, Union University Belgrade, 6/6 Knez Mihailova, Belgrade, Serbia
3	 Telekom Srbija, Bulevar umetnosti 16a, Belgrade, Serbia

https://orcid.org/0000-0001-8953-8680
http://orcid.org/0000-0003-2292-6317
https://orcid.org/0000-0001-6257-6417
https://orcid.org/0000-0001-5053-6020
https://orcid.org/0000-0002-9800-4848
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09642-y&domain=pdf

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 2 of 28

Keywords  SDN · Hybrid SDN · Load balancing · SNMP · Multi-parameter metrics

1  Introduction

Implementation of new intelligent services requires modernization of network infra-
structure and more efficient use of available network resources. Software-Defined
Networking (SDN), as a new network paradigm, decouples the network control
(management) plane from the data plane, centralizing the whole control logic in
an SDN controller [1]. It supports networks and smart services’ dynamic nature
while providing simple network management, enabling better Quality of Experience
(QoE) for users and reducing costs [2]. Although SDN implies simplified hardware,
software, and management, its full implementation requires replacing a large part of
the existing traditional infrastructure. It is thus limited by budget [3] and with pos-
sible extensive downtime.

For these reasons, SDN is often deployed incrementally in large networks, build-
ing a hybrid infrastructure with a mix of a limited number of SDN-enabled and leg-
acy devices. Two principal ways of hybrid SDN deployment exist [4]: a) Introduc-
tion of SDN switches in a legacy network and b) Implementation of hybrid SDN
switches with both SDN and legacy switching functionalities. Besides cost reduc-
tions, hybrid SDN networks also provide certain SDN functionalities without imple-
menting a full SDN network while enabling fine-grained traffic control. In that way,
an SDN controller is free from tasks that traditional protocols can perform in hard-
ware in a much more efficient manner. Sometimes it is necessary to interconnect two
or more SDN networks via legacy network devices, and in that case, hybrid SDN
must be used [5]. Our research aims to maximize the usage of existing elements of
the traditional network and their functionality (e.g., SNMP for remote insight into
the state of server resources) and apply a higher level of programmability (e.g., in
the network traffic load balancing). The emergence of new traffic demanding ser-
vices often leads to network resources overload and network congestion, resulting
in reduced service availability and significantly affecting QoE. It seems necessary
to overcome these challenges by implementing an adequate load balancing scheme.
The load balancing in traditional networks is very demanding (both in cost and con-
figuration) and primarily based on dedicated and highly expensive hardware (often a
proprietary solution) [6]. The SDN concept can solve these challenges (reduce cost
and increase load balancing efficiency) by implementing traditional load balancing
schemes [7] or their modifications (e.g., based on the server response time in the
server cluster [8]) in the software of SDN controller.

In their research, scientists use two approaches to solve the load balancing issue
(the deterministic and the non-deterministic). Both approaches have certain disad-
vantages, which we will discuss later. Our solution aims to mitigate these disad-
vantages. We propose a new solution for dynamic load balancing in a hybrid SDN
network—LBORU (Load Balancing by Optimizing Resource Utilization). The tra-
ditional algorithms (e.g., Random (R), Round-Robin (RR), or Weighted Fair Queue-
ing (WFQ)) are relatively simple and do not use metrics based on the server’s cur-
rent resource occupancy. Our research focuses on a hybrid SDN network (with a

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 3 of 28  30

minimum number of SDN-enabled components) and the deployment of a new pro-
grammable load balancing scheme. This scheme uses a Simple Network Manage-
ment Protocol (SNMP) mechanism for collecting server currently utilized resource
information for the requests scheduling. We have performed this research in the
Laboratory of School of Computing in Belgrade, Serbia. We have used an emulated
virtualized network infrastructure as a testbed environment, added a POX SDN con-
troller [9], and a hybrid SDN switch responsible for the load balancing in communi-
cation to the server cluster (other traffic is managed traditionally).

Our load balancing scheme starts from the observation that different services have
different resource requirements and, for this reason, uses a metric based on multiple
parameters (CPU load, I/O Read, I/O Write, Link Upload, Link Download). These
parameters describe well the load on server resources, such as CPU, storage, and
network links. We have evaluated our solution, comparing it to traditional methods
and server response time-based load balancing scheme (LBBSRT) [8]. By ensur-
ing a better balance in resource load, we have achieved improved system response.
Our mechanism monitors the current CPU values and network resources load and
makes better load balancing decisions than the existing mechanisms used for the
comparison.

In our previous research [3], we presented a flexible network architecture for
hybrid SDN infrastructure with a minimum number of SDN components (one SDN
controller and one SDN switch per network [10]. Within such a very elastic envi-
ronment, we have conducted research and accomplished the following contributions
that we present in this paper:

•	 Design and implementation of a novel load balancing scheme based on the
multi-parameter metric

•	 Proving the efficiency of our solution by comparison with traditional and LBB-
SRT load balancing methods.

The rest of the paper is organized as follows: Sect. 2 reviews the SDN concept,
describes hybrid SDN network architecture and traditional load balancing schemes.
Section 3 gives an overview of load balancing schemes in SDN networks. Sec-
tion 4 details the design of our proposed load balancing scheme in a hybrid SDN
network. Section 5 describes the implementation and presents a performance evalu-
ation method. Section 6 gives test results and performance analysis. Section 7 pre-
sents results discussion. Finally, we conclude the paper with an overview of possible
future work.

2 � Background

Traditional network management’s complexity and the large number of functionali-
ties defined in the hardware lead to a lack of flexibility for solving users’ requests
and costly implementation. Migration to the SDN concept reduces computer net-
work management’s complexity and in some cases reduces network latency, as well
as introduces a higher degree of reliability and programmability [11]. SDN achieves

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 4 of 28

this improvement using dynamic resource allocation following service requirements
and fast and easy service implementation, the so-called “service provisioning on the
fly” [12].

2.1 � The SDN Concept

The SDN architecture has a three-layer structure, including application, control, and
data [13] (Fig. 1). There are different user requirements, and it is necessary to imple-
ment various so-called northbound APIs on the application layer, providing differ-
ent functionalities [14]. An SDN controller is a central part of the SDN architecture
responsible for controlling and managing underlying infrastructure by offering net-
work-wide visibility and direct control [15]. OpenFlow is the first standard protocol
(southbound API) that uses the concept of flows for traffic identification based on
matching rules defined by the SDN controller [16]. The SDN controller will cre-
ate, either statically or dynamically, a rule for packet processing that updates SDN
switches’ flow tables and perform appropriate action accordingly. In that way, the
SDN controller manages all the switches’ flow tables simultaneously, enhancing the
network performance and significantly reducing the network complexity [17].

Recently, SDN technologies have been deployed in different network environ-
ments (e.g., data centers, enterprise networks, 5G networks, Industry 4.0) to sup-
port the efficient implementation of network virtualization and Network functions
virtualization (NFV). They allow administrators to control and manage their virtual-
ized resources and network without detailed knowledge of the hardware technolo-
gies (simplified data plane and abstraction rather than specialized hardware) [18].
The process of virtualization introduces a higher degree of scalability and security
in data centers. It enables the automation of virtual machine migrations, positively

Fig. 1   Traditional vs SDN architecture

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 5 of 28  30

affecting the utilization of server and network resources [19]. The SDN applies well-
defined data plane abstraction, including packet forwarding abstraction models, cir-
cuit switching abstraction models, wireless integration, and an evolved packet core
support [18].

With NFV, functions that traditionally run on dedicated equipment (e.g., firewalls
and load balancers) can be virtualized and placed closer to the desired point in a
network, containerized with an application. NFV allows multiple logical networks to
run on common physical infrastructure. In [20], the authors propose a new resource
allocation for industry 4.0 based on SDN and NFV technologies, machine learn-
ing tools, and network slicing depending on service requirements regarding band-
width, delay, and reliability. In [21], besides network slicing, the authors point to an
increase in the Industrial Internet of Things (IIoT) computational capacity and pro-
pose architectural improvements to efficiently accommodate diverse QoS demands
on shared network infrastructure, such as data privacy. They recognize that federated
reinforcement learning (RL) has become a promising approach that distributes data
acquisition and computation tasks over distributed networks exploiting local compu-
tation capacities and agents’ self-learning experiences. They propose a novel deep
RL scheme to provide federated and dynamic network management and resource
allocation for differentiated QoS services in IIoT networks.

2.2 � The Hybrid SDN Concept

The technical, financial, and business challenges accompany SDN’s full implemen-
tation. The hybrid SDN infrastructure can be an intermediate solution, representing
the integration of legacy and SDN devices working in parallel and taking advantage
of traditional and SDN networks. It is necessary to develop an incremental deploy-
ment strategy to implement such an infrastructure [22]. Hybrid SDN networks con-
sist of both centralized and decentralized architectures that must communicate with
each other to obtain optimal performance and QoE through network configuration,
control, and management. Hybrid SDN architecture relies on a 3C model [22]: a)
Coexistence—heterogeneity of infrastructure in the data plane, control plane, or
both data and control plane; b) Communication—the interaction of legacy and SDN
devices in order to enable understanding and functionality sharing and distribution
at data plane, control plane or both data and control plane; c) Crossbreeding—a
combination of different network paradigms with complementary characteristics to
minimize budget, simplify the transition, automation, and traffic policy definition,
and provide high-level scalability and robustness.

In [23], four hybrid SDN models are defined (Fig. 2):

•	 Topology-based hybrid SDN model—This implies partitioning the network into
zones where each device can be a member of only one zone (legacy or SDN). A
zone is composed of multiple devices controlled by the same network paradigm.

•	 Service-based hybrid SDN model—Legacy and SDN devices provide different
services. For end-to-end services, it can be necessary that two network para-
digms control a set of devices concurrently (controlling a different portion of the

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 6 of 28

Forwarding Information Base—FIB) of each device) and, at the same time, some
devices can be controlled by only one network paradigm.

•	 Class-based hybrid SDN model—This implies partitioning the network traf-
fic into classes that can be controlled by legacy or SDN paradigm. All network
devices usually have both legacy and SDN functionalities.

•	 Integrated hybrid SDN model—SDN is responsible for all the network services,
and it uses legacy network protocols as an interface to device FIBs. A legacy
paradigm that is controlled by the SDN controller manages the device FIBs.

The implementation of a hybrid SDN infrastructure has certain limitations [22].
One of the limitations is the heterogeneous control plane’s management complex-
ity, where the reconfiguration process causes forwarding inconsistency and, conse-
quently, can provoke forwarding loops and traffic black holes [24]. The other limita-
tion is data plane complexity, where a translation of protocol from legacy to SDN
and vice versa leads to performance degradation related to latency and processing
time. SDN controller limitations are related to implementing two or more controllers
within the hybrid SDN infrastructure (which can cause a problem with latency, traf-
fic engineering, scalability, and security). Implementing adequate traffic engineering
methods can also be a big challenge, mainly if each device does not support flow
abstraction [25]. Nevertheless, hybrid architectures can be a suitable solution for
achieving the required QoS (Quality of Service) levels in convergent networks [26].

The deployment of hybrid SDN infrastructure includes the placement of SDN
devices in a traditional network. In [27], the Panopticon approach creates a hybrid
SDN network by interconnecting legacy and SDN devices with the idea to force all
traffic to traverse an SDN switch controlled by the SDN controller. Although not
all networking aspects (e.g., traffic engineering and load balancing) were consid-
ered, this research showed a performance increase compared to the original net-
work. Internet service providers can also use the advantages of incremental deploy-
ment of SDN network infrastructure to achieve a higher level of programmability
and traffic engineering [28]. They classify network traffic into programmable and
non-programmable depending on whether the traffic traverses through an SDN
switch. Sometimes, deployment of hybrid SDN infrastructure implies adding SDN
devices instead of replacing legacy devices [29]. The SDN devices connect to legacy

Fig. 2   Hybrid SDN models, based on the classification in [22]

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 7 of 28  30

devices, and both distributed routing protocols and the SDN controller process the
traffic. The SDN functionality can also be implemented by installing SDN shim
hardware in legacy devices [30] to enable communication between an SDN control-
ler and a modified legacy device. In [31], the authors present a service-based hybrid
SDN wireless network model, which gives better performance, especially related to
resiliency to path failures.

In practice, there are many other interesting scenarios of the hybrid SDN imple-
mentation. A hybrid SDN based architecture for vehicular ad hoc networks provides
end-to-end data transmission with flexibility, scalability, and programmability fea-
tures. It can solve problems in traditional traffic management systems with variable
traffic network conditions [32]. For a compute-intensive scenario in a framework
dedicated to computing and analysis of data on the wire”, i.e., while the data is still
in transit, researchers plan to achieve acceleration using a hybrid SDN testbed with
graphics processing units and field-programmable gate arrays [33].

2.3 � Traditional Load Balancing

Network overload problems can be mitigated by applying different load balancing
schemes and improving network efficiency and reliability (e.g., increasing scalabil-
ity and throughput, decreasing response time and resource consumption, avoiding
overload of any single resource) [34]. Static or dynamic traffic balancing, or a com-
bination of both, can be implemented using some of the four traditional load balanc-
ing schemes [35]. The first scheme refers to the clients that collect server running
parameters to schedule requests to different servers and achieve a certain load bal-
ancing level. The second scheme is based on the reverse proxy server deployment on
the middle layer, combining the load balancing technology with the caching tech-
nology to enhance the access speed. The third scheme is DNS-based, where multi-
ple IP addresses in the server clusters can use a single domain (domain name serv-
ers use a pooling method to schedule clients’ requests to different servers). Despite
this scheme’s simplicity, the DNS server is not aware of the difference among the
servers, and it cannot reflect the current state of the servers [36]. The load balanc-
ing at the transport layer represents the fourth scheme based on the communication
between the clients and the load balancing server, which forwards clients’ requests
to the backend servers according to policies (e.g., Linux Virtual Server [37]). This
approach is efficient but expensive since it often requires additional hardware.

3 � Related Work

3.1 � SDN Load Balancing

The SDN controller, which makes the forwarding decision for every new flow, has
a crucial role in SDN load balancing and is responsible for Real-time Least loaded
Server selections (RLSs) [38]. However, centralizing logic in a single control-
ler can be a problem regarding responsiveness, reliability, and scalability [39]. A

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 8 of 28

deterministic approach to load balancing in the SDN always gives the same output
for a specific input, whereas the values of parameters and the initial situations make
the output. A non-deterministic approach represents an algorithm that has different
results on different runs for the same input. The authors in [34] summarize both
approaches’ main advantages and disadvantages (Fig. 3).

Regardless of the load balancing approach implemented in the network, the
appropriate metrics must be defined. Various qualitative parameters can be used for
load balancing scheme evaluation in SDN [34], e.g., resource utilization (choice of
optimal load balancing algorithm can maximize resource utilization [40]), latency
(e.g., direct routing based load balancing algorithms minimize latency [41]), packet
loss rate, response time, throughput, migration cost, workload (load balancing of
workloads among controllers [42]), energy consumption (choice of suitable load
balancing scheme can reduce energy consumption [43]), forwarding entries (it is
necessary to decrease the number of forwarding entries to save memory resources
[44]), and execution time. Interesting research about the SDN bringing a higher level
of dynamics and programmability to the network describes load balancing using the
algorithms for client traffic partitioning based on load balancing weights [45]. Given
the growing complexity of infrastructure and traffic volume, in [46], the possibility
of multiple load balancer deployment for different services is discussed (e.g., one for
web traffic and the other for email). In [47], the authors point to a load imbalance
state in the network that may occur when there are multiple SDN controllers and
can notably degrade service levels in some parts of the network. They propose a new
load balancing scheme based on the integer linear programming technique (ILP).
The authors in [48] propose a load balancing scheme in SDN and implement a new
algorithm introducing the load-driven penalty concept to optimize the switch-to-
controller assignment problem and achieve a trade-off between the round trip time
and the controller load.

3.2 � Load Balancing in Hybrid SDN Networks

Given that the deployment of SDN is not possible in the short term and that hybrid
SDN represents a reasonable solution, we opt that solving the load balancing issue

Fig. 3   Main advantages and disadvantages of the deterministic and non-deterministic approaches to the
load balancing in the SDN, based on the classification in [31]

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 9 of 28  30

should focus on hybrid SDN networks. In [49], the authors propose an innovative
routing and flow scheduling method using link utilization and CPU time as metrics.
This approach has some limitations since it is focused only on solving the problem of
Open Shortest Path First (OSPF) network congestion. The improvement of traffic flow
management is the subject of research in [50]. The authors suggest flow management
based on a splitting mechanism where the path for every flow must go through the
SDN switch to achieve better flow control and traffic engineering (they use link utiliza-
tion and latency as metrics). Since these approaches do not consider the QoS, they can
result in routing process inefficiency.

As can be seen from the previous approaches, no load balancing scheme uses all
QoS parameters. Therefore, it could be interesting to investigate how to choose QoS
parameters to optimize traffic balancing decisions in different service scenarios. Some
authors go further and investigate the possibilities of hybrid SDN deployment within
data centers. To realize efficient traffic forwarding, the authors in [51] use QoS aware
routing with metrics based on packet loss, delay, and bandwidth. The main constraints
of this approach are high complexity regarding computation and possible processing
delay increase.

A significant limitation in many load balancing schemes is that they do not include
continuous detection of resource load in the decision-making process, which is essen-
tial considering the nature of new communications (e.g., IoT and M2M) and the grow-
ing trend of Internet users. The reason is that these proposed methods balance traffic
using traffic metrics (e.g., link metric, bandwidth, and RTT) and do not consider ser-
vice resource requirements. Our goal is to develop a load balancing scheme that we can
customize regarding service resource usage.

4 � Novel Load Balancing Scheme

The traditional networks commonly use simple traffic distribution mechanisms such
as RR or WFQ algorithms. They do not consider the server’s resource utilization but
only allocate traffic based on the previous connection distribution. Thus, they can
not achieve optimal network performances in terms of scalability and reliability. By
implementing programmable logic for network traffic management, the possibility of
retrieving external information such as, e.g., server load, thus increasing the efficiency
of the decision in balancing traffic. Our research introduces a minimum set of compo-
nents (e.g., SDN-aware switch and SDN controller) in the traditional network to keep
an acceptable implementation cost. In this way, we can apply new technologies and
enable a higher level of programmability to realize load balancing. Although the solu-
tion we propose contains a minimum set of devices, we can apply it in any production
environment. There it is necessary to implement redundant components to provide the
system’s required fault tolerance.

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 10 of 28

4.1 � A Proposed Hybrid SDN Architecture

As shown in Fig. 4, we propose replacing the switch connecting to servers with
the SDN-aware switch for partial implementation of the SDN functionality.
Besides using existing traffic forwarding methods, we have created conditions for
traffic forwarding based on the SDN controller instructions (using OpenFlow pro-
tocol). The implementation of SDN functionality aims to implement a schedul-
ing mechanism that, in combination with existing technologies, collects real-time
information about server load and, using this information, performs scheduling
tasks and balances traffic. Thus, the SDN switch performs tasks related to load
balancing in the SDN part of the network, while all other traffic is processed tradi-
tionally. We can apply the proposed architecture in any client-server environment.

It is essential to highlight that the SDN controller examines the servers’ loads
via the SNMP protocol to identify the lowest load one. The controller’s task is to
form flow instructions after processing each first packet. Following the instruc-
tions, the SDN switch should forward the traffic. In other words, the SDN con-
troller decides on which server the SDN switch should route all future packets of
the same connection.

The solution shown in Fig. 4 aims to enable a more optimal distribution of user
requests by applying dynamic network control and make the network itself more
agile. Based on multi-parameter load analysis on servers, this approach should
support a more significant number of simultaneous user requests and reduce
response time on different servers in LAN networks and Data Centers.

Fig. 4   The example of hybrid network infrastructure with a minimum number of SDN components

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 11 of 28  30

4.2 � Multi‑parameter Load Balancing Scheme

The load balancing scheme that we propose requires a new protocol to regulate com-
munication between clients and servers in a hybrid SDN network. The main idea is
that the SDN controller allocates a single virtual IP (vIP) and MAC address (vMAC)
for all servers whose traffic needs to be balanced. To avoid the potential problem of
ARP caching, which can impair load balancing efficiency, we have provided per-
sistent mapping of a vIP address to a vMAC address. This vIP address, as a desti-
nation address in clients’ packets, is the address to which clients send requests for
specific resources. When it comes to new connections, the SDN switch must for-
ward requests to the SDN controller responsible for requests forwarding to a spe-
cific server (for existing connections, the SDN switch forwards packets according
to existing records in the flow table). In this way, the SDN controller directly imple-
ments the load balancing functionality (Fig. 5).

The SDN controller decides to forward a specific connection by accepting the
first packet of that connection (OpenFlow PacketIn), identifying the server with
the least load, and then creating the appropriate flow instructions (OpenFlow Pack-
etOut). Following these instructions, the SDN switch must:

1.	 modify the packet and change the destination vIP and vMAC address to the real
addresses (rIP and rMAC) of the server with the least load, and forward the modi-
fied packet to the appropriate server;

Fig. 5   Novel load balancing scheme

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 12 of 28

2.	 upon receipt of the reply packet from the server, the server’s real address (source
packet parameters) is retranslated into vIP and vMAC, and the packet forwarded
to the client.

The SDN switch caches the translation information for a certain period. Each subse-
quent packet of the same connection is processed directly on the SDN switch follow-
ing the flow table records. The SDN controller has two processes: collecting infor-
mation about server load via the SNMP protocol and making decisions about traffic
forwarding to a specific server. The messages exchange flow diagram is shown in
Fig. 6.

The SDN controller collects information about server load using the following
algorithm: The round-robin mechanism selects one of the defined servers. The SDN
controller checks servers’ SNMP availability, and if it is not available, it moves on
to the next one. The SDN controller collects CPU load, I/O Read, I/O Write, Link
Upload, and Link Download data via SNMP protocol and stores them in a local
matrix variable. SNMP polling intervals should enable us to acquire resource load
data often enough to ensure proper load balance. However, polling intervals could
introduce unnecessary overhead load on the server too often. We propose a one-
second interval as a balance between speed of resource usage evaluation and SNMP
polling overhead. In order to obtain faster resource balancing, we could use lower

Fig. 6   Connection flow diagram

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 13 of 28  30

polling intervals. In this way, the SDN controller can perform a fast performance
comparison with other available servers (Algorithm 1).

To decide which server to forward the connection to, the SDN controller needs
to compare the load values of the corresponding parameters for each server. For
this comparison, it is necessary to form a matrix A (1) from the collected param-
eters whose elements are aij , where i represents the ordinal number of the parameter
(parameter 1—CPU, parameter 2 - I/O Read, parameter 3—I/O Write, Parameter
4—Link Upload, Parameter 5—Link Download), and j is server number (j = 1, ...,
n):

For each parameter, it is necessary to find a server or servers with a same, minimum
value and assign a value according to (2):

By applying this relation, we obtain a matrix B (3) with elements bij representing
the points that are assigned to the servers for each parameter:

Each row in matrix B can have one or more bij elements, whose value is differ-
ent from zero (multiple servers have the same, minimum value of load aij for the

(1)A =
���aij

���(5∗n)) =

⎛
⎜⎜⎜⎜⎜⎝

acpu1 acpu2 ... acpun
aior1 aior2 ... aiorn
aiow1

aiow2
... aiown

aup1 aup2 ... aupn
adw1

adw2
... adwn

⎞⎟⎟⎟⎟⎟⎠

(2)bij =

⎧
⎪⎨⎪⎩

1, aij = min(aij)
j=1,...,n

0, aij > min(aij)
j=1,...,n

(3)B =
‖‖‖bij

‖‖‖(5∗n)

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 14 of 28

observed parameter). The goal is to find the server with the least load at a given
time. Thus, we must emphasize that each parameter (CPU, I/O Read, I/O Write, Link
Upload, Link Download) does not have an equal impact on every service. Therefore,
it is necessary to valorize the impact of each parameter. In other words, depending
on the type of service, we can define weight factor ki for each parameter. So, element
bij in matrix B is multiplied by ki , such that k i [0,1] for every i=1,...,5. The default ki
value is 1 and could be modified to adjust the parameter impact. For example, in the
case of database load balancing, we would define greater significance on k factor for
I/O read and write usage than on Download/Upload parameters (k values vector as
following—CPU=0.5, I/O Read=1, I/O Write=1, Upload=0.2, Download=0.2) to
obtain better database performance and responses.

The load balancing scheme defines that the server with the least load is the server
with the most points. Therefore, it is necessary to calculate the total number of
points for each server by relation (4):

By applying relation (4), the vector is obtained: Sj = [S1, S2, ..., Sn]. It is necessary
to perform maximization by finding the element W (index of the server), with the
maximal value using the relation (5):

Thus, by obtaining information about the server’s index with the least current load,
the SDN controller becomes aware of the rIP address it should forward the traffic to
and generates instructions for the SDN switch to perform translation from vIP to rIP
address.

5 � Implementation and Evaluation

We have defined a testing scenario and created a testbed environment that realisti-
cally reflects the traditionally organized network with an on-site data center to effec-
tively implement and evaluate the proposed load balancing scheme in a hybrid SDN
network. Our research has used a virtual environment emulation method, with vir-
tualized hardware, while the software applied has been the same as it would be on
physical devices.

5.1 � Testbed Environment

We have used the EVE-NG platform [52] to build a testbed environment with virtual
servers and other network resources and create a proof of concept. We have imple-
mented the following virtual components (Fig. 7):

(4)Sj =

5∑
i=1

kibij, j = 1, ..., n

(5)W =

{
j ∣ Sj = max(Sm)

m=1,...,n

}

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 15 of 28  30

•	 SDN-Switch—an Linux OVS router with the role of SDN-aware switch
•	 Six virtual machine instances (VM) with Linux Ubuntu servers
•	 Web Server 1 (WS1), Web Server 2 (WS2)—VM instances for Web Servers
•	 Web client 1 (WC1), Web client 2 (WC2), Web client 3 (WC3)—VM instances

for web clients
•	 SDN-Controller—VM instance with POX SDN controller
•	 Router—an instance of the Mikrotik ROS router with L3 functionality
•	 Net—Internet connection.

Today’s implementation of most companies’ services uses web communication,
which offers high flexibility by relying on the web as a mature technology. Web
technology enables dynamic scaling of resources and supports a high level of ser-
vice performance. It is necessary to enable dynamic traffic balancing between serv-
ers having the same function to perform dynamic scaling of resources. Therefore, we
have set up two web servers in our testbed environment and implemented a dynamic
load balancer for scheduling connections of multiple web clients.

As shown in Fig. 7, we have connected all virtual machines (with Linux OS) to
the SDN switch, with the Open vSwitch (OVS) platform [53] managing flows via
the OpenFlow protocol. We have implemented a router with DHCP server function-
ality to enable dynamic and persistent IP addresses assignment. In the emulated net-
work, we have had to install the appropriate software on virtual machines (e.g., Java,
Apache, SNMP) and connect the router to the public Internet via the Net interface.
The physical host with the emulated environment forwards packets through real
physical networks.

We have configured the OVS in a way that we merged all SDN switch interfaces
into one virtual SDN bridge (‘br-sdn’). As a network entity, this bridge obtains its IP

Fig. 7   EVE-NG testbed environment

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 16 of 28

address via a DHCP from the router. Before the IP address on the SDN controller is
configured, OVS behaves like a traditional switch. Thus, the OVS performs the L2
forwarding process of populating flow tables based on the original MAC address
and forwards the frames based on the learned flows, and if necessary, it also floods
the frames. From the moment the IP address is configured on the SDN controller,
the SDN switch is forwarding every packet to the SDN controller for further pro-
cessing due to missing instruction in the flow table.

The virtual machine with SDN controller functionality has a control function in
this virtual environment. Various OpenFlow controllers have been publicly released
(e.g., POX, NOX, Floodlight, IRIS, OpenDaylight, Jaxon, NodeFlow, Helios) [54].
We have decided to implement a POX controller [9] in Python because it has simple
implementation and support for many libraries. We have developed a POX control-
ler module to implement the functionalities described in Sect. 4.

5.2 � Hybrid SDN Implementation

From the moment the OVS connects to the SDN controller, the SDN controller
processes all new OVS flows. The SDN controller must perform proactive flow
insertion to edit the traffic forwarding policy and define which of the flows will be
managed by the SDN controller and which traditionally. Specifically, these are the
proactive flows:

•	 (P1) ARP → PacketIn, Normal packets sent to a broadcast address will be for-
warded to the SDN controller and then processed in the traditional way

•	 (P2) DstIP: vIP → PacketIn, PRI: 1000 packets sent to vIP will be forwarded to
the SDN controller unless there is a higher priority flow (smaller number)

•	 (P3) Any → Normal, PRI: 500 all other packets are traditionally processed unless
there is a higher priority flow.

The Normal instruction aims to indicate to the SDN device that the flow should be
processed traditionally. The flow processing depends on the SDN device’s primary
function, i.e., whether the SDN functionality executes on a switch (L2 forwarding)
or a router (L3 routing process).

The fact is that proactive flows can define rules, which change the OVS SDN
bridge’s default behavior. Therefore, the idea is to send to the SDN controller only
packets with destination vIP address (P2) and ARP packets (P1). All other pack-
ets will be automatically processed by traditional L2 forwarding on the SDN switch
itself without the controller actions (P3) unless there is a higher priority flow.

5.3 � ARP Handling

We need to resolve the vIP address to the vMAC address to implement the load bal-
ancing method proposed in Sect. 4. Before sending the packet to the vIP, the web
server must have information about the destination MAC address. For this reason,
it sends an ARP request for resolving the vIP to the vMAC. The SDN controller

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 17 of 28  30

must also receive this ARP request (RA). At this request, the SDN controller forms
a PacketOut with an ARP response containing a predefined mapping of the vIP
address to the vMAC address and forwards it to the SDN switch. Upon receiving
a PacketOut with an ARP response, the SDN switch forwards the ARP response to
the port from which the ARP request has come. After the server receives the ARP
response for the vIP, it can populate the destination MAC address with the vMAC
and prepare the packet to send.

Thus, the SDN controller forms a reactive flow in this way:

•	 (RA) PacketOut(ARP response, DST: ARP req SRC MAC) → DPort: Req SPort.

We should mention that the SDN controller ignores any other ARP request because
these requests will be processed traditionally (flooding).

5.4 � Load Balancing Procedure

As discussed in Sect. 4, the packet sent to the vIP arrives at the SDN switch, which,
since it is a new connection, still does not have a reactive flow instruction in its flow
table. Therefore, it executes the proactive instruction (P2), sends the packet to the
SDN controller, performs the load balancing procedure, and decides which server
rIP address it should use for this request. The SDN controller creates two reactive
flows:

•	 (R1) DstIP: vIP, SrcIP: srcIP, SrcTCPPort: srcTCPPort → Modify(DstIP:
rIP(srvN), DstMAC: rMAC(srvN)), Normal, PRI: 1500

•	 (R2) SrcIP: rIP(srvN), DstIP: srcIP, DstTCPPort: srcTCPPort → Modify(SrcIP:
vIP, SrcMAC: vMAC), Normal, PRI:1500

with the following elements:

•	 srcIP—rIP client address (in our case rIP address of Web1, Web2, Web3—
Fig. 7)

•	 srcTCPPort—client’s application source port (a different port for each new TCP
connection)

•	 srvN—the ordinal number of the server where the request is to be forwarded
(e.g., 1 for WS1 and 2 for WS2)

•	 rIP(srvN)—rIP address of the server where the request is to be forwarded
•	 rMAC(srvN)—rMAC address of the server where the request is to be forwarded.

The reactive flow instruction (R1) represents the response of the SDN controller to
the PacketIN request. It instructs the SDN switch to match the packet of a particular
connection sent to the server’s virtual IP address and then modify it by replacing the
virtual destination address parameters (vIP and vMAC) with the real server param-
eters to which the request should be forwarded. After modification, the switch for-
wards the packet using the existing L2 forwarding mechanism. By defining a higher

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 18 of 28

priority (1500) for the reactive flow instruction (R1), compared to the proactive flow
instruction (P2), each future packet with the same parameters (source IP address,
port, and vIP destination address) will be forwarded immediately without SDN con-
troller action.

Since the server’s response should be returned to the request’s sender, the SDN
controller with the reactive flow (R2) instructs the SDN switch to modify each
packet coming from the observed server by replacing rIP and rMAC server addresses
with virtual parameters (vIP and vMAC). The reactive flow instruction (R2) priority
is higher than the proactive flow instruction (P3) priority, so the switch will forward
the modified packet by the L2 forwarding mechanism to the sender without SDN
controller action.

5.5 � Testing Methodology

The proposed load balancing scheme evaluation in hybrid SDN networks has aimed
to gain an accurate insight into its capabilities. Therefore, it has been necessary to
perform the testing in conditions that largely correspond to the real environment sit-
uation. Given the increase in web services, we have decided to check the new load
balancing scheme’s efficiency on web servers. We have tested the proposed mech-
anism in an emulated environment with virtual client instances, web servers, and
SDN components (SDN controller and hybrid SDN switch). To obtain the most reli-
able results, we have performed testing in a controlled manner, gradually including
an increasing number of users connections to maximize the load of the web serv-
ers and check the effectiveness of several load balancing mechanisms, including the
proposed LBORU method.

For this reason, we have developed a testing tool that sends web requests and con-
sists of two components:

•	 Job component—Establishes a connection with the web server, executes a single
request transaction, and reports on the time required for its completion. The Job
component procedure is executed in an infinite loop to simulate a single compet-
ing user, constantly performing transactions.

•	 Concurrency component—Increases the number of parallel users in a controlled
manner, records the response time for each transaction, and performs statistical
calculations.

The Job component has been sending web requests, while the Concurrency compo-
nent has been collecting testing parameters such as:

•	 The number of concurrent connections
•	 Average time required to complete the single request
•	 The number of completed transactions per second.

To get a realistic insight into the proposed solution’s performance, instead of com-
mercial web servers (e.g., Apache or NginX), which already have some of the

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 19 of 28  30

mechanisms to optimize the use of their resources, we have created our web server.
Our goal has been to obtain the interpretable measurements, which will be useful
regardless of the optimization mechanisms’ existence. This server is written in the
Java programming language and does not have any resource optimization mecha-
nisms (all tools developed for testing purposes are available on GitHub [55]. The
goal of testing has been to load the created JAVA servers with a large number of
service requests. We have started by observing that various services require a differ-
ent level of server resource engagement (e.g., CPU, RAM, and network resources)
during the response generation process. In other words, the response generation is
loading Java servers depending on the requests.

We have compared other commonly used load balancing schemes such as Ran-
dom, Round Robin, and LBBSRT to gain a clear insight into the proposed scheme’s
possibilities. In the case of Random or Round Robin load balancing, which are
implemented directly on several web clients, the requests come through Random
distribution from the server’s perspective (web clients do not know how much each
server is loaded). We have introduced the SDN controller and applied the Round
Robin, LBBSRT, and LBORU mechanism, to create conditions for centralized con-
trol of client requests and connections scheduling in front of the web servers.

6 � Test Results and Performance Analysis

We perform the testing in a realistic environment with virtual machines in the EVE-
NG testbed environment (6 repetitions). There is an element of temporal load vari-
ations in the quality of the results, which indicates that increasing the number of
repetitions would only introduce noise into the results. In the initial testing phase,
we will analyze the influence of processing overhead on each first packet and iden-
tify the value of an initial processing delay in the SDN network. After that, we will
analyze the relationship between the number of transactions and concurrent clients
(connections). This analysis aims to identify how the SDN concept’s initial delay
affects the transaction number and average transaction time. Also, we must assess
the efficiency of our load balancing scheme and analyze servers’ resource load dis-
balance (primarily CPU load) as one of the efficiency indicators for load balancing
mechanisms.

For an objective analysis of the obtained results, we must consider that direct
connections from web clients to available web servers have a certain advantage over
the SDN approach because of initial packet processing in SDN connections. The
SDN switch must send this packet to the SDN controller to process it and decide
(give instruction) on further forwarding [1]. Therefore, we assume that the direct
connections scheduled by the Random load balancing mechanism are the baseline
for the performance evaluation.

Figure 8 shows the influence of processing overhead on each TCP SYN packet
in SDN (the first packet of each connection), through an initial processing delay of
approximately 1000 ms. The graph shows the results for 30 transactions in the same
connection. It is important to note that each subsequent packet’s processing delay
has a similar value as for the direct connection.

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 20 of 28

We analyze the results obtained by testing the previously described load balanc-
ing mechanisms (R, RR, LBBSRT, and LBORU) in the environment described in
section 4. One of the key parameters analyzed is the number of transactions and
their dependence on the number of concurrent clients (connections), as shown in
Fig. 9. The conclusion is that despite the initial delay present in the SDN concept,
the Random mechanism did not have a significant advantage in terms of transactions
number compared to the SDN. There is a linear dependence between the number of
transactions per second and the number of concurrent connections up to 40 concur-
rent connections. Further increase in the number of concurrent connections leads to
losing this dependence due to resource overload on both servers. Once the resource
overload occurs on servers, there is no significant advantage of any tested load bal-
ancing mechanisms.

Analysis of the average transaction time (Fig. 10) shows that the first packet’s
overhead in the SDN concept does not have a significant impact.

To gain insight into each of the tested load balancing mechanisms’ efficiency,
we have analyzed the data describing a server load. Thus, Fig. 11 shows the CPU

Fig. 8   Initial processing delay of SDN controlled connections

Fig. 9   Transactions per second comparison

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 21 of 28  30

load disbalance (CPU load difference between WS1 and WS2) as one of the effi-
ciency indicators for load balancing mechanisms. The smaller disbalance means a
more uniform CPU load on servers.

The Random load balancing causes a significant CPU disbalance, primarily
because the web client is not aware of the CPU resource load on the web servers.
However, with the increase in the number of concurrent connections, it comes
to server overload, and then the disbalance becomes less noticeable. On the
other hand, the Round Robin mechanism has shown satisfying results for CPU
load balancing up to the moment of server overload. Due to the inconsistency of
individual requirements regarding the engagement of CPU resources generating
responses on web servers, it is noticeable that this mechanism creates an increas-
ing disbalance with the increase in the number of concurrent connections. To
accurately analyze the results obtained using the LBBSRT mechanism, we must
consider that this mechanism relies on the value of the RTT parameter. The fact
is that measuring the RTT parameter’s value via the ICMP protocol requires little
resources on the server (there is a quick response to each server query). However,
the test results indicate that the LBBSRT mechanism cannot detect disbalance in
a sufficiently precise way and timely equalize the CPU load on web servers.

Fig. 10   Average transaction time comparison

Fig. 11   Comparison of CPU disbalance

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 22 of 28

The mechanism proposed in this paper (LBORU) monitors several operating
system parameters. The decision to forward requests to a specific server is based
on these parameters’ values in real-time, collected using the SNMP protocol. The
obtained results indicate a maximum CPU load disbalance of about 10%, which can
be considered very low. More importantly, such value of CPU disbalance remains
within these limits even after the server’s overload.

Fig. 12 shows the cumulative CPU disbalance, representing the sum of CPU
disbalance (in percent), based on Fig.11. It is noticeable that the LBORU mecha-
nism gives the best results in terms of CPU balancing on servers. At the same time,
Round Robin has similar characteristics since the largest part of the values (75%) is
obtained in the period before the server overload.

Figures 13 and 14 show the results related to the disbalance in the upload of
network resources. Namely, each response engages a different amount of these
resources, which is a significant challenge for assessing each load balancing mecha-
nism’s effectiveness.

In our tests, the Random scheduling mechanism for web clients’ connections gave
solid CPU disbalance results. However, there is a significant disbalance observed
from the aspect of network traffic. In contrast, the RR mechanism implemented
on the SDN controller, despite not being aware of the links’ state, still managed to
ensure a satisfying network traffic balance. From the LBBSRT mechanism aspect,

Fig. 12   Cumulative CPU disbalance

Fig. 13   Comparison of upload disbalance

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 23 of 28  30

we have expected better results in network traffic balancing. The reason is that the
load on the network interface and the interface queue impact on RTT value increase
and can indicate a disbalance, thus initiating more efficient traffic balancing on the
controller. The obtained results show that this is not enough for a significant change
in the RTT parameter value so that the LBBSRT mechanism can make better deci-
sions. Tests have shown that the LBORU mechanism, which monitors the current
CPU values and network resources load, makes better decisions about load balanc-
ing on servers.

7 � Discussion

New technologies, the emergence of intelligent and more demanding services, new
types of communications, and more numerous users demand to define a more effi-
cient method to balance traffic. By analyzing the existing load balancing schemes
described in Sect. 3, we recognized certain limitations. These schemes do not
include continuous resource load detection in the decision-making process. There-
fore, we have decided that the foundation of our solution is continuous detection of
resource load and implementation of a mechanism that allows customization of load
balancing schemes regarding service resource usage.

The obtained results indicate the influence of processing overhead on each first
packet and identify the value of an initial processing delay in the SDN network. Fur-
ther analysis of the relationship between the number of transactions and concurrent
connections showed that the SDN concept’s initial delay did not significantly affect
the transaction number and average transaction time. There is a linear dependence
between the number of transactions per second and the number of concurrent con-
nections. To assess the efficiency of our load balancing scheme, we analyzed serv-
ers’ resource load disbalance (primarily CPU load) as one of the efficiency indica-
tors for load balancing mechanisms. The analysis shows that increasing the number
of concurrent connections and server load makes the disbalance less noticeable.

Fig. 14   Cumulative upload disbalance

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 24 of 28

We have discussed in the previous section the possible reasons for poor results
obtained using the LBBSRT mechanism. To make it easier to compare the test
results, we calculated the cumulative CPU disbalance. It is noticeable that our mech-
anism gives the best results in terms of CPU balancing on servers. Also, we have
presented a similar disbalance analysis of the upload of network resources because
it is a significant challenge in assessing each load balancing mechanism’s effective-
ness. The test results have shown that our mechanism, which monitors the current
CPU values and network resources load (which is most significant for our test case),
makes better load balancing decisions than tested mechanisms.

8 � Conclusion

The rapid growth in the number of Internet users and the increasingly complex
nature of their requirements impose the need for faster development of network tech-
nologies. Implementation of new services based on machine learning, IoT, neural
networks, and other advanced technologies and realization of smart environments
(e.g., smart city, smart traffic, smart industry) require rapid and efficient network
infrastructure modernization. It is necessary to introduce a higher level of program-
mability and simplify network management in a heterogeneous network infrastruc-
ture. This way, we can provide the required level of flexibility and scalability in
implementing existing and future services.

The SDN technology imposes itself as a logical solution in this regard. However,
the complexity of full migration to SDN and the implementation costs are key chal-
lenges that impose the need to define the process of transition from the traditional to
SDN network architecture in a sufficiently clear and precise way. In this sense, the
incremental approach to the introduction of SDN functionality in the network infra-
structure is the only economically rational and technically efficient solution today
and is based on the selective implementation of SDN-aware devices and building a
hybrid SDN architecture. This research shows that one can realize the hybrid SDN
architecture by adding only a hybrid SDN switch and SDN controller while pre-
serving all the traditional network’s functionalities (e.g., routing, switching, DHCP,
ARP, SNMP). In this way, we combine the proactive flows, which leave most of the
computer network’s management to traditional mechanisms, with the inserted reac-
tive flows, used only for additional SDN functionalities.

We have evaluated our load balancing scheme in a hybrid SDN network based
on the SNMP protocol for monitoring the current load of web server resources. We
have applied multi-parameter metrics in the process of deciding which server to for-
ward a connection to. This decision-making method uses many more parameters
than traditional load balancing technologies and some new SDN schemes. By ana-
lyzing the obtained results, we can conclude that implementing the proposed scheme
for load balancing achieves better balance in resource load and ensures efficient
services implementation. Although we have tested our solution on web servers, our
approach is generally applicable and can efficiently perform load balancing regard-
less of the traffic type.

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 25 of 28  30

We recognize certain limitations of our study. They are caused by how we have
performed the testing according to the proposed methodology. In laboratory condi-
tions, we have carried out the test scenario in which the testbed environment was
composed of a minimum number of devices needed to realize the project objectives.
This approach produces a particular limit in terms of results—they could be differ-
ent if we had performed the testing in a realistic or cloud environment.

Our future research will focus on developing additional functionalities based on
SDN technology, which will improve traditional computer networks’ functioning
and solve problems, such as IP mobility in heterogeneous networks, more efficiently.
In that sense, we will direct special attention to developing new weights distribution
models for coefficients, especially its influence on a large number of servers. Fur-
thermore, part of future research will be related to a more precise identification of
the impact of the proposed load balancing scheme on low latency traffic.

Acknowledgements  This work was supported by the European Union’s Horizon 2020 research and inno-
vation programme under Grant Agreement Number 856967.

References

	 1.	 Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., Viljoen, N., Miller, M.,
Rao, N.: Are we ready for SDN? Implementation challenges for software-defined networks. IEEE
Commun. Mag. 51(7), 36–43 (2013). https://​doi.​org/​10.​1109/​mcom.​2013.​65536​76

	 2.	 Zhang, Z., Bockelman, B., Carder, D.W., Tannenbaum, T.: Lark: An effective approach for soft-
ware-defined networking in high throughput computing clusters. Future Gener. Comput. Syst. 72,
105–117 (2016). https://​doi.​org/​10.​1016/j.​future.​2016.​03.​010

	 3.	 Bojović, Ž., Bojović, P., šuh, J.: Implementing software defined networking in enterprise networks.
J. Inst. Telecommun. Prof. 12(1), 30–35 (2018). https://​doi.​org/​10.​13140/​RG.2.​2.​10305.​86887

	 4.	 Levin, D., Canini, M., Schmid, S., Schaffert, F., Feldmann A.: Panopticon: reaping the benefits of
incremental SDN deployment in enterprise networks, in: USENIX Annual Technical Conference,
Jun 2014, pp. 333–345. https://​www.​usenix.​org/​confe​rence/​atc14/​techn​ical-​sessi​ons/​prese​ntati​on/​
Levin. Accessed 30 Mar 2021

	 5.	 Amin, R., Reisslein, M., Shah, N.: Hybrid SDN networks: a survey of existing approaches. IEEE
Commun. Surv. Tutor. 20(4), 3259–3306 (2018). https://​doi.​org/​10.​1109/​COMST.​2018.​28371​61

	 6.	 Cardellini, V., Colajanni, M., Yu, P.S.: Dynamic load balancing on Web-server systems. IEEE Inter-
net Comput. 3(3), 28–39 (1999). https://​doi.​org/​10.​1109/​4236.​769420

	 7.	 Kaur, S., Kumar, K., Singh, J., Ghumman, N.S.: Round-robin based load balancing in software
defined networking. In: 2nd International Conference on Computing for Sustainable Global Devel-
opment, INDIACom 2015, pp. 2136–2139

	 8.	 Zhong, H., Fang, Y., Cui, J.: LBBSRT: An efficient SDN load balancing scheme based on server
response time. Future Gener. Comput. Syst. 68, 183–190 (2017). https://​doi.​org/​10.​1016/j.​future.​
2016.​10.​001

	 9.	 POX controller (2020). https://​github.​com/​noxre​po/​pox/. Accessed 30 Mar 2021
	10.	 Bojovic, P.D., Bojovic, Z., Bajic, D., Vojin šenk: IP session continuity in heterogeneous mobile net-

works using software defined networking. J. Commun. Netw. 19(6), 563–568 (2017). https://​doi.​org/​
10.​1109/​JCN.​2017.​000096

	11.	 Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Soft-
ware-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015). https://​doi.​
org/​10.​1109/​JPROC.​2014.​23719​99

	12.	 Singh, S., Jha, R.K.: A survey on software defined networking: Architecture for next generation net-
work. J. Netw. Syst. Manage. 25(2), 321–374 (2016). https://​doi.​org/​10.​1007/​s10922-​016-​9393-9

	13.	 Peterson, L., Cascone, C., O’Connor, B., Vachuska, T., Davie, B.: Software-defined networks: a sys-
tems approach. In: Systems Approach LLC (2020)

https://doi.org/10.1109/mcom.2013.6553676
https://doi.org/10.1016/j.future.2016.03.010
https://doi.org/10.13140/RG.2.2.10305.86887
https://www.usenix.org/conference/atc14/technical-sessions/presentation/Levin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/Levin
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/4236.769420
https://doi.org/10.1016/j.future.2016.10.001
https://doi.org/10.1016/j.future.2016.10.001
https://github.com/noxrepo/pox/
https://doi.org/10.1109/JCN.2017.000096
https://doi.org/10.1109/JCN.2017.000096
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1007/s10922-016-9393-9

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 26 of 28

	14.	 Huang, S., Griffioen, J., Calvert, K.L.: Network hypervisors: enhancing SDN infrastructure. Comput.
Commun. 46, 87–96 (2014). https://​doi.​org/​10.​1016/j.​comcom.​2014.​02.​002

	15.	 Scott-Hayward, S.: Design and deployment of secure, robust, and resilient SDN controllers. In: 1st
IEEE Conference on Network Softwarization, NetSoft 2015, pp. 1–5 (2015). https://​doi.​org/​10.​1109/​
NETSO​FT.​2015.​72582​33

	16.	 Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using OpenFlow: a survey. IEEE Com-
mun. Surv. Tutor. 16(1), 493–512 (2014). https://​doi.​org/​10.​1109/​SURV.​2013.​081313.​00105

	17.	 Yin, H., Zou, T., Xie, H.: Defining Data Flow Paths in Software-Defined Networks with Application-
Layer Traffic Optimization: U.S. Patent Application 13/915,410, 2013. https://​paten​ts.​google.​com/​pat-
ent/​US201​30329​601. Accessed 30 Mar 2021

	18.	 Shin, M., Nam, K., Kim, H.: Software-defined networking (SDN): a reference architecture and open
APIs. In: International Conference on ICT Convergence, ICTC 2012, pp. 360–361 (2012). https://​doi.​
org/​10.​1109/​ICTC.​2012.​63868​59

	19.	 Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM
SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008). https://​doi.​org/​10.​1145/​14029​46.​14029​67

	20.	 Messaoud, S., Bradai, A., Moula, E.: Online GMM clustering and mini-batch gradient descent based
optimization for industrial IoT 4.0. IEEE Trans. Indus. Inform. 16(2), 1427–1435 (2020). https://​doi.​
org/​10.​1109/​TII.​2019.​29450​12

	21.	 Messaoud, S., Bradai, A., Ahmed, O.B., Anh Quang, Ph.T., Atri, M., Hossain, M.S.: Deep federated
Q-learning-based network slicing for industrial IoT. IEEE Trans. Ind. Inform. 17(8), 5572–5582 (2021).
https://​doi.​org/​10.​1109/​TII.​2020.​30321​65

	22.	 Rathee, S., Sinha, Y., Haribabu, K.: A Survey: Hybrid SDN. J. Netw. Comput. Appl. 100, 35–55
(2017). https://​doi.​org/​10.​1016/j.​jnca.​2017.​10.​003

	23.	 Vissicchio, S., Vanbever, L., Bonaventure, O.: Opportunities and research challenges of hybrid software
defined networks. ACM SIGCOMM Comput. Commun. Rev. 44(2), 70–75 (2014). https://​doi.​org/​10.​
1145/​26022​04.​26022​16

	24.	 Vissicchio, S., Vanbever, L., Cittadini, L., Xie, G.G., Bonaventure, O.: Safe routing reconfigurations
with route redistribution. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2014,
pp. 199–207. https://​doi.​org/​10.​1109/​INFOC​OM.​2014.​68479​40

	25.	 He, J., Song, W.: Achieving near-optimal traffic engineering in hybrid software defined networks. In:
IFIP Networking Conference (IFIP Networking), 2015, pp. 1–9. https://​doi.​org/​10.​1109/​IFIPN​etwor​
king.​2015.​71453​21

	26.	 Bahnasse, A., Louhab, F.E., Ait Oulahyane, H., Talea, M., Bakali, A.: Novel SDN architecture for smart
MPLS Traffic Engineering-DiffServ Aware management. Future Gener. Comput. Syst. 87, 115–126
(2018). https://​doi.​org/​10.​1016/j.​future.​2018.​04.​066

	27.	 Canini, M., Feldmann, A., Levin, D., Schaffert, F., Schmid, S.: Software-defined networks: Incremental
deployment with Panopticon. IEEE Comput. 47(11), 56–60 (2014). https://​doi.​org/​10.​1109/​MC.​2014.​
330

	28.	 Poularakis, K., Iosifidis, G., Smaragdakis, G., Tassiulas, L.: One step at a time: optimizing SDN
upgrades in ISP networks. In: IEEE Conference on Computer Communications, IEEE INFOCOM
2017, pp. 1–9 (2017). https://​doi.​org/​10.​1109/​INFOC​OM.​2017.​80571​36

	29.	 Xu, H., Fan, J., Wu, J., Qiao, C., Huang, L.: Joint deployment and routing in hybrid SDNs. In: IEEE/
ACM 25th International Symposium on Quality of Service, IWQoS 2017, pp. 1–10 (2017). https://​doi.​
org/​10.​1109/​IWQoS.​2017.​79691​33

	30.	 Casey, D.J., Mullins, B.E.: SDN shim: controlling legacy devices. In: IEEE 40th Conference on Local
Computer Networks, LCN 2015, pp. 169–172 (2015). https://​doi.​org/​10.​1109/​LCN.​2015.​73662​98

	31.	 Nunez-Martinez, J., Baranda, J., Mangues-Bafalluy, J.: A service-based model for the hybrid software-
defined wireless mesh backhaul of small cells. In: 11th International Conference on Network and Ser-
vice Management, CNSM 2015, pp. 390–393 (2015). https://​doi.​org/​10.​1109/​CNSM.​2015.​73673​88

	32.	 Bhattacharyya, S., Katramatos, D., Yoo, S.: Why wait? Let us start computing while the data is still on
the wire. Future Gener. Comput. Syst. 89, 563–574 (2018). https://​doi.​org/​10.​1016/j.​future.​2018.​07.​024

	33.	 Balta, M., Ozcelik, I.: A 3-stage fuzzy-decision tree model for traffic signal optimization in urban city
via a SDN based VANET architecture. Future Gener. Comput. 104, 142–158 (2020). https://​doi.​org/​10.​
1016/j.​future.​2019.​10.​020

	34.	 Neghabi, A.A., Navimipour, N.J., Hosseinzadeh, M., Rezaee, A.: Load balancing mechanisms in the
software defined networks: a systematic and comprehensive review of the literature. IEEE Access 6,
14159–14178 (2018). https://​doi.​org/​10.​1109/​ACCESS.​2018.​28058​42

	35.	 Shang, Z., Chen, W., Ma, Q., Wu, B.: Design and implementation of server cluster dynamic load bal-
ancing based on OpenFlow. In: International Joint Conference on Awareness Science and Technology

https://doi.org/10.1016/j.comcom.2014.02.002
https://doi.org/10.1109/NETSOFT.2015.7258233
https://doi.org/10.1109/NETSOFT.2015.7258233
https://doi.org/10.1109/SURV.2013.081313.00105
https://patents.google.com/patent/US20130329601
https://patents.google.com/patent/US20130329601
https://doi.org/10.1109/ICTC.2012.6386859
https://doi.org/10.1109/ICTC.2012.6386859
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1109/TII.2019.2945012
https://doi.org/10.1109/TII.2019.2945012
https://doi.org/10.1109/TII.2020.3032165
https://doi.org/10.1016/j.jnca.2017.10.003
https://doi.org/10.1145/2602204.2602216
https://doi.org/10.1145/2602204.2602216
https://doi.org/10.1109/INFOCOM.2014.6847940
https://doi.org/10.1109/IFIPNetworking.2015.7145321
https://doi.org/10.1109/IFIPNetworking.2015.7145321
https://doi.org/10.1016/j.future.2018.04.066
https://doi.org/10.1109/MC.2014.330
https://doi.org/10.1109/MC.2014.330
https://doi.org/10.1109/INFOCOM.2017.8057136
https://doi.org/10.1109/IWQoS.2017.7969133
https://doi.org/10.1109/IWQoS.2017.7969133
https://doi.org/10.1109/LCN.2015.7366298
https://doi.org/10.1109/CNSM.2015.7367388
https://doi.org/10.1016/j.future.2018.07.024
https://doi.org/10.1016/j.future.2019.10.020
https://doi.org/10.1016/j.future.2019.10.020
https://doi.org/10.1109/ACCESS.2018.2805842

1 3

Journal of Network and Systems Management (2022) 30:30	 Page 27 of 28  30

& Ubi-Media Computing, iCAST 2013 & UMEDIA 2013, pp. 691–697 (2013). https://​doi.​org/​10.​
1109/​ICAwST.​2013.​67655​26

	36.	 Xu, Z., Huang, R., Bhuyan, L.N.: Load balancing of DNS-based distributed Web server systems with
page caching. In: Tenth International Conference on Parallel and Distributed Systems, ICPADS 2004,
pp. 587–594 (2004). https://​doi.​org/​10.​1109/​ICPADS.​2004.​13161​41

	37.	 Tong, R., Zhu, X.: A load balancing strategy based on the combination of static and dynamic. In: 2nd
International Workshop on Database Technology and Applications, pp. 1–4 (2010). https://​doi.​org/​10.​
1109/​DBTA.​2010.​56589​51

	38.	 Guo, Z., Su, M., Xu, Y., Duan, Z., Wang, L., Hui, S., Chao, H.J.: Improving the performance of load
balancing in software-defined networks through load variance-based synchronization. Comput. Netw.
68, 95–109 (2014). https://​doi.​org/​10.​1016/j.​comnet.​2013.​12.​004

	39.	 Yeganeh, S.H., Tootoonchian, A., Ganjali, Y.: On scalability of software-defined networking. IEEE
Commun. Mag. 51(2), 136–141 (2013). https://​doi.​org/​10.​1109/​MCOM.​2013.​64611​98

	40.	 Sharma, S., Singh, S., Sharma, M.: Performance analysis of load balancing algorithms. World Acad.
Sci. Eng. Technol. 38, 269–272 (2008). https://​doi.​org/​10.​5281/​zenodo.​10612​32

	41.	 Kaur, S., Singh, J.: Implementation of server load balancing in software defined networking. In: Infor-
mation Systems Design and Intelligent Applications: Advances in Intelligent Systems and Computing,
vol. 434, Springer, New Delhi (2016). https://​doi.​org/​10.​1007/​978-​81-​322-​2752-6_​14

	42.	 Song, P., Liu, Y., Liu, T., Qian, D.: Flow Stealer: lightweight load balancing by stealing flows in
distributed SDN controllers. Sci. China Inf. Sci. 60(3), 032202 (2017). https://​doi.​org/​10.​1007/​
s11432-​016-​0333-0

	43.	 Hu, Y., Luo, T., Beaulieu, N.C., Wang, W.: An initial load-based green software defined network. Appl.
Sci. 7(5), 459 (2017). https://​doi.​org/​10.​3390/​app70​50459

	44.	 Zhang, J., Xi, K., Luo, M., Chao, H. J.: Load balancing for multiple traffic matrices using SDN hybrid
routing. In: IEEE 15th International Conference on High Performance Switching and Routing, HPSR
2014, pp. 44–49 (2014). https://​doi.​org/​10.​1109/​HPSR.​2014.​69008​80

	45.	 Wang, R., Butnariu, D., Rexford, J.: OpenFlow-based server load balancing gone wild. In: 11th USE-
NIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Ser-
vices, Hot-ICE’11 (2011). https://​www.​usenix.​org/​legacy/​events/​hotic​e11/​tech/​full_​papers/​Wang_​
Richa​rd.​pdf. Accessed 30 Mar 2021

	46.	 Koerner, M., Kao, O.: Multiple service load-balancing with OpenFlow. In: IEEE 13th International
Conference on High Performance Switching and Routing (2012) pp. 210–214. https://​doi.​org/​10.​1109/​
HPSR.​2012.​62608​52

	47.	 Ukrist, S., Pradittasnee, L., Kitsuwan, N.: Resolving load imbalance state for SDN by minimizing
maximum load of controllers. J. Netw. Syst. Manage. 29(4), 1–28 (2021). https://​doi.​org/​10.​1007/​
s10922-​021-​09612-w

	48.	 El Kamel, A., Youssef, H.: Improving switch-to-controller assignment with load balancing in multi-
controller software defined WAN (SD-WAN). J. Netw. Syst. Manage. 28, 553–575 (2020). https://​doi.​
org/​10.​1007/​s10922-​020-​09523-2

	49.	 Guo, Y., Wang, Z., Yin, X., Shi, X., and Wu, J.: Traffic engineering in SDN/OSPF hybrid network.
In: International Conference on Network Protocols, 2014, pp. 563–568, https://​doi.​org/​10.​1109/​ICNP.​
2014.​90

	50.	 Ren, C., Wang, S., Ren, J., Wang, X., Song, T., Zhang, D.: Enhancing traffic engineering performance
and flow manageability in hybrid SDN. In: IEEE Global Communication Conference, IEEE GLOBE-
COM 2016, pp. 1–7, https://​doi.​org/​10.​1109/​GLOCOM.​2016.​78418​19

	51.	 Lin, C., Wang, K., Deng, G.: A QoS-aware routing in SDN hybrid networks. Procedia Comput. Sci.
110, 242–249 (2017). https://​doi.​org/​10.​1016/j.​procs.​2017.​06.​091

	52.	 EVE-NG. https://​www.​eve-​ng.​net/ (2020). Accessed 30 Mar 2021
	53.	 Open vSwitch. https://​www.​openv​switch.​org/ (2020). Accessed 30 Mar 2021
	54.	 Farhady, H., Lee, H.Y., Nakao, A.: Software-defined networking: a survey. Comput. Netw. 81, 79–95

(2015). https://​doi.​org/​10.​1016/j.​comnet.​2015.​02.​014
	55.	 Bojovic, P. D., Malbasic, T.: SDN-LBORU—load balancing by optimizing resource utilization. GitHub

repository. https://​github.​com/​Paxy/​SDN-​LBORU (2020). Accessed 30 Mar 2021

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICAwST.2013.6765526
https://doi.org/10.1109/ICAwST.2013.6765526
https://doi.org/10.1109/ICPADS.2004.1316141
https://doi.org/10.1109/DBTA.2010.5658951
https://doi.org/10.1109/DBTA.2010.5658951
https://doi.org/10.1016/j.comnet.2013.12.004
https://doi.org/10.1109/MCOM.2013.6461198
https://doi.org/10.5281/zenodo.1061232
https://doi.org/10.1007/978-81-322-2752-6_14
https://doi.org/10.1007/s11432-016-0333-0
https://doi.org/10.1007/s11432-016-0333-0
https://doi.org/10.3390/app7050459
https://doi.org/10.1109/HPSR.2014.6900880
https://www.usenix.org/legacy/events/hotice11/tech/full_papers/Wang_Richard.pdf
https://www.usenix.org/legacy/events/hotice11/tech/full_papers/Wang_Richard.pdf
https://doi.org/10.1109/HPSR.2012.6260852
https://doi.org/10.1109/HPSR.2012.6260852
https://doi.org/10.1007/s10922-021-09612-w
https://doi.org/10.1007/s10922-021-09612-w
https://doi.org/10.1007/s10922-020-09523-2
https://doi.org/10.1007/s10922-020-09523-2
https://doi.org/10.1109/ICNP.2014.90
https://doi.org/10.1109/ICNP.2014.90
https://doi.org/10.1109/GLOCOM.2016.7841819
https://doi.org/10.1016/j.procs.2017.06.091
https://www.eve-ng.net/
https://www.openvswitch.org/
https://doi.org/10.1016/j.comnet.2015.02.014
https://github.com/Paxy/SDN-LBORU

	 Journal of Network and Systems Management (2022) 30:30

1 3

30  Page 28 of 28

Teodor Malbašić  is a Ph.D. student at the University of Novi Sad, Serbia, where he received a master’s
degree at the Faculty of Technical Sciences. He currently works as a software engineer at AUTOSOFT
LLC in Novi Sad. His research interests include computer networks, Big data, and IoT.

Petar D. Bojović  is an Associate Professor at the School of Computing Union University in Belgrade.
As the researcher and teacher, he is covering the courses in computer networks and network security. He
received the Ph.D. degree in Computer Engineering from the University of Novi Sad in 2019. Currently,
he works in the area of computer network security and software‐defined networking.

Živko Bojović  is an associate professor at the University of Novi Sad. He received a Ph.D. at the Faculty
of Technical Sciences in Novi Sad. Bojović is a member of the Centre for Intelligent Communications
and the IEEE, and his research interests include computer networks, e-learning, Big data, and IoT.

Jelena Šuh  is an engineer for technology strategy in “Telekom Srbija”. She received a Diploma degree
from the Faculty of Electrical Engineering, University of Belgrade, Serbia and a Ph.D. from the Faculty
of Organizational Sciences, University of Belgrade, Serbia. Her research interests include computer net-
works, Internet technologies and e-education.

Dušan Vujošević  is an associate professor at the Union University School of Computing in Belgrade. His
research and teaching interests include decision support systems, integrated information systems, and
human–computer interaction. Working on many commercial and scientific projects, he has got the experi-
ence with project management and business intelligence technologies.

	Hybrid SDN Networks: A Multi-parameter Server Load Balancing Scheme
	Abstract
	1 Introduction
	2 Background
	2.1 The SDN Concept
	2.2 The Hybrid SDN Concept
	2.3 Traditional Load Balancing

	3 Related Work
	3.1 SDN Load Balancing
	3.2 Load Balancing in Hybrid SDN Networks

	4 Novel Load Balancing Scheme
	4.1 A Proposed Hybrid SDN Architecture
	4.2 Multi-parameter Load Balancing Scheme

	5 Implementation and Evaluation
	5.1 Testbed Environment
	5.2 Hybrid SDN Implementation
	5.3 ARP Handling
	5.4 Load Balancing Procedure
	5.5 Testing Methodology

	6 Test Results and Performance Analysis
	7 Discussion
	8 Conclusion
	Acknowledgements
	References

