
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30:22
https://doi.org/10.1007/s10922-021-09634-4

1 3

Effective and Efficient Hybrid Android Malware
Classification Using Pseudo‑Label Stacked Auto‑Encoder

Samaneh Mahdavifar1 · Dima Alhadidi2 · Ali. A. Ghorbani1

Received: 2 January 2021 / Revised: 30 August 2021 / Accepted: 29 September 2021 /
Published online: 2 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Android has become the target of attackers because of its popularity. The detection
of Android mobile malware has become increasingly important due to its significant
threat. Supervised machine learning, which has been used to detect Android mal-
ware is far from perfect because it requires a significant amount of labeled data.
Since labeled data is expensive and difficult to get while unlabeled data is abundant
and cheap in this context, we resort to a semi-supervised learning technique, namely
pseudo-label stacked auto-encoder (PLSAE), which involves training using a set of
labeled and unlabeled instances. We use a hybrid approach of dynamic analysis and
static analysis to craft feature vectors. We evaluate our proposed model on CICMal-
Droid2020, which includes 17,341 most recent samples of five different Android
apps categories. After that, we compare the results with state-of-the-art techniques
in terms of accuracy and efficiency. Experimental results show that our proposed
framework outperforms other semi-supervised approaches and common machine
learning algorithms.

Keywords Android malware · Category · Classification · Hybrid analysis · Semi-
supervised learning · Stacked auto-encoder · Deep learning

 * Samaneh Mahdavifar
 smahdavi@unb.ca

 Dima Alhadidi
 dima.alhadidi@uwindsor.ca

 Ali. A. Ghorbani
 ghorbani@unb.ca

1 Canadian Institute for Cybersecurity (CIC), Faculty of Computer Science, University of New
Brunswick, Fredericton, NB, Canada

2 School of Computer Science, University of Windsor, Windsor, ON, Canada

http://orcid.org/0000-0001-7040-659X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-021-09634-4&domain=pdf

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 2 of 34

1 Introduction

In the first quarter of 2020, around 86.3 percent of all smartphones sold to end
users were phones with the Android operating system [1]. Android mobile
devices have become ubiquitous, with trends showing that the recent pace of
adoption is unlikely to slow down. Android popularity has its cost. The popular-
ity has spurred an alarming growth in Android malware. Compromising a mobile
device can have a damaging effect on enterprises and individuals. Most enter-
prises are still not prepared to deal with persistent mobile security threats. It is
crucial to detect and prevent mobile security threats as it is the case with any
other type of threats [2, 3] in order to keep employees’ and customers’ informa-
tion secure. Targeting individuals, Android malware can read your contact list
and messages, including the ones about bank transactions and one-time pass-
words. Android malware can also access your pictures and know your location,
house address, email account details and restaurants you visited. Moreover, it can
take over your device, encrypt its content, and hold the files hostage until you pay
a ransom (usually in Bitcoin) to have them released. This demonstrates the need
for security solutions to protect users from Android malware that can steal and
access confidential data.

Although many malware detection systems have been proposed [4–6], there are
common limitations to the existing solutions. First, detecting malicious apps is
not enough anymore. Specifying the category of Android malware is an important
step to prioritize mitigation techniques. Second, static-based malware detection
[7–9] or dynamic-based malware detection is not enough. Static-based malware
detection is ineffective against advanced malware programs that utilize sophis-
ticated evasion detection techniques such as polymorphism (modifying code to
defeat signature-based tools) or obfuscation (hiding evidence of malicious activi-
ties). On the other hand, the dynamic analysis is not scalable due to its limited
coverage. Third, supervised learning techniques to detect malware depend on sev-
eral features of both malicious and benign software [8–10] and they need a high
number of labeled instances. For a real-world problem such as malware analy-
sis, it is quite challenging to label data because it is a time-consuming process,
and in some cases, pieces of malware can avoid detection. The cost associated
with the labeling process thus may render a fully labeled training set infeasible,
whereas the acquisition of unlabeled data is relatively inexpensive. Semi-super-
vised learning is one type of machine learning technique that is very useful when
a limited amount of labeled data exists for each class. Fourth, machine learning
models have proven to be insufficient to solve real-world problems with intrin-
sic complexity and massive amounts of data since they depend on a manual fea-
ture extraction process. On the other hand, deep learning algorithms take care of
extracting abstract and flexible features automatically from raw data which helps
generalization in the classification.

In this paper, we extend our prior research [11], where we have addressed some
of these limitations by detecting and categorizing Android malware, and adopt-
ing semi-supervised and deep learning. In our prior research [11], we proposed

1 3

Journal of Network and Systems Management (2022) 30:22 Page 3 of 34 22

the first work that applies a semi-supervised Deep Neural Network (DNN) for
dynamic malware category classification namely Pseudo-Label Deep Neural
Network (PLDNN) [11]. In this paper, we propose a simple, yet practical and
efficient framework for Android malware category classification. The new char-
acteristics of this approach in contrast to the previous one [11] are: (1) it is a
hybrid approach that integrates both static and dynamic analysis of malware and
(2) it applies a semi-supervised Pseudo-Label Stacked Auto-Encoder (PLSAE)
for malware category classification. The hybrid approach utilizes the strengths
of both static and dynamic analysis. Unlike PLDNN, PLSAE consists of stacking
multiple Auto-Encoders (AEs) and benefits from the unsupervised pre-training
that leads the network towards global minima and supports better generalization.
Specifically, our contributions can be summarized as follows:

– We analyze both statically and dynamically extracted features of malware sam-
ples using PLSAE. We adopt CopperDroid, a Virtual Machine Introspection
(VMI)-based analysis system [12], to extract the static and dynamic features. The
results of the static and dynamic analysis are available for researchers together
with malware samples.1

– We experimentally analyze the results and find that the model can detect and
categorize malware with an accuracy of 98.28 percent and a false positive rate of
1.16 percent.

– We conduct a comparative study between PLSAE (semi-supervised learning and
hybrid analysis), PLDNN (semi-supervised and dynamic) [11], Label Propaga-
tion (LP; semi-supervised and hybrid), and other common machine learning
algorithms (supervised and hybrid) such as Random Forest (RF), Support Vec-
tor Machine (SVM), and k-Nearest Neighbor (k-NN). We show that our semi-
supervised deep learning model significantly outperforms LP, which is a popular
semi-supervised machine learning algorithm, PLDNN, RF, SVM, and k-NN for
every number of labeled training samples. In particular, PLSAE shows outstand-
ing performance (accuracy=95.19%) with only 1% of labeled training samples,
i.e., 100 as compared with PLDNN (accuracy=91.63%).

The rest of the paper is organized as follows. Related work is discussed in Sect. 2.
In Sect. 3, we present background information. Section 4 describes the threat
model. Our proposed framework is detailed in Sect. 5. Sect. 6 discusses the per-
formance analysis. Finally, Sect. 7 concludes the paper and includes some future
research directions.

2 Related Work

The rising number of Android malwares has become a concern for both aca-
demia and industry. Some studies target Natural Language Processing (NLP) [23]
and reused Free Open-Source Software (FOSS) [24] packages to detect malware.

1 https:// www. unb. ca/ cic/ datas ets/ maldr oid- 2020. html

https://www.unb.ca/cic/datasets/maldroid-2020.html

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 4 of 34

Machine learning algorithms such as Naive Bayes (NB), SVM, Decision Tree (DT),
and k-NN are commonly used by academic and industrial researchers in detecting
Android malware [5, 25]. This traditional approach is based on information gath-
ered from program analysis, where the performance depends on the accuracy of the
extracted features. Deep learning, on the other hand, is a branch of machine learning
that attempts to study high-level features effectively and efficiently from the original
data [26]. This approach has been widely used in various areas including image pro-
cessing, visual recognition, and object detection [27–29]. In this section, we review
some of the attempts that focused on deep learning algorithms in Android malware
detection.

One of the first attempts was conducted by Yuan et al. [13] where they utilized
more than 200 dynamic and static features including required permissions, sensi-
tive API calls, and dynamic behaviors, which are extracted from both the static
and dynamic analysis of Android apps for malware binary detection. The proposed
framework employed Deep Belief Network (DBN) based on stacked Restricted
Boltzmann Machine (RMB) in two phases of unsupervised pre-training and super-
vised fine-tuning. The work demonstrated that the deep learning technique is suit-
able for Android malware detection and can achieve up to 96% accuracy with real-
world Android application sets. This study was quickly followed by a series of more
advanced detection approaches focused on deep learning algorithms. In 2016, Hou
et al. [9] proposed DroidDelver, an Android malware detection system using DBN
based on API call blocks. They categorized the API calls of the Smali code, which
belong to the same method into a block, and employed a DBN built on stacked
RBMs for unknown Android malware detection. The authors argued that a block of
sensitive API calls can be used as a feature to detect Android malware. Promising
experimental results demonstrated that DroidDelver method outperformed alterna-
tive Android malware detection techniques having an accuracy of 96.66%. In the
same year, DroidDeep was presented by Su et al. [14]. They first extracted more
than 30 thousand static features based on the five categories: requested permission,
used permission, sensitive API call, action, and application component. They built
the deep learning model, i.e., stacked RBMs to learn typical features for classifica-
tion and used SVM classifier for detecting Android malware using static features.
DroidDeep achieved a 99.4% detection accuracy with a reasonable running time that
can be adaptable to large scale Android malware detection.

Another work by Nix et. al. [15] focused on the family classification of
Android malware and applications using system API-call sequences and stud-
ied the effectiveness of Convolutional Neural Networks (CNNs) and Long Short
Term Memory (LSTM). They designed a pseudo-dynamic program analyzer that
generates a sequence of API calls along the program execution path and compared
their approach with LSTM, n-gram based SVM, and bag of words-based NB.
Both CNN and LSTM outperformed n-gram based methods while CNN showed a
better performance in comparison with LSTM. In another approach, Huang et al.
[16] aimed of automating Android feature extraction where they transformed

1 3

Journal of Network and Systems Management (2022) 30:22 Page 5 of 34 22

Android app bytecode into Red, Green, Blue (RGB) color code. The results of
encoded color images are used as input features to a CNN that is trained with
over one million malware samples and one million benign samples. In a similar
way, Wang et al. [17] presented a hybrid model based on deep AE. CNN has been
proposed to detect Android malware in which a deep AE is used as a pre-training
method for the CNN. They implemented a multiple-CNN architecture during the
training process and discovered that serial CNN showed better feature extraction
ability by combining the convolutional layer and the pooling layer with the fully
connected layer. Karbab et al. [10] proposed an Android malware detection and
family attribution framework in which they extracted raw sequences of API calls
from .dex assembly code. The vectorized API calls are then trained using a CNN
comprising one convolutional layer using ReLU, one max-pooling layer, one fully
connected layer having dropout and bench normalization, and one output layer for
two-task classification. In another research contribution [19], important values of
an Android Package Kit (APK) code are visualized on an image and then fed into
a CNN to detect mutated Android malware. Xiao et al. [18] considered one sys-
tem call sequence of an Android malware as a sentence and applied two LSTM
language models to train malware and benign samples. To classify an APK under
analysis, they measured the similarity score of the sequence using the two trained
networks. Kim et al. [8] in 2019 proposed a multimodal deep learning method
based on Feed-Forward Neural Network (FFNN) that employed seven features
extracted by analyzing Android files such as a manifest file, a .dex file, and a .so
file from an APK file to be used in Android malware detection. They showed
that it was possible to maximize the benefits of encompassing multiple feature
types. They conducted various experiments with a total of 41,260 samples and
compared the accuracy of their model with other DNN and detection models and
demonstrated that their detection model was effective and efficient to be used in
Android malware detection. Lu et al. [20] extracted static features and dynamic
behavioral features with strong anti-obfuscation ability. Then, they built a hybrid
deep learning model for Android malware detection. The DBN is used to pro-
cess the static features whereas the GRU is used to process the dynamic feature
sequence. Finally, the training results of DBN and GRU are input into the Back-
Propagation (BP) neural network, and the final classification results are output.
Experimental results show that, compared with the traditional machine learning
algorithms, the Android malware detection model based on hybrid deep learn-
ing algorithms has a higher detection accuracy, and it also has a better detection
effect on obfuscated malware.

The methods and techniques of the previous work mostly focused on malware
detection (not malware family or category classification). They implemented static
analysis by either analyzing or disassembling the code rather than running it on a
real device or an emulated environment. In addition, they used supervised learning
that needs a large volume of labeled data. Any malware filtering algorithm should
be robust enough against injected unknown or noise data. In contrast to the previous
studies as summarized in Table 1, we propose a simple, yet effective and efficient
framework for Android malware category classification using DNNs that resort
to static and dynamic analysis to utilize the benefit of both and semi-supervised

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 6 of 34

Ta
bl

e
1

 R
el

at
ed

 w
or

k
su

m
m

ar
y

of
 A

nd
ro

id
 m

al
w

ar
e

de
te

ct
io

n

Ye
ar

A
ut

ho
rs

A
na

ly
si

s t
yp

e
D

ee
p

m
od

el
Ty

pe
Fe

at
ur

es
Fu

nc
tio

na
lit

y

20
14

Y
ua

n
et

 a
l.

[1
3]

St
at

ic
 a

nd
 d

yn
am

ic
D

B
N

 b
ui

lt
on

 st
ac

ke
d

R
B

M
s

Su
pe

rv
is

ed
Re

qu
ire

d
pe

rm
is

si
on

, s
en

si
-

tiv
e

A
PI

 ,
dy

na
m

ic
 b

eh
av

io
r

B
in

ar
y

de
te

ct
io

n

20
16

H
ou

 e
t a

l.
[9

]
St

at
ic

D
B

N
 b

ui
lt

on
 st

ac
ke

d
R

B
M

s
Su

pe
rv

is
ed

A
PI

 c
al

l b
lo

ck
s e

xt
ra

ct
ed

fro

m
 th

e
Sm

al
i c

od
es

B
in

ar
y

de
te

ct
io

n

20
16

Su
 e

t a
l.

[1
4]

St
at

ic
St

ac
ke

d
R

B
M

s,
SV

M
Su

pe
rv

is
ed

Re
qu

es
te

d
pe

rm
is

si
on

s,
us

ed

pe
rm

is
si

on
s,

se
ns

iti
ve

 A
PI

ca

lls
, a

ct
io

ns
, a

pp
lic

at
io

n
co

m
po

ne
nt

s

B
in

ar
y

de
te

ct
io

n

20
17

N
ix

 e
t a

l.
[1

5]
St

at
ic

C
N

N
, L

ST
M

Su
pe

rv
is

ed
A

PI
 c

al
l s

eq
ue

nc
es

D
et

ec
tio

n
an

d
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
18

H
ua

ng
 e

t a
l.

[1
6]

St
at

ic
C

N
N

Su
pe

rv
is

ed
A

pp
 b

yt
ec

od
e

tra
ns

fo
rm

ed

in
to

 im
ag

es
B

in
ar

y
de

te
ct

io
n

20
18

W
an

g
et

 a
l.

[1
7]

St
at

ic
D

A
E,

 C
N

N
Su

pe
rv

is
ed

Re
qu

es
te

d
pe

rm
is

si
on

s,
fil

-
te

re
d

in
te

nt
s,

re
str

ic
te

d
A

PI

ca
lls

, h
ar

dw
ar

e
fe

at
ur

es
,

co
de

 re
la

te
d

pa
tte

rn
s,

su
sp

i-
ci

ou
s A

PI
 c

al
ls

B
in

ar
y

de
te

ct
io

n

20
18

K
ar

ba
b

et
 a

l.
[1

0]
St

at
ic

C
N

N
Su

pe
rv

is
ed

A
PI

 m
et

ho
d

ca
lls

D
et

ec
tio

n
an

d
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
19

K
im

 e
t a

l.
[8

]
St

at
ic

m
ul

tim
od

al
 F

FN
N

Su
pe

rv
is

ed
St

rin
gs

, p
er

m
is

si
on

, c
om

po
-

ne
nt

s,
en

vi
ro

nm
en

ta
l i

nf
o,

m

et
ho

d
op

co
de

, s
ha

re
d

lib

op
co

de
, A

PI
 c

al
ls

,

B
in

ar
y

de
te

ct
io

n

20
19

X
ia

o
et

 a
l.

[1
8]

D
yn

am
ic

LS
TM

Su
pe

rv
is

ed
Sy

ste
m

 c
al

l s
eq

ue
nc

es
B

in
ar

y
de

te
ct

io
n

20
19

Ye
n

et
 a

l.
[1

9]
St

at
ic

C
N

N
Su

pe
rv

is
ed

U
se

 te
xt

 T
F-

ID
F

to
 c

on
ve

rt
co

de
 to

 R
G

B
 im

ag
es

B
in

ar
y

de
te

ct
io

n

20
20

Lu
 e

t a
l.

[2
0]

St
at

ic
 a

nd
 d

yn
am

ic
D

B
N

, G
RU

Su

pe
rv

is
ed

Re
so

ur
ce

 fe
at

ur
es

, s
em

an
tic

fe

at
ur

es
, d

yn
am

ic
 b

eh
av

io
-

ra
l f

ea
tu

re
s

B
in

ar
y

de
te

ct
io

n

1 3

Journal of Network and Systems Management (2022) 30:22 Page 7 of 34 22

a En
su

re
d

C
ol

la
bo

ra
tiv

e
A

ct
iv

e
an

d
Se

m
i-S

up
er

vi
se

d
La

be
lin

g
b M

od
el

-b
as

ed
 S

em
i-S

up
er

vi
se

d

Ta
bl

e
1

 (c
on

tin
ue

d)

Ye
ar

A
ut

ho
rs

A
na

ly
si

s t
yp

e
D

ee
p

m
od

el
Ty

pe
Fe

at
ur

es
Fu

nc
tio

na
lit

y

20
20

M
ah

da
vi

fa
r e

t a
l.

[1
1]

D
yn

am
ic

Ps
eu

do
-L

ab
el

 F
FN

N
Se

m
i-s

up
er

vi
se

d
Sy

ste
m

 c
al

ls
, b

in
de

rs
, c

om
-

po
si

te
 b

eh
av

io
rs

D
et

ec
tio

n
an

d
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
21

O
ur

 a
pp

ro
ac

h
St

at
ic

 a
nd

 d
yn

am
ic

Ps
eu

do
-L

ab
el

 S
A

E
Se

m
i-s

up
er

vi
se

d
Pe

rm
is

si
on

s,
in

te
nt

s,
se

rv
ic

es
,

re
ce

iv
er

s,
...

, s
ys

te
m

ca

lls
, b

in
de

rs
, c

om
po

si
te

be

ha
vi

or
s

D
et

ec
tio

n
an

d
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

Ye
ar

A
ut

ho
rs

A
na

ly
si

s t
yp

e
M

od
el

Se
m

i-s
up

er
vi

se
d

ty
pe

Fe
at

ur
es

Fu
nc

tio
na

lit
y

20
15

M
a

et
 a

l.
[2

1]
St

at
ic

SV
M

, E
CA

SS
La

M
ac

hi
ne

 L
ea

rn
in

g
To

pi
c

fe
at

ur
es

 a
nd

 se
ns

iti
ve

A

PI
 u

sa
ge

B
in

ar
y

de
te

ct
io

n

20
17

C
he

n
et

 a
l.

[2
2]

D
yn

am
ic

M
B

SS
b

M
ac

hi
ne

 L
ea

rn
in

g
A

PI
 c

al
ls

B
in

ar
y

de
te

ct
io

n
20

20
M

ah
da

vi
fa

r e
t a

l.
[1

1]
D

yn
am

ic
Ps

eu
do

-L
ab

el
 F

FN
N

D
ee

p
Le

ar
ni

ng
Sy

ste
m

 c
al

ls
, b

in
de

rs
, c

om
-

po
si

te
 b

eh
av

io
rs

D
et

ec
tio

n
an

d
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
21

O
ur

 a
pp

ro
ac

h
St

at
ic

 a
nd

 d
yn

am
ic

Ps
eu

do
-L

ab
el

 S
A

E
D

ee
p

Le
ar

ni
ng

Pe
rm

is
si

on
s,

in
te

nt
s,

se
rv

ic
es

,
re

ce
iv

er
s,.

..,
 sy

ste
m

 c
al

ls
,

bi
nd

er
s,

co
m

po
si

te
 b

eh
av

-
io

rs

D
et

ec
tio

n
an

d
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 8 of 34

learning to avoid expensive labeling process. There are some studies [21, 22] that
target the semi-supervised learning for malware detection using machine learning
techniques, however, our approach utilizes deep learning to classify Android mal-
ware into different categories (Table 1).

3 Background

In this section, we present some preliminaries on Android apps, deep learning, and
semi-supervised learning to help understanding the proposed framework.

3.1 Android Apps

An Android app is packaged into an APK; a zip archive file format consisting of
several files and folders including the application code, resources, as well as the

Fig. 1 Structure of an Android Package Kit (APK) [30]

1 3

Journal of Network and Systems Management (2022) 30:22 Page 9 of 34 22

application manifest file as illustrated in Fig. 1. Just like Windows (PC) systems that
use a .exe file for software installation, Android systems use an APK file for distri-
bution and installation of mobile applications. There are two primary sources for
applications [30]:

– Pre-installed applications: Android includes a set of pre-installed applications
as part of its open source platform or device manufacturer. e.g., phone, email,
calendar, web browser, and contacts.

– User-installed applications: Android provides an open development environ-
ment that supports any third-party application from another market such as Yan-
dex (Russian users) and 360 Mobile Assistant (Chinese users).

The structure of an APK file typically contains the following seven components:

1. Assets: This optional directory contains applications’ assets, which can be
retrieved by AssetManager.

2. Lib: This optional directory contains compiled code, e.g., native libraries that
can be used through the Native Development Kit (NDK).

3. META-INF: This directory contains several files responsible for ensuring the
integrity and security of the application. It includes three files: (1) MANIFEST.
MF – the manifest file which stores metadata of the application, (2) CERT.RSA
– the digital certificate of the application, and (3) CERT.SF – the file containing
a list of resources and SHA-1 digest. The signature of the APK is also stored in
this directory.

4. Res: This directory contains noncompiled resources (resources not compiled into
resources.arsc), which defines UI layouts, menus, animations, languages, sound
settings, etc. Typically, the directory contains the following three sub-directories:
(1) drawable, (2) layout, and (3) other Extensible Markup Language (XML) files.

5. AndroidManifest.xml: An essential file in every Android application. It provides
vital application details such as the unique application identifier, permissions
required by the application, application version, referenced libraries, and descrip-
tion of several application components such as activities, services, broadcast
receivers and content providers. These components are discussed below:

– Activity: An activity is the user interface component of an application that
is launched using the Intents. The number of activities that can be declared
within the manifest depends on the developer requirements.

– Service: The service component represents one of the two tasks; either to per-
form a longer-running operation while not interacting with the user or to sup-
ply functionality for other applications to use. It also performs background
tasks without any UI; e.g., playing an audio or downloading data from the
network.

– Broadcast Receiver: This component can be used as a messaging system
across apps where it listens to the Android system generated events. For
instance, the Android system sends broadcasts when various system events

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 10 of 34

occur, such as when the system boots up (BOOT_COMPLETED) or the
device starts charging (BATTERY_CHANGED_ACTION).

– Content Provider: Content provider (also known as the data-store) is a stand-
ard interface that connects data in one process with code running in another
process.

6. classes.dex: The .dex file is a core of an APK, which refers to a binary container
for the code and the associated data. It includes a header containing meta-data
about the executable followed by identifier lists that contain references to strings,
types, prototypes, fields, methods and classes employed by the executable. The
final part of the .dex file is the data section that contains the code and the data
(i.e., URLs).

7. resources.arsc: This file contains pre-compiled resources such as binary XML.

3.2 Deep Learning

For decades, conventional machine learning techniques were very limited in pro-
cessing raw data and discovering the internal representations needed for pattern
recognition or classification. Domain experts used to engineer features manually
based on their expertise and transform the raw input data into feature vectors that, in
turn, could be fed into a machine learning or pattern recognition system [31]. This
process was so computationally expensive and error-prone because it depends on
human engineers.

Deep learning methods, so-called representation-learning methods, learn high-
level representations of input data with multiple levels of abstractions and a set
of flexible features are obtained as the output of non-linear layer-wise processing.
Although these non-linear modules are doing some simple calculations at each layer
to transform the representation at one layer into a representation at a higher layer,
one can learn very complex functions by composing these transformations. What
distinguishes deep learning from other shallow learning algorithms is that different
layers of features are not extracted by human agents, but they are learned hierar-
chically from input data using a general-purpose learning procedure. Deep learn-
ing models including, but not limited to FFNN, CNN, Recurrent Neural Network
(RNN), SAE, and DBN have shown great promise in big data analysis with a wide
range of applications, i.e., large scale image recognition tasks, NLP, bioinformatics,
and speech recognition [32–36]. Deep learning today is mostly about pure super-
vised learning. A major drawback of supervised learning is that it requires a lot of
labeled data and it is quite expensive to collect them. So, deep learning in the future
is expected to be unsupervised, more human-like [37].

3.2.1 Stacked Auto‑Encoder (SAE)

An AE is a generative neural network that encodes input x into a latent variable
using an encoder and then decodes the code into an approximate reconstruction of
the input vector x′ using a decoder. Training the network is done in an unsupervised

1 3

Journal of Network and Systems Management (2022) 30:22 Page 11 of 34 22

fashion where usually the aim is to learn a representation vector z for dimensionality
reduction.

Suppose x ∈ ℝ
m is an input sample, the encoder maps x into a representation vec-

tor z ∈ ℝ
n through a deterministic function f:

where W is a weight matrix, and b is a bias vector. The decoder maps back z into a
reconstructed vector x′ of the input x with identical dimensionality:

where f ′ , W ′ , and b′ are the activation function, weight matrix, and bias vector,
respectively, that might be different from the encoder’s parameters. The objective
of training an AE is to minimize the reconstruction loss l like Mean Squared Errors
(MSE) as the equation below:

where h is the total number of training samples, xi is the input, and x′
i
 is the recon-

struction of xi.
An SAE consists of several layers of AE where output of each hidden layer is

connected to the input of the next hidden layer. The hidden layers are first pre-
trained using an unsupervised method and then are fine-tuned by a supervised algo-
rithm with a classifier at the top.

3.3 Semi‑Supervised Learning

Semi-supervised learning is a class of machine learning methods that takes advan-
tage of labeled data to predict the labels for unlabeled samples to increase detec-
tion accuracy. This method is specifically useful in many applications such as docu-
ment retrieval, image search, genomics, and natural language parsing, where we are
dealing with a limited amount of labeled data and an abundant amount of unlabeled
data. In real-world scenarios, it is very expensive or impossible to obtain labels for
the data, while unlabeled data can be acquired in large quantities.

One of the seminal contributions in the area of semi-supervised learning is co-
training where two classifiers are trained separately on two different conditionally
independent views of the training data. The most confident predictions of each clas-
sifier on new unlabeled examples are then used to iteratively enlarge the training set
of the other [38, 39]. Another straightforward approach is self-training in which an
initial model is incrementally trained using highly confident self-predictions over
unlabeled data [40]. The main disadvantage of these methods is that in case of the
existence of wrong predictions with high confidence, the prediction error is propa-
gated into model learning. Transductive SVMs (TSVMs) [41, 42] are other common
approaches that aim at finding a hyperplane which is far away from the unlabeled
points. The most important drawback of TSVMs is the lack of efficient optimization

(1)z = f (Wx + b),

(2)x� = f �(W �z + b�),

(3)l(W, b,W �, b�) =
1

h

h∑

i=1

∥ xi − x
�

i
∥2,

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 12 of 34

because of non-convex objective functions. Graph-based methods utilize mini-
mum energy configuration for label propagation throughout the graph, however,
are not scalable enough because they are sensitive to the graph structure [43, 44].
Deep learning capability in learning internal representations of raw data has moti-
vated several deep learning-based semi-supervised methods during the past decade
[45–49]. They mostly focus on minimizing the sum of supervised and unsupervised
cost functions simultaneously to enable semi-supervised training, thus avoiding the
need for layer-wise pre-training. Most of the DNN algorithms consist of two sepa-
rate phases for training, namely unsupervised layer-wise pre-training and supervised
fine-tuning, which is not efficient in terms of computational complexity. Avoiding
the need for layer-wise pre-training, these two phases can be combined into one,
so-called semi-supervised learning, to minimize the sum of supervised and unsuper-
vised cost functions. In addition to being computationally efficient, semi-supervised
learning can improve generalization performance using unlabeled data.

3.3.1 Pseudo‑label

Pseudo-Label [46] is an efficient method for training DNNs in a semi-supervised
fashion. In this approach, for every weight update, the class which has the maximum
predicted probability is selected as the label for unlabeled data. Then the deep net-
work is trained with labeled and unlabeled data simultaneously in a supervised way.

Because of its simplicity and efficiency, Pseudo-Label could combine almost all
neural network models and training methods. It is equivalent to Entropy Regulariza-
tion that aims at creating a decision boundary in low-density regions by minimizing
the conditional entropy of class probabilities for unlabeled data. As shown in Fig. 2,
in the Pseudo-Label algorithm, we first train the model on a batch of labeled data

labeled data

Model

unlabeled data

Pseudo-labeled data

Predic�on

1. Train the model with
labeled data

2. Use the trained model to predict
labels for the unlabeled data

3. Retrain the model with the pseudo
and labeled datasets together

Fig. 2 Three main stages of the Pseudo-Label algorithm

1 3

Journal of Network and Systems Management (2022) 30:22 Page 13 of 34 22

to calculate the labeled loss. Then we employ the trained model to select the class
with the maximum predicted probability as the predicted label for unlabeled data.
These pseudo labels are used to calculate the unlabeled loss. Finally, we train the
DNN with labeled and unlabeled data simultaneously in a supervised fashion. To be
more precise, we combine the labeled loss with unlabeled loss and backpropagate
the error to update the weights.

Let x be an unlabeled sample of an initial dataset T, the pseudo-label of x (y′
i
) is

calculated by picking up the class with maximum probability as follows [46]:

The objective function that should be minimized in the fine-tuning stage is defined
as:

where n and n′ are the number of labeled and unlabeled samples of each mini-batch
in Gradient Descent, respectively. C is the number of classes. pm

i
 and ym

i
 are the out-

put units and the label of sample m in labeled data, respectively, and p′m
i
 and y′m

i
 are

the output units and the pseudo-label of sample m in unlabeled data, respectively.
To prevent the optimization process from getting stuck in poor local minima, �(t) is
gradually increasing using a deterministic annealing procedure [46].

4 Threat Model

In this section, we discuss possible threats that an adversary can create against the
proposed framework and how our framework can tackle these potential threats. One
of the dominant ways attackers evade Android malware detection systems is repack-
aging. The malicious application can use secondary packaging to alter the source
code or attach some malicious payload to the original app. Obfuscation and reflec-
tion are other methods to conceal malicious behavior in the source code. In our
hybrid malware detection approach, we run the Android apps using CopperDroid
emulator; so, any malicious behavior of the application that has been hidden using
repackaging, obfuscation, or reflection techniques would be revealed. Since Copper-
Droid’s reconstruction mechanism is independent of the underlying action invoca-
tion methods, it can reconstruct system calls initiated from both DEX bytecode or C/
C++ native code. Therefore, it can capture all semantics from both OS and Dalvik

(4)y�
i
=

{
1 if i = arg max i�pi� (x)

0 otherwise

(5)L =
1

n

n∑

m=1

C∑

i=1

L(ym
i
, pm

i
) + �(t)

1

n�

n�∑

m=1

C∑

i=1

L(y�
m

i
, p�

m

i
),

(6)�(t) =

⎧
⎪
⎨
⎪
⎩

0 t ≤ T1

t − T1

T2 − T1

�f T1 ≤ t ≤ T2

�f T2 ≤ t

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 14 of 34

viewpoints and detect every possible execution path of an Android app. The pro-
posed framework also extracts dynamic behaviors such as binder calls that describe
complex Intra- and Inter-Process Communications (IPC). This makes it resilient
against multiple privilege escalation exploits.

Being based on a semi-supervised deep learning model, the framework is also
effective in combating zero-day and unknown Android malware. As new malware
samples arrive in batches, we do not need to engineer the features from scratch.
The framework can automatically extract features from the new samples and incre-
mentally update the deep learning model. Furthermore, due to its semi-supervised
nature, the framework can be trained using a substantial number of unknown mal-
ware and a few labeled samples that match the real-world scenario. Due to the high
efficiency of the proposed framework, we can run it as a detection module on mobile
devices that identifies the category of malware. It can work as a proactive and pre-
ventive tool to help us mitigate the malware threat and take precautionary steps to
prevent catastrophic abuse to the device.

5 Proposed Framework

In this section, we detail the steps followed to detect and classify Android apps into
five categories using a hybrid method, as shown in Fig. 3.

5.1 Data Collection

We managed to collect more than 17,341 Android samples from several sources
including VirusTotal service, Contagio security blog [50], AMD [6], and other data-
sets used by recent research contributions [10, 51, 52]. The samples were collected

Feature Extrac�on

System Calls
futex
getuid32
write
prctl
setresgid32
mkdir
…

Basic Binders
getDisplayInfo
getPackageInfo
getInstallerPackageName
getAc�veNetworkInfo
getPermissionInfo
getCallState
…

Composite Behaviors
fs_access (C,W)
network_access (R,W)
device_access
fs_pipe_access (R,W)
create_folder
create_thread
…

Dynamically Observed Behaviors

intent_ac�ons, intent_consts, intent_objects, num_permissions, num_libraries,
num_ac�vi�es,num_intent_const_android_intent, used_permissions, file,
method_tags, sensi�ve APIs, services, package, receivers, reflec�on, …

Sta�c Features

Features Concatena�on

Pre-processing

Frequency Calcula�on

Normaliza�on
Feature Vectors

Detec�on & Classifica�on

Training Data

Tes�ng Data
Predic�on

Pseudo-label Stacked Auto-Encoder
Adware

Riskware

Banking

SMS

Benign

Feature refinement

Linux kernel

CopperDroid Emulator

Dalvik

Android OS

System Call Analysis
CopperDroid Behavior Reconstruc�on

Binder Analysis

intents permissions
services files method-tags sys.calls

CB binders

Data Cleaning

Fig. 3 Proposed framework for hybrid Android malware semi-supervised classification

1 3

Journal of Network and Systems Management (2022) 30:22 Page 15 of 34 22

from December 2017 to December 2018. It is significant for cybersecurity research-
ers to classify Android apps with respect to the malware category to consider proper
countermeasures and mitigation strategies. Hence, our dataset intentionally spans
between five distinct categories: Adware, Banking malware, SMS malware, Risk-
ware, and Benign. The five categories of Android malware applications encompass
a broad range of Android malware types. This taxonomy is very comprehensive and
almost include all avenues an Android malware might use to gain financial profit,
namely product payment, ransom payment, fraud SMS charge, money transfer, and
data theft [30]. The five categories include up-to-date Android malware threats
namely, Command and Control (C&C) malware (botnets), Trojans, SMS phishing,
fraud, scareware, ransomware, and adware. To foster more research in this area, we
released the accumulated dataset (CICMalDroid2020) to the research community 2.
Each malware category is briefly described as follows:

– Adware. Mobile Adware refers to an unwanted program designed to pop up
advertisements (ad) on the screen that typically hides inside a legitimate appli-
cation to trick the user into installing it into her/his mobile device. Adware can
make profits for its developers by repeatedly displaying ads on the user’s screen
even if the victim tries to force-close the application. Adware infects victim’s
device, traces the locations have been visited by the victim over the Internet,
and presents ads related to his/her viewing habits. It can also sells the browsing
behavior and personal information to third parties to target the victim with more
customized ads. In our dataset, the Adware category consists of the following
families: Adwo, Andup, Dowgin, Kemoge, Kuguo, Minimob, Mobidash, Shua-
net, Utchi, and Youmi.

– Banking Malware. Mobile Banking malware is a specialized malware designed
to gain access to the user’s online banking accounts by mimicking the original
banking applications or banking web interface. Most of the mobile Banking mal-
ware are Trojan-based, which is designed to infiltrate devices, to steal sensitive
details, i.e., bank login and password, and to send the stolen information to a
C&C server [51]. The malware families of this category in our dataset are as fol-
lows: Bankbot, Binv, Bankun, Citmo, Fakebank, Sandroid, Spitmo, SlemBunk,
Svpeng, Wroba, ZertSecurity, and Zitmo.

– SMS Malware. SMS malware exploits the SMS service as its medium of opera-
tion to intercept SMS payload for conducting attacks. The attackers first upload
malware to their hosting sites to be linked with the SMS. They use the C&C
server for controlling their attack instructions, i.e., send malicious SMS, intercept
SMS, and steal data. The SMS malware category includes the following fami-
lies: Boxer, FakeInst, Gumen, Leech, RuMMS, SMSReg, SMSpay, SMSSend,
SMSspy, and SMSkey.

– Mobile Riskware. Riskware refers to legitimate programs that have the potential
to become a threat to a host device due to vulnerabilities or software incompat-
ibility. Consequently, they can be turned into any other form of malware such

2 https:// www. unb. ca/ cic/ datas ets/ maldr oid- 2020. html

https://www.unb.ca/cic/datasets/maldroid-2020.html

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 16 of 34

as Adware or Ransomware, which extends functionalities by installing newly
infected applications. Uniquely, this category only has a single variant, mostly
labeled as “Riskware” by VirusTotal.

– Benign. All other applications that are not in categories above are considered
benign which means that the application is not malicious. For the sake of verifi-
cation, we scanned all the benign samples with VirusTotal [53].

5.2 Data Analysis

CopperDroid aims at reconstructing system call semantics as precisely as possible
regardless of whether they were initiated from Java or native code to demonstrate
that all Android application behaviors manifest themselves through system calls
[54]. We statically and dynamically analyzed our collected data using CopperDroid
[12], a VMI-based analysis system, to automatically reconstruct low-level OS-spe-
cific and high-level Android-specific behaviors of Android samples. Furthermore,
Copperdroid is able to extract a broad range of static features from Android sam-
ples. Out of 17,341 samples, 13,077 samples ran successfully while the rest failed
due to errors such as time-out errors or others including bad UTF-8 bytes, prob-
lems installing the app, invalid APK files, list index out of range, bad unpack param-
eters, bad ASCII characters, bad CRC-32 values, and memory allocation failures.
The dynamic analysis module observes the behavior of Android apps while they are
being executed in a simulated environment. The information captured during runt-
ime could demonstrate the underlying characteristics of the Android sample and
reveal the sample’s intentions. Using dynamic analysis, we are capable of dissecting
and comprehending every aspect of malware that result in a stable detection process.
On the other hand, static analysis concentrates on disassembly and decompilation
of the code, essentially Android manifest file. All the APK files are first executed in
CopperDroid and the runtime behaviors are recorded in log files. The output analy-
sis results of CopperDroid are available in JSON format for easy parsing and addi-
tional auxiliary information. They include (1) statically extracted information, e.g,
intents, permissions and services, frequency counts for different file types, incidents
of obfuscation, method tags, and sensitive API invocations and (2) dynamically
observed behaviors which are largely broken down into three categories of system
calls, binder calls, composite behaviors, and the PCAP of all the network traffic cap-
tured during the analysis [12]. In Appendix A, we provide the snippets of static fea-
tures and dynamic behaviors of an APK file that are obtained from the CopperDroid
analysis in the JSON format.

5.3 Feature Extraction

Hybrid analysis of Android applications benefits from the advantages of both
static and dynamic analysis, therefore yield higher performance. In this paper, we
used both statically and dynamically extracted information from CopperDroid to
increase detection accuracy of PLDNN [11]. For the static features, we extract 179
items of high-level static information from the captured JSON log files related to

1 3

Journal of Network and Systems Management (2022) 30:22 Page 17 of 34 22

each Android APK. The high-level static information is categorized into categorical
and numerical feature types. We then pull out all possible values of the categori-
cal features from all APK files, such as intent actions, permissions, intent consts,
permissions, file, method tags, sensitive APIs, services, package, receivers and con-
struct the unique categorical values of all APK files as a feature vector. The result
is concatenated with the numerical features including number of activities, number
of files, number of intent actions, number of libraries, number of permissions, num-
ber of providers, number of receivers, and number of services resulting in a final
feature vector with a length of 50,621. Fig. 4 elaborates the stages of constructing
our static feature vector. Regarding dynamic features, we combine high resilient
system calls with binder calls and composite behaviors from the captured log files
to acquire valuable information from the malware behavior. By putting all distinct
low-level behaviors of all APK files together, we create feature vectors of size 470
for each APK file. The dynamic features are similar to the ones used in our previ-
ous contribution [11]. Binder is a base class used for realizing an optimized IPC and
lightweight Remote Procedure Call (RPC) mechanism. Composite behaviors such
as fs_access(create, write), network_access(read, write), and fs_pipe_access(read,
write) aggregate commonly associated low-level system calls. We provide samples
of binder calls, namely getDisplayInfo, registerCallback, getProxy and composite
behavior network_access(read, write) that are obtained from the CopperDroid anal-
ysis in the JSON format in Appendix A.

5.4 Pre‑processing

In the pre-processing stage, we first calculate the frequencies of the distinct static
information and dynamic behaviors. Then we clean the data by replacing NaN val-
ues with zero. We also encode categorical feature values using Pandas in Python

. . .

179 High-level sta�c informa�on

intent ac�ons intent consts permissions . . . sensi�ve APIs no. ac�vi�es no. files no. intent ac�ons . . . no. permissions

Unique categorical values

Numerical featuresCategorical features

. . .

50621 sta�c feature vector

Flaen

Fig. 4 Static feature vector construction

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 18 of 34

and replace boolean feature values, i.e., True and False with one and zero, respec-
tively. Since we have a very sparse feature matrix, we apply the Variance Threshold
algorithm from SKlearn library [55] to remove all low-variance features. In other
words, features with a training-set variance lower than a specified threshold will
be removed. As a result of this refinement operation with variance threshold 0.1,
static features length is shrunk from 50,621 to 302 and the dynamic feature vector is
shrunk from 470 to 262. We then concatenate the static and dynamic feature vectors
into a final feature vector of length 564. We finally normalize the feature vectors into
values between [0, 1] using �2 normalization method which scales each feature vec-
tor such that the square root of the sum of squares of all the values, i.e., vector’s �2

-norm, equals one.
Let x = (x1, x2,⋯ , xn) be a vector in the n-dimensional real vector space ℝn , the

�2-norm of vector x, denoted by |x| , is defined as:

To point out the most influential features for detecting a malicious Android appli-
cation, we rank the top-40 dynamic behaviors using Mutual Information. As illus-
trated, binder getInstallerPackageName and system call newselect have the highest
score with a meaningful distance from the subsequent features. Most of the mali-
cious activities of an application are manifested through file and network manage-
ment system calls [56]. File management system calls can be exploited by malware
to communicate with file descriptors related to sensitive resources in an OS. Also,
malware can use network-related system calls to communicate with C&C servers for
establishing malicious activity. Hence, these types of system calls contain precious
information about the malicious behavior of that application. Another important
source of features are those related to binder transactions, i.e., IPC operations that
actually transfer data and are also responsible for RPC [12]. Malware can employ
binder calls to escalate the privileges of a process and gain the root access to an
Android system. All Binder transactions are fired by invoking ioctl system calls sent
from the client application to the IActivityManager. As can be seen from Table 2,
the vast majority of the learned features are related to file and network manage-
ment system calls and composite behaviors that aggregate commonly associated
low-level system calls. For instance, newselect, create_folder, mkdir, pwrite64,
pread64, unlink, fdatasync, fs_pipe_access, fs_access(read), fs_pipe_access(write),
and fs_access system calls, which are amongst the top twenty features, are required
for every application for communicating with sensitive resources in a system [56].
Besides, network_access composite behavior can be used by malware to commu-
nicate with a C&C server [56] to obtain encryption keys in ransomware or send/
receive SMS message to/from premium services owned by a malware author [57,
58]. There are also a small handful of system calls related to memory management
(mmap2 and mummap) and process management (mprotect, nanosleep, and getuid)
that though selected as being significant, might not provide valuable information
for usual malicious activities of malware. All applications could use these system
calls for handling normal operations. A noticeable number of system calls are also

(7)|x| =
√

x2
1
+ x2

2
+⋯ + x2

n
.

1 3

Journal of Network and Systems Management (2022) 30:22 Page 19 of 34 22

binders including getInstallerPackageName, getPackageInfo, getReceiverInfo, get-
ServiceInfo, getActivityInfo, getApplicationInfo, and queryIntentServices.

5.5 Detection and Classification

The first step in this module is training the PLSAE with the provided normalized
feature vectors. To train PLSAE, first we need to pre-train all layers by encoding
x into a code and then decoding the code into x′ . The network is trained by mini-
mizing the reconstruction error, and then the weights and biases are frozen. In
the fine-tuning step after the network is pre-trained, the decoder part is ignored, a
Softmax classifier is put at the top of the network, and the whole network work-
ing as a typical FFNN is trained with the Pseudo-Label algorithm. Using Pseudo-
Label, the feed forward network is trained in a supervised fashion with labeled
and unlabeled data simultaneously. Pseudo-labels, which are recalculated with
every weight update, are used along with the real labels to optimize the super-
vised loss function in each mini-batch. Fig. 5 illustrates the architecture of the
PLSAE. The input layer has 564 neurons representing the total number of static

Table 2 Top-40 extracted features using Mutual Information algorithm

Rank Feature Merit Type Rank Feature Merit Type

1 getInstallerPackage-
Name

0.272 binder 21 fs_access() 0.138 file

2 newselect 0.263 file 22 pipe 0.136 file
3 mprotect 0.187 process 23 fcntl64 0.136 file
4 getPackageInfo 0.183 binder 24 fs_access(create_write) 0.134 file
5 create_folder 0.181 file 25 nanosleep 0.133 process
6 getReceiverInfo 0.172 binder 26 getApplicationInfo 0.131 binder
7 mkdir 0.163 file 27 fs_access(create_read_

write)
0.131 file

8 pwrite64 0.164 file 28 rename 0.13 file
9 getServiceInfo 0.158 binder 29 access 0.131 file
10 pread64 0.158 file 30 chmod 0.129 file
11 unlink 0.155 file 31 gettid 0.128 process
12 munmap 0.15 memory 32 fs_access(create) 0.128 file
13 statfs64 0.146 file 33 brk 0.127 memory
14 getActivityInfo 0.146 binder 34 device_access 0.127 input/output
15 fdatasync 0.146 file 35 queryIntentServices 0.126 binder
16 fs_pipe_access 0.143 file 36 network_access 0.125 network
17 fs_access(read) 0.142 file 37 stat64 0.125 file
18 fs_pipe_access(write) 0.14 file 38 fs_access(write) 0.125 file
19 fs_access 0.139 file 39 open 0.125 file
20 mmap2 0.139 memory 40 lstat64 0.124 file

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 20 of 34

and dynamic features whereas the output layer consists of five neurons represent-
ing the number of classes in our classification task.

For the prediction step, the trained model is fed the test data, and then clas-
sifies the input feature vector into one of the five categories. Finally, the corre-
sponding classification measures are calculated and reported as an output.

.0 .0
.

.0
.0

Encoder Decoder

Code

.0 .0
.

So�max Func�on

Unsupervised Pre-training

Supervised Fine-tuning

5 Classes

564 Input Features

Fig. 5 Greedy layer-wise training of PLSAE

1 3

Journal of Network and Systems Management (2022) 30:22 Page 21 of 34 22

6 Performance Analysis

In this section, we evaluate how effectively and efficiently the semi-supervised
deep learning-based framework can classify Android APK files into one of the
pre-defined categories.

6.1 Implementation

We implemented the proposed semi-supervised deep SAE framework using a PC
with 3.60 GHz Core i7-4790 CPU and 32 GB RAM. We implemented our code
using Tensorflow in Python which is a major modification of our previous contribu-
tion [11] based on Pseudo-Label using FFNN. We added an implementation of a
PLSAE with unsupervised pre-training and supervised fine-tuning. We also changed
the pre-processing parts related to analyzing the static features, numericalizing the
data, removing the features with low variance that carry a little information, fea-
tures concatenation, and normalization. The input layer of the DNN consists of
564 neurons, with reference to the number of input feature vectors as detailed in
Sect. 5, and the output layer consists of five neurons equivalent to the number of
categories. The Deep PLSAE includes an encoder and decoder section whose hid-
den layers and hidden neurons need to be fine-tuned. We used the Sigmoid func-
tion as the activation function for all hidden layers in encoder and decoder and the
mini-batch RMSPropOptimizer as the optimization algorithm. All the weights are
initialized using normal distribution with zero mean and standard deviation of one.
The mini-batch size was set to 100 for labeled samples, and the learning rate was set
to 0.007. These parameters were determined using hyper-parameter tuning. As men-
tioned previously in Sect. 3, the balancing coefficient, �(t) was slowly increased to
dynamically adjust the network performance with the parameter settings of �f = 1.5 ,
T1 = 100 , and T2 = 400 (We refer the reader to [46] for more details about these
parameters). We trained each PLSAE model until convergence or the number of
1500 epochs was reached. We ran each set of experiments 20 times and computed
the average over all runs to find the evaluation metrics. To make sure that the train-
ing samples in each mini-batch are randomly selected, we shuffled the entire dataset
at the beginning of each epoch.

6.2 Dataset

As discussed earlier in Sect. 5, we ran 17,341 APKs in CopperDroid to observe the
behavior of each sample. Out of this number of samples, 13,077 ran successfully
while the rest failed because of different error types including but not limited to
bad unpack parameters, bad ASCII characters, bad CRC-32 values, and bad UTF-8
bytes. Then we loaded all analysis results where about 12% of the JSON files failed
to open mostly due to “unterminated string”. The final remaining Android samples
in each category are as follows: Adware (1,253), Banking (2,100), SMS malware
(3,904), Riskware (2,546), and Benign (1,795).

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 22 of 34

6.3 Experimental Results

In our experiments, we used Precision (PR), Recall (RC), F1-Score (F1), Accuracy
(ACC), False Positive Rate (FPR), False Negative Rate (FNR), and classification
error to assess the overall classification performance. We examined the classification
performance of our proposed framework under different train/test split ratios. After-
ward, we picked the best architecture and train/test split ratio (70% − 30%) and com-
pared the effectiveness of our approach with other state-of-the-art machine learning
and deep learning algorithms while changing the number of labeled samples. We
plotted the ROC curves per class, the micro/macro average ROC curves, and com-
puted the confusion matrix, as well. Furthermore, we compared the performance of
the semi-supervised deep SAE with the supervised deep SAE, PLDNN, DNN, some
common machine learning algorithms including the semi-supervised approach (LP)
while changing the number of labeled samples. Finally, we estimated the average
runtime of the feature extraction, pre-processing, and detection stages.

6.3.1 Malware Classification Performance

We investigated the impact of hidden layers and hidden neurons of the PLSAE on
the classification performance of our malware detector. For this set of experiments,
we set the number of labeled samples and train/test ratio to 1000 and (70% − 30%) ,
respectively. The fine-tuning of PLSAE architecture demonstrated that the deep net-
work with four hidden layers and neurons of [564 450 300 150 10 5] is superior to
other deep networks, and from this point on, it was used as the deep network archi-
tecture for the subsequent experiments. In the experiments, SAE is the deep Stacked
Auto-Encoder model trained without unlabeled data (supervised) whereas PLSAE is

97.6 97.9 98.1 97.7 97.797.6 97.8 98.3 97.3 97.7

90-10 80-20 70-30 60-40 50-50

Train/Test Ratio

0

20

40

60

80

100

A
C

C
%

SAE
PLSAE

Fig. 6 ACC of SAE and PLSAE for different train/test split ratios

1 3

Journal of Network and Systems Management (2022) 30:22 Page 23 of 34 22

the one trained with both labeled and unlabeled data (semi-supervised) considering
the same dataset. Additionally, PLDNN is the semi-supervised DNN that is trained
on the dynamic features [11].

Fig. 6 visualizes accuracy of SAE (supervised) and PLSAE (semi-supervised) for
different train/test split ratios of %(90 − 10, 80 − 20, 70 − 30, 60 − 40, 50 − 50) . As
shown in Fig. 6, the classification performance under the 70-30 train/test percentage
outperforms other sets for both SAE and PLSAE. However, the classification results
are too close under all split percentages. This shows how robust our trained deep
network is because it performs excellently in all train/test split percentages. Moreo-
ver, in all settings, the accuracy of PLSAE and SAE is almost similar, which dem-
onstrates that the proposed semi-supervised framework (PLSAE) in this paper with
unlabeled data can be used instead of the supervised one (SAE) that needs labeled
data. This is really helpful because the labeling process is expensive when handling
such a real-world problem where some pieces of malware can avoid detection.

Receiver Operating Characteristic (ROC) curve plots True Positive Rate (TPR)
vs FPR which shows the overall quality of the classifier’s output. Therefore, the
top left corner of the plot is the optimum point which leads to the maximum Area
Under Curve (AUC). Fig. 7 juxtaposes ROC curves of each class, micro average,
and macro average. Micro averaging considers the metrics globally whereas macro
averaging calculates metrics per label and finds their unweighted mean. As shown
in both figures, the micro and macro averages AUC for both PLSAE and SAE are
close to one, i.e., 0.96-0.97 . All the plots are clustered in the ideal area at the top
left corner where the AUC of class 2 (SMS malware) is a bit higher (0.98) than
those of other ROC curves. This means that our detection system could distinguish
SMS malware slightly better than other classes, however the detection performance
of the rest of the classes is excellent regarding the high degree of similarity between
the categories of Adware, Riskware, and Benign. Overall, the ROC curves demon-
strate that PLSAE precisely discovers the underlying behavior of the Android mal-
ware with only 1000 labeled training samples. This shows that regardless of the
small number of labeled samples, our semi-supervised approach exhibits highly

(a) SAE (b) PLSAE

Fig. 7 Receiver Operating Characteristic (ROC). (Class 0 is Adware, class 1 is Banking, class 2 is SMS
Malware, class 3 is Riskware, and class 4 is Benign)

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 24 of 34

competitive performance for malware categorization, which is even higher than the
supervised SAE.

Table 3 shows the confusion matrix of PLSAE for each Android app category.
We have set the number of labeled training samples to 1000. We listed TPR,
i.e., the fraction of predicted apps with respect to the total number of apps for
each category. The diagonal illustrates the correct classification. SMS malware
achieves the highest TPR of 99% whereas Riskware and Benign both achieve
the lowest TPR among other categories (95%). Riskware and Benign have been
mostly mistaken for each other, 3% and 4%, respectively, due to inherent similar-
ity and common characteristics they share. As shown, PLSAE could remarkably
improve the TPR of Adware samples (0.96) in comparison with PLDNN (0.85)
[11].

Table 4 compares the classification error of PLSAE with that of basic SAE,
PLDNN [11], DNN, semi-supervised approach LP, and four common machine
learning classifiers, namely RF, SVM, and k-NN on the Android malware dataset
with 100, 300, 500, 1000, 5000, and all labeled training samples. We applied all
the machine learning methods on the hybrid feature vector used with PLSAE and
SAE except for PLDNN and DNN. The results of PLDNN and DNN are both from
our previous research contribution [11] where the features were merely dynamic.
We applied stratified 5-fold cross-validation for all machine learning algorithms.
The results presented in the table show that by increasing the number of labeled

Table 3 Confusion matrix of category classification

Prediction Category

Adware Banking SMS Riskware Benign

Real category Adware 0.96 0.01 0.01 0.01 0.02
Banking 0.02 0.96 0.0 0.01 0.01
SMS 0.0 0.01 0.99 0.0 0.0
Riskware 0.0 0.01 0.01 0.95 0.03
Benign 0.0 0.0 0.01 0.04 0.95

Table 4 Classification error (%)
on the Android malware dataset
with 100, 300, 500, 1000, 5000,
and all labeled training samples.
DNN and PLDNN are applied
on dynamic features [11]

Method Labeled training samples

100 300 500 1000 5000 All

RF 14.34 7.38 6.58 5.08 2.09 1.68
SVM 68.16 65.78 65.65 65.59 65.24 65.17
K-NN 30.47 20.54 17.36 13.33 7.23 5.60
LP 9.74 9.5 9.05 8.82 9.56 6.89
DNN

D
10.82 9.44 7.93 3.52 2.77 2.4

PLDNN
D

8.37 6.93 4.54 3.3 2.6 2.4
SAE 6.65 3.41 2.55 1.93 1.64 1.52
PLSAE 4.81 3.23 2.54 1.72 1.61 1.48

1 3

Journal of Network and Systems Management (2022) 30:22 Page 25 of 34 22

samples the classification error of all algorithms decreases. For any number of
labeled training samples, PLSAE (semi-supervised hybrid) prominently outper-
forms LP (semi-supervised hybrid). The classification error of PLSAE is 1.6%
less in comparison with the error of PLDNN (semi-supervised dynamic) for 1000
labeled training samples. For the small number of labeled samples, the superior-
ity of PLSAE over PLDNN becomes more clear.

For instance, for approximately 1% of the total number of labeled training sam-
ples (100 labeled samples), PLSAE achieves an ACC of 95.19% for malware cat-
egorization, justifying its stability even in the presence of scarce labeled data. In
contrast, PLDNN obtains an ACC of 91.63% for 100 labeled samples. For almost all
labeled samples, e.g., 300-5000, the gap between the classification error of SAE and
PLSAE is almost negligible. For instance, for samples=5000, the error is decreased
to 1.64% and 1.61% for SAE and PLSAE, respectively.

In Fig. 8, the average training cost of PLDNN and PLSAE are compared accord-
ing to the number of iterations.

The number of iterations is calculated by multiplying the number of epochs
(1500) and the number of labeled mini-batch (10), i.e., 15,000. As expected, the
average cost of both methods constantly decreases as the number of iterations
increases. However, the first iterations have massive improvements, but after a
while, the cost slightly changes and is stabilized. As shown in both plots, the average
cost of PLSAE is much lower than PLDNN, which can be justified by the higher
detection capability and effectiveness of our hybrid semi-supervised deep AE com-
pared with PLDNN. Besides, the average costs of training semi-supervised deep net-
works are higher than the ones of the supervised deep networks. The reason for this
is that we expand the loss function of labeled samples by adding
(�(t)

1

n�

∑n�

m=1

∑C

i=1
L(y�

m

i
, p�

m

i
)) term to the overall loss function L in Eq. 5. As we

proceed with training, this gap gradually shrinks, and the two diagrams approxi-
mately converge after 15,000 iterations which demonstrates that our semi-super-
vised DNN with many unlabeled and small amount of labeled samples could easily
substitute all-labeled scenarios.

(a) PLDNN and DNN (b) SAE and PLSAE

Fig. 8 Average training cost vs total number of iterations

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 26 of 34

6.3.2 Runtime Performance

In this section, we evaluated the efficiency of PLSAE by estimating the detection,
pre-processing, and feature extraction time. The detection time is the total time
needed to predict the category of the test samples, including pre-training and fine-
tuning stages. For the runtime performance, we set the number of labeled samples
to 1000 and the batch size to 100. As presented in Fig. 9(a) and (b), the total time
needed for feature extraction (23.63 h) and pre-processing (27.5 min) of PLSAE is
approximately 3.7 h larger than PLDNN (20.4 h and 0.25 min) because of the huge
size of initial static information added to the dynamic features. However, in estimat-
ing runtime performance, we are concerned about detection time rather than pre-
processing and feature extraction stages. The total detection time of PLSAE is 13.38
min (including pre-training and fine-tuning) for the whole test data (3480) compared
with PLDNN (4.15 min). Consequently, the average prediction time per sample for
PLSAE is 230 ms as compared with 60 ms for PLDNN. This low amount of detec-
tion time is negligible considering the noticeable improvement we achieve with
hybrid PLSAE versus PLDNN. Therefore, our proposed Android malware detec-
tion system is very efficient and could be easily deployed in computationally-limited
devices.

7 Conclusion

In this paper, we have proposed an effective and efficient Android malware cat-
egory classification approach based on semi-supervised DNNs. It is a hybrid
approach that integrates both static and dynamic analysis of malware to utilize
the strengths of both of them. The pre-training scheme of the deep network
using SAE helps in better generalization. As a result, in spite of the small num-
ber of labeled training samples, the proposed detection approach is effective and
superior in comparison to other state-of-the-art techniques. This eliminates the

PLDNN PLSAE
Model

0

5

10

15

20

25

30

35

40
R

un
tim

e
(m

in
ut

es
)

Pre-processing
Pre-training
Fine-tuning

(a) Pre-processing and Detection

PLDNN PLSAE
Model

0

5

10

15

20

25

R
un

tim
e

(h
ou

rs
)

Feature Extraction

(b) Feature Extraction

Fig. 9 Comparison of runtime performance for different steps of PLSAE and PLDNN

1 3

Journal of Network and Systems Management (2022) 30:22 Page 27 of 34 22

need for a high number of labeled instances, which is very expensive to acquire
in the domain of malware analysis. Additionally, it is efficient in terms of execu-
tion time, and it helps us to prioritize our mitigation techniques by specifying
the category of the malware. We have offered a new 17,341 Android malware
dataset which includes the most complete captured static and dynamic feature
sets and spans between five distinct categories of malware. As future work, we
are planning to test if the proposed detection system can run on resource-limited
IoT devices such as Raspberry Pi. Our approach also could be enhanced using
advanced deep learning models like RNN or CNN. Additionally, we are plan-
ning to keep updating CICMalDroid2020 by including new samples together
with their analysis and to study how increasing the number of samples will
affect the experimental results.

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 28 of 34

Appendix

1 3

Journal of Network and Systems Management (2022) 30:22 Page 29 of 34 22

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 30 of 34

1 3

Journal of Network and Systems Management (2022) 30:22 Page 31 of 34 22

Acknowledgements The authors would like to express their gratitude toward Dr. Lorenzo Cavallaro and
Feargus Pendlebury (Systems Security Research Lab, King’s College London) for generously analyzing a
large number of Android APKs in CopperDroid.

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 32 of 34

References

 1. “Mobile OS market share Statista ,” https:// www. stati sta. com/ stati stics/ 266136/ global- market-
share- held- by- smart phone- opera ting- syste ms/, online; accessed 30 April 2019

 2. Otoum, Y., Nayak, A.: As-ids: Anomaly and signature based ids for the internet of things. J.
Netw. Syst. Manag. 29, 07 (2021)

 3. Afzal, S., Asim, M., Javed, A.R., Beg, M.O., Baker, T.: Urldeepdetect: a deep learning approach
for detecting malicious urls using semantic vector models. J. Netw. Syst. Manag. 29(3), 21
(2021). https:// doi. org/ 10. 1007/ s10922- 021- 09587-8

 4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: DREBIN: effec-
tive and explainable detection of Android malware in your pocket. In: Network and Distributed
System Security Symposium (NDSS) (2014)

 5. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware Android malware classification using
weighted contextual API dependency graphs. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, pp. 1105–1116 (2014)

 6. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current Android mal-
ware. In: International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, pp. 252–276 (2017)

 7. Kang, H., Jang, J.-W., Mohaisen, A., Kim, H.K.: Detecting and classifying Android malware
using static analysis along with creator information. Int. J. Distrib. Sens. N. 11(6), 479174
(2015)

 8. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A multimodal deep learning method for Android
malware detection using various features. IEEE Trans. Inf. Forensics Secur. 14(3), 773–788
(2019)

 9. Hou, S., Saas, A., Ye, Y., Chen, L.: DroidDelver: an Android malware detection system using Deep
Belief Network based on API call blocks. In: International Conference on Web-age Information
Management. Springer, pp. 54–66 (2016)

 10. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for Android
malware detection using deep learning. Digit. Invest. 24, S48–S59 (2018)

 11. Mahdavifar, S., Abdul Kadir, A.F., Fatemi, R., Alhadidi, D., Ghorbani, A.A.: Dynamic android mal-
ware category classification using semi-supervised deep learning. In: 2020 IEEE International Con-
ference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive
Intelligence and Computing. International Conference on Cloud and Big Data Computing, Interna-
tional Conference on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSc-
iTech), pp. 515–522 (2020)

 12. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic reconstruction of Android
malware behaviors. In: Network and Distributed System Security Symposium (NDSS) (2015)

 13. Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-Sec: deep learning in Android malware detection. In:
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4. ACM, pp. 371–372 (2014)

 14. Su, X., Zhang, D., Li, W., Zhao, K.: A deep learning approach to Android malware feature learning
and detection. In: Trustcom/BigDataSE/ISPA, 2016 IEEE. IEEE, pp. 244–251 (2016)

 15. Nix, R., Zhang, J.: Classification of Android apps and malware using deep neural networks. IEEE
International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1871–1878 (2017)

 16. Hsien-De Huang, T., Kao, H.-Y.: R2-d2: color-inspired Convolutional Neural Network (CNN)-based
Android malware detections. In: 2018 IEEE International Conference on Big Data. IEEE, pp. 2633–
2642 (2018)

 17. Wang, W., Zhao, M., Wang, J.: Effective Android malware detection with a hybrid model based on
deep autoencoder and convolutional neural network. J. Amb. Intel. Hum. Comp. 10(8), 3035–3043
(2018)

 18. Xiao, X., Zhang, S., Mercaldo, F., Hu, G., Sangaiah, A.K.: Android malware detection based on
system call sequences and LSTM. Multimed. Tools Appl. 78(4), 3979–3999 (2019)

 19. Yen, Y.-S., Sun, H.-M.: An Android mutation malware detection based on deep learning using visu-
alization of importance from codes. Microelectron. Reliab. 93, 109–114 (2019)

 20. Lu, T., Du, Y., Ouyang, L., Chen, Q., Wang, X.: Android malware detection based on a hybrid deep
learning model. In: Secur. Commun. Netw., vol. 2020, pp. 1–11, 08 (2020)

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://doi.org/10.1007/s10922-021-09587-8

1 3

Journal of Network and Systems Management (2022) 30:22 Page 33 of 34 22

 21. Ma, S., Wang, S., Lo, D., Deng, R.H., Sun, C.: Active semi-supervised approach for checking app
behavior against its description. In: IEEE 39th Annual Computer Software and Applications Confer-
ence, vol. 2. IEEE, pp. 179–184 (2015)

 22. Chen, L., Zhang, M., Yang, C.-Y., Sahita, R.: Semi-supervised classification for dynamic Android
malware detection. arXiv preprint arXiv: 1704. 05948 (2017)

 23. Karbab, E.B., Debbabi, M., Alrabaee, S., Mouheb, D.: Dysign: dynamic fingerprinting for the
automatic detection of android malware. In: Proceedings of the 11th International Conference on
Malicious and Unwanted Software (MALWARE), pp. 1–8 (2016)

 24. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: Fossil: a resilient and efficient system for iden-
tifying foss functions in malware binaries. ACM Trans. Priv. Secur. 21(2), 1–34 (2018)

 25. Cai, H., Meng, N., Ryder, B., Yao, D.: DroidCat: effective android malware detection and cat-
egorization via app-level profiling. IEEE Trans. Inf. Forensics Secur. 14(6), 1455–1470 (2018)

 26. Mahdavifar, S., Ghorbani, A.A.: Application of deep learning to cybersecurity: a survey. Neuro-
computing 347, 149–176 (2019)

 27. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer
vision: a brief review. In: Comput. Intel. Neurosc., Vol. 2018 (2018)

 28. Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.,
Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–
2634 (2015)

 29. Yang, W., Liu, Q., Wang, S., Cui, Z., Chen, X., Chen, L., Zhang, N.: Down image recognition
based on deep convolutional neural network. Inf. Process. Agric. 5(2), 246–252 (2018)

 30. Fitriah Abdul Kadir, A.: A detection framework for android financial malware. Ph.D. Disserta-
tion, University of New Brunswick (2018)

 31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
 32. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural net-

works with multitask learning. In: Proceedings of the 25th International Conference on Machine
Learning. ACM, pp. 160–167 (2008)

 33. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief Bioinform. 18(5), 851–869
(2017)

 34. Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G., Ogata, T.: Audio-visual speech recognition
using deep learning. Appl. Intell. 42(4), 722–737 (2015)

 35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv: 1409. 1556 (2014)

 36. Mahdavifar, S., Ghorbani, A.A.: Dennes: deep embedded neural network expert system for
detecting cyber attacks. In: Neural Computing and Applications, pp. 1–28

 37. “Introduction to semi-supervised learning with ladder networks,” http:// rinub oney. github. io/
2016/ 01/ 19/ ladder- netwo rk. html/ (2016)

 38. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training. Cikm 5, 3
(2000)

 39. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of
the 11th Annual Conference on Computational Learning Theory, ser. COLT’ 98. New York, NY,
USA: ACM, pp. 92–100 (1998). http:// doi. acm. org/ 10. 1145/ 279943. 279962

 40. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection
models (2005)

 41. Joachims, T.: Transductive inference for text classification using support vector machines. In: Pro-
ceedings of the 16th International Conference on Machine Learning, ser. ICML ’99. San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc., pp. 200–209 (1999)

 42. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: AISTATS
2005. Max-Planck-Gesellschaft, pp. 57–64 (2005)

 43. Blum, A., Lafferty, J., Rwebangira, M.R., Reddy, R.: Semi-supervised learning using randomized
mincuts. In: Proceedings of the 21st International Conference on Machine Learning, ser. ICML ’04.
ACM, New York, NY, p. 13 (2004)

 44. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and har-
monic functions. In: Proceedings of the 20th International Conference on Machine Learning, ser.
ICML’03. AAAI Press, pp. 912–919 (2003)

http://arxiv.org/abs/1704.05948
http://arxiv.org/abs/1409.1556
http://rinuboney.github.io/2016/01/19/ladder-network.html/
http://rinuboney.github.io/2016/01/19/ladder-network.html/
http://doi.acm.org/10.1145/279943.279962

 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 34 of 34

 45. Ranzato, M.A., Szummer, M.: Semi-supervised learning of compact document representations with
deep networks. In: Proceedings of the 25th International Conference on Machine Learning, ser.
ICML ’08. ACM, New York, NY, pp. 792–799 (2008)

 46. Lee, D.-H.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural
networks. In: Workshop on challenges in representation learning. ICML Vol. 3, p. 2 (2013)

 47. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with lad-
der networks. Adv. Neural. Inf. Process. Syst. 28, 3546–3554 (2015)

 48. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and per-
turbations for deep semi-supervised learning. CoRR, vol. abs/1606.04586 (2016)

 49. Wu, W., Yu, Z., He, J.: A semi-supervised deep network embedding approach based on the neigh-
borhood structure. Big Data Min. Anal. 2(3), 205–216 (2019)

 50. Contagio Mobile Malware Mini Dump (2019). http:// conta giomi nidump. blogs pot. ca/ online.
Accessed 6 May 2019

 51. Kadir, A.F.A., Stakhanova, N., Ghorbani, A.A.: An empirical analysis of Android banking malware.
In: Protecting Mobile Networks and Devices: Challenges and Solutions, p. 209 (2016)

 52. Abdul Kadir, A.F., Stakhanova, N., Ghorbani, A.: Android botnets: what URLs are telling us. In:
Qiu, M., Xu, S., Yung, M., Zhang, H. (eds.) Network and System Security, pp. 78–91. Springer,
Cham (2015)

 53. Kadir, A.F.A., Stakhanova, N., Ghorbani, A.A.: Understanding Android financial malware attacks:
taxonomy, characterization, and challenges. J. Cybersecur. Mobil. 7(3), 1–52 (2018)

 54. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android security. IEEE Secur. Priv. 7(1),
50–57 (2009)

 55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–
2830 (2011)

 56. Surendran, R., Thomas, T., Emmanuel, S.: On existence of common malicious system call codes in
android malware families. IEEE Trans. Reliab. 70(1), 248–260 (2020)

 57. Malik, S., Khatter, K.: System call analysis of android malware families. Indian J. Sci. Technol.
9(21), 1–13 (2016)

 58. Vinod, P., Zemmari, A., Conti, M.: A machine learning based approach to detect malicious android
apps using discriminant system calls. Futur. Gener. Comput. Syst. 94, 333–350 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Samaneh Mahdavifar has received the B.Sc. and M.Sc. degrees in computer engineering-software. She
received her Ph.D. degree in Computer Science from University of New Brunswick in 2021. She is an
AI researcher at the Canadian Institute for Cybersecurity. Her research interests include deep learning,
machine learning, trustworthy AI, cybersecurity, and privacy.

Dima Alhadidi is an Assistant Professor in the School of Computer Science at the University of Windsor.
She received her Ph.D. degree in Computer Science and Software Engineering from Concordia Univer-
sity. Before joining the University of Windsor, she was an assistant professor at the University of New
Brunswick and Zayed University, a researcher at the Canadian Institute for Cybersecurity, and a research
associate at Concordia University. Her research addresses data privacy and security issues in emerging
technologies such as cloud computing and healthcare.

Ali A. Ghorbani has held a variety of positions in academia for the past 37 years and is currently a Pro-
fessor of Computer Science, Tier 1 Canada Research Chair in Cybersecurity, the Director of the Cana-
dian Institute for Cybersecurity, which he established in 2016, and an IBM Canada Faculty Fellow. He
served as the Dean of the Faculty of Computer Science at the University of New Brunswick from 2008
to 2017. Dr. Ghorbani is also the founding director of the laboratory for intelligence and adaptive sys-
tems research. His current research focus is Cybersecurity, Web Intelligence, and Critical Infrastructure
Protection.

http://contagiominidump.blogspot.ca/

	Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label Stacked Auto-Encoder
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Android Apps
	3.2 Deep Learning
	3.2.1 Stacked Auto-Encoder (SAE)

	3.3 Semi-Supervised Learning
	3.3.1 Pseudo-label

	4 Threat Model
	5 Proposed Framework
	5.1 Data Collection
	5.2 Data Analysis
	5.3 Feature Extraction
	5.4 Pre-processing
	5.5 Detection and Classification

	6 Performance Analysis
	6.1 Implementation
	6.2 Dataset
	6.3 Experimental Results
	6.3.1 Malware Classification Performance
	6.3.2 Runtime Performance

	7 Conclusion
	Acknowledgements
	References

