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Abstract
Android has become the target of attackers because of its popularity. The detection 
of Android mobile malware has become increasingly important due to its significant 
threat. Supervised machine learning, which has been used to detect Android mal-
ware is far from perfect because it requires a significant amount of labeled data. 
Since labeled data is expensive and difficult to get while unlabeled data is abundant 
and cheap in this context, we resort to a semi-supervised learning technique, namely 
pseudo-label stacked auto-encoder (PLSAE), which involves training using a set of 
labeled and unlabeled instances. We use a hybrid approach of dynamic analysis and 
static analysis to craft feature vectors. We evaluate our proposed model on CICMal-
Droid2020, which includes 17,341 most recent samples of five different Android 
apps categories. After that, we compare the results with state-of-the-art techniques 
in terms of accuracy and efficiency. Experimental results show that our proposed 
framework outperforms other semi-supervised approaches and common machine 
learning algorithms.
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1 Introduction

In the first quarter of 2020, around 86.3 percent of all smartphones sold to end 
users were phones with the Android operating system [1]. Android mobile 
devices have become ubiquitous, with trends showing that the recent pace of 
adoption is unlikely to slow down. Android popularity has its cost. The popular-
ity has spurred an alarming growth in Android malware. Compromising a mobile 
device can have a damaging effect on enterprises and individuals. Most enter-
prises are still not prepared to deal with persistent mobile security threats. It is 
crucial to detect and prevent mobile security threats as it is the case with any 
other type of threats [2, 3] in order to keep employees’ and customers’ informa-
tion secure. Targeting individuals, Android malware can read your contact list 
and messages, including the ones about bank transactions and one-time pass-
words. Android malware can also access your pictures and know your location, 
house address, email account details and restaurants you visited. Moreover, it can 
take over your device, encrypt its content, and hold the files hostage until you pay 
a ransom (usually in Bitcoin) to have them released. This demonstrates the need 
for security solutions to protect users from Android malware that can steal and 
access confidential data.

Although many malware detection systems have been proposed [4–6], there are 
common limitations to the existing solutions. First, detecting malicious apps is 
not enough anymore. Specifying the category of Android malware is an important 
step to prioritize mitigation techniques. Second, static-based malware detection 
[7–9] or dynamic-based malware detection is not enough. Static-based malware 
detection is ineffective against advanced malware programs that utilize sophis-
ticated evasion detection techniques such as polymorphism (modifying code to 
defeat signature-based tools) or obfuscation (hiding evidence of malicious activi-
ties). On the other hand, the dynamic analysis is not scalable due to its limited 
coverage. Third, supervised learning techniques to detect malware depend on sev-
eral features of both malicious and benign software [8–10] and they need a high 
number of labeled instances. For a real-world problem such as malware analy-
sis, it is quite challenging to label data because it is a time-consuming process, 
and in some cases, pieces of malware can avoid detection. The cost associated 
with the labeling process thus may render a fully labeled training set infeasible, 
whereas the acquisition of unlabeled data is relatively inexpensive. Semi-super-
vised learning is one type of machine learning technique that is very useful when 
a limited amount of labeled data exists for each class. Fourth, machine learning 
models have proven to be insufficient to solve real-world problems with intrin-
sic complexity and massive amounts of data since they depend on a manual fea-
ture extraction process. On the other hand, deep learning algorithms take care of 
extracting abstract and flexible features automatically from raw data which helps 
generalization in the classification.

In this paper, we extend our prior research [11], where we have addressed some 
of these limitations by detecting and categorizing Android malware, and adopt-
ing semi-supervised and deep learning. In our prior research [11], we proposed 
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the first work that applies a semi-supervised Deep Neural Network (DNN) for 
dynamic malware category classification namely Pseudo-Label Deep Neural 
Network (PLDNN) [11]. In this paper, we propose a simple, yet practical and 
efficient framework for Android malware category classification. The new char-
acteristics of this approach in contrast to the previous one [11] are: (1) it is a 
hybrid approach that integrates both static and dynamic analysis of malware and 
(2) it applies a semi-supervised Pseudo-Label Stacked Auto-Encoder (PLSAE) 
for malware category classification. The hybrid approach utilizes the strengths 
of both static and dynamic analysis. Unlike PLDNN, PLSAE consists of stacking 
multiple  Auto-Encoders  (AEs) and benefits from the unsupervised pre-training 
that leads the network towards global minima and supports better generalization. 
Specifically, our contributions can be summarized as follows:

– We analyze both statically and dynamically extracted features of malware sam-
ples using PLSAE. We adopt CopperDroid, a Virtual Machine Introspection 
(VMI)-based analysis system [12], to extract the static and dynamic features. The 
results of the static and dynamic analysis are available for researchers together 
with malware samples.1

– We experimentally analyze the results and find that the model can detect and 
categorize malware with an accuracy of 98.28 percent and a false positive rate of 
1.16 percent.

– We conduct a comparative study between PLSAE (semi-supervised learning and 
hybrid analysis), PLDNN (semi-supervised and dynamic) [11], Label Propaga-
tion (LP; semi-supervised and hybrid), and other common machine learning 
algorithms (supervised and hybrid) such as Random Forest (RF), Support Vec-
tor Machine (SVM), and k-Nearest Neighbor (k-NN). We show that our semi-
supervised deep learning model significantly outperforms LP, which is a popular 
semi-supervised machine learning algorithm, PLDNN, RF, SVM, and k-NN for 
every number of labeled training samples. In particular, PLSAE shows outstand-
ing performance (accuracy=95.19% ) with only 1% of labeled training samples, 
i.e., 100 as compared with PLDNN (accuracy=91.63%).

The rest of the paper is organized as follows. Related work is discussed in Sect. 2. 
In Sect.  3, we present background information. Section  4 describes the threat 
model.  Our proposed framework is detailed in Sect.  5. Sect.  6 discusses the per-
formance analysis. Finally, Sect.  7 concludes the paper and includes some future 
research directions.

2  Related Work

The rising number of Android malwares has become a concern for both aca-
demia and industry. Some studies target Natural Language Processing (NLP) [23] 
and reused Free  Open-Source Software (FOSS) [24] packages to detect malware. 

1 https:// www. unb. ca/ cic/ datas ets/ maldr oid- 2020. html

https://www.unb.ca/cic/datasets/maldroid-2020.html
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Machine learning algorithms such as Naive Bayes (NB), SVM, Decision Tree (DT), 
and k-NN are commonly used by academic and industrial researchers in detecting 
Android malware [5, 25]. This traditional approach is based on information gath-
ered from program analysis, where the performance depends on the accuracy of the 
extracted features. Deep learning, on the other hand, is a branch of machine learning 
that attempts to study high-level features effectively and efficiently from the original 
data [26]. This approach has been widely used in various areas including image pro-
cessing, visual recognition, and object detection [27–29]. In this section, we review 
some of the attempts that focused on deep learning algorithms in Android malware 
detection.

One of the first attempts was conducted by Yuan et al. [13] where they utilized 
more than 200 dynamic and static features including required permissions, sensi-
tive API calls, and dynamic behaviors, which are extracted from both the static 
and dynamic analysis of Android apps for malware binary detection. The proposed 
framework employed Deep Belief Network (DBN) based on stacked Restricted 
Boltzmann Machine (RMB) in two phases of unsupervised pre-training and super-
vised fine-tuning. The work demonstrated that the deep learning technique is suit-
able for Android malware detection and can achieve up to 96% accuracy with real-
world Android application sets. This study was quickly followed by a series of more 
advanced detection approaches focused on deep learning algorithms. In 2016, Hou 
et al. [9] proposed DroidDelver, an Android malware detection system using DBN 
based on API call blocks. They categorized the API calls of the Smali code, which 
belong to the same method into a block, and employed a DBN built on stacked 
RBMs for unknown Android malware detection. The authors argued that a block of 
sensitive API calls can be used as a feature to detect Android malware. Promising 
experimental results demonstrated that DroidDelver method outperformed alterna-
tive Android malware detection techniques having an accuracy of 96.66%. In the 
same year, DroidDeep was presented by Su et  al. [14]. They first extracted more 
than 30 thousand static features based on the five categories: requested permission, 
used permission, sensitive API call, action, and application component. They built 
the deep learning model, i.e., stacked RBMs to learn typical features for classifica-
tion and used SVM classifier for detecting Android malware using static features. 
DroidDeep achieved a 99.4% detection accuracy with a reasonable running time that 
can be adaptable to large scale Android malware detection.

Another work by Nix et. al. [15] focused on the family classification of 
Android malware and applications using system API-call sequences and stud-
ied the effectiveness of Convolutional Neural Networks (CNNs) and Long Short 
Term Memory (LSTM). They designed a pseudo-dynamic program analyzer that 
generates a sequence of API calls along the program execution path and compared 
their approach with LSTM, n-gram based SVM, and bag of words-based NB. 
Both CNN and LSTM outperformed n-gram based methods while CNN showed a 
better performance in comparison with LSTM. In another approach, Huang et al. 
[16] aimed of automating Android feature extraction where they transformed 
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Android app bytecode into Red, Green, Blue (RGB) color code. The results of 
encoded color images are used as input features to a CNN that is trained with 
over one million malware samples and one million benign samples. In a similar 
way, Wang et al. [17] presented a hybrid model based on deep AE. CNN has been 
proposed to detect Android malware in which a deep AE is used as a pre-training 
method for the CNN. They implemented a multiple-CNN architecture during the 
training process and discovered that serial CNN showed better feature extraction 
ability by combining the convolutional layer and the pooling layer with the fully 
connected layer. Karbab et al. [10] proposed an Android malware detection and 
family attribution framework in which they extracted raw sequences of API calls 
from .dex assembly code. The vectorized API calls are then trained using a CNN 
comprising one convolutional layer using ReLU, one max-pooling layer, one fully 
connected layer having dropout and bench normalization, and one output layer for 
two-task classification. In another research contribution [19], important values of 
an Android Package Kit (APK) code are visualized on an image and then fed into 
a CNN to detect mutated Android malware. Xiao et al. [18] considered one sys-
tem call sequence of an Android malware as a sentence and applied two LSTM 
language models to train malware and benign samples. To classify an APK under 
analysis, they measured the similarity score of the sequence using the two trained 
networks. Kim et  al. [8] in 2019 proposed a multimodal deep learning method 
based on Feed-Forward Neural Network (FFNN) that employed seven features 
extracted by analyzing Android files such as a manifest file, a .dex file, and a .so 
file from an APK file to be used in Android malware detection. They showed 
that it was possible to maximize the benefits of encompassing multiple feature 
types. They conducted various experiments with a total of 41,260 samples and 
compared the accuracy of their model with other DNN and detection models and 
demonstrated that their detection model was effective and efficient to be used in 
Android malware detection. Lu et al. [20] extracted static features and dynamic 
behavioral features with strong anti-obfuscation ability. Then, they built a hybrid 
deep learning model for Android malware detection. The DBN is used to pro-
cess the static features whereas the GRU is used to process the dynamic feature 
sequence. Finally, the training results of DBN and GRU are input into the Back-
Propagation (BP) neural network, and the final classification results are output. 
Experimental results show that, compared with the traditional machine learning 
algorithms, the Android malware detection model based on hybrid deep learn-
ing algorithms has a higher detection accuracy, and it also has a better detection 
effect on obfuscated malware.

The methods and techniques of the previous work mostly focused on malware 
detection (not malware family or category classification). They implemented static 
analysis by either analyzing or disassembling the code rather than running it on a 
real device or an emulated environment. In addition, they used supervised learning 
that needs a large volume of labeled data. Any malware filtering algorithm should 
be robust enough against injected unknown or noise data. In contrast to the previous 
studies as summarized in Table 1, we propose a simple, yet effective and efficient 
framework for Android malware category classification using DNNs that resort 
to static and dynamic analysis to utilize the benefit of both and semi-supervised 



 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 6 of 34

Ta
bl

e 
1 

 R
el

at
ed

 w
or

k 
su

m
m

ar
y 

of
 A

nd
ro

id
 m

al
w

ar
e 

de
te

ct
io

n

Ye
ar

A
ut

ho
rs

A
na

ly
si

s t
yp

e
D

ee
p 

m
od

el
Ty

pe
Fe

at
ur

es
Fu

nc
tio

na
lit

y

20
14

Y
ua

n 
et

 a
l. 

[1
3]

St
at

ic
 a

nd
 d

yn
am

ic
D

B
N

 b
ui

lt 
on

 st
ac

ke
d 

R
B

M
s

Su
pe

rv
is

ed
Re

qu
ire

d 
pe

rm
is

si
on

, s
en

si
-

tiv
e 

A
PI

 , 
dy

na
m

ic
 b

eh
av

io
r

B
in

ar
y 

de
te

ct
io

n

20
16

H
ou

 e
t a

l. 
[9

]
St

at
ic

D
B

N
 b

ui
lt 

on
 st

ac
ke

d 
R

B
M

s
Su

pe
rv

is
ed

A
PI

 c
al

l b
lo

ck
s e

xt
ra

ct
ed

 
fro

m
 th

e 
Sm

al
i c

od
es

B
in

ar
y 

de
te

ct
io

n

20
16

Su
 e

t a
l. 

[1
4]

St
at

ic
St

ac
ke

d 
R

B
M

s, 
SV

M
Su

pe
rv

is
ed

Re
qu

es
te

d 
pe

rm
is

si
on

s, 
us

ed
 

pe
rm

is
si

on
s, 

se
ns

iti
ve

 A
PI

 
ca

lls
, a

ct
io

ns
, a

pp
lic

at
io

n 
co

m
po

ne
nt

s

B
in

ar
y 

de
te

ct
io

n

20
17

N
ix

 e
t a

l. 
[1

5]
St

at
ic

C
N

N
, L

ST
M

Su
pe

rv
is

ed
A

PI
 c

al
l s

eq
ue

nc
es

D
et

ec
tio

n 
an

d 
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
18

H
ua

ng
 e

t a
l. 

[1
6]

St
at

ic
C

N
N

Su
pe

rv
is

ed
A

pp
 b

yt
ec

od
e 

tra
ns

fo
rm

ed
 

in
to

 im
ag

es
B

in
ar

y 
de

te
ct

io
n

20
18

W
an

g 
et

 a
l. 

[1
7]

St
at

ic
D

A
E,

 C
N

N
Su

pe
rv

is
ed

Re
qu

es
te

d 
pe

rm
is

si
on

s, 
fil

-
te

re
d 

in
te

nt
s, 

re
str

ic
te

d 
A

PI
 

ca
lls

, h
ar

dw
ar

e 
fe

at
ur

es
, 

co
de

 re
la

te
d 

pa
tte

rn
s, 

su
sp

i-
ci

ou
s A

PI
 c

al
ls

B
in

ar
y 

de
te

ct
io

n

20
18

K
ar

ba
b 

et
 a

l. 
[1

0]
St

at
ic

C
N

N
Su

pe
rv

is
ed

A
PI

 m
et

ho
d 

ca
lls

D
et

ec
tio

n 
an

d 
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
19

K
im

 e
t a

l. 
[8

]
St

at
ic

m
ul

tim
od

al
 F

FN
N

Su
pe

rv
is

ed
St

rin
gs

, p
er

m
is

si
on

, c
om

po
-

ne
nt

s, 
en

vi
ro

nm
en

ta
l i

nf
o,

 
m

et
ho

d 
op

co
de

, s
ha

re
d 

lib
 

op
co

de
, A

PI
 c

al
ls

,

B
in

ar
y 

de
te

ct
io

n

20
19

X
ia

o 
et

 a
l. 

[1
8]

D
yn

am
ic

LS
TM

Su
pe

rv
is

ed
Sy

ste
m

 c
al

l s
eq

ue
nc

es
B

in
ar

y 
de

te
ct

io
n

20
19

Ye
n 

et
 a

l. 
[1

9]
St

at
ic

C
N

N
Su

pe
rv

is
ed

U
se

 te
xt

 T
F-

ID
F 

to
 c

on
ve

rt 
co

de
 to

 R
G

B
 im

ag
es

B
in

ar
y 

de
te

ct
io

n

20
20

Lu
 e

t a
l. 

[2
0]

St
at

ic
 a

nd
 d

yn
am

ic
D

B
N

, G
RU

 
Su

pe
rv

is
ed

Re
so

ur
ce

 fe
at

ur
es

, s
em

an
tic

 
fe

at
ur

es
, d

yn
am

ic
 b

eh
av

io
-

ra
l f

ea
tu

re
s

B
in

ar
y 

de
te

ct
io

n



1 3

Journal of Network and Systems Management (2022) 30:22 Page 7 of 34 22

a  En
su

re
d 

C
ol

la
bo

ra
tiv

e 
A

ct
iv

e 
an

d 
Se

m
i-S

up
er

vi
se

d 
La

be
lin

g
b  M

od
el

-b
as

ed
 S

em
i-S

up
er

vi
se

d

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ye
ar

A
ut

ho
rs

A
na

ly
si

s t
yp

e
D

ee
p 

m
od

el
Ty

pe
Fe

at
ur

es
Fu

nc
tio

na
lit

y

20
20

M
ah

da
vi

fa
r e

t a
l. 

[1
1]

D
yn

am
ic

Ps
eu

do
-L

ab
el

 F
FN

N
Se

m
i-s

up
er

vi
se

d
Sy

ste
m

 c
al

ls
, b

in
de

rs
, c

om
-

po
si

te
 b

eh
av

io
rs

D
et

ec
tio

n 
an

d 
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
21

O
ur

 a
pp

ro
ac

h
St

at
ic

 a
nd

 d
yn

am
ic

Ps
eu

do
-L

ab
el

 S
A

E
Se

m
i-s

up
er

vi
se

d
Pe

rm
is

si
on

s, 
in

te
nt

s, 
se

rv
ic

es
, 

re
ce

iv
er

s, 
...

, s
ys

te
m

 
ca

lls
, b

in
de

rs
, c

om
po

si
te

 
be

ha
vi

or
s

D
et

ec
tio

n 
an

d 
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

Ye
ar

A
ut

ho
rs

A
na

ly
si

s t
yp

e
M

od
el

Se
m

i-s
up

er
vi

se
d 

ty
pe

Fe
at

ur
es

Fu
nc

tio
na

lit
y

20
15

M
a 

et
 a

l. 
[2

1]
St

at
ic

SV
M

,  E
CA

SS
La

M
ac

hi
ne

 L
ea

rn
in

g
To

pi
c 

fe
at

ur
es

 a
nd

 se
ns

iti
ve

 
A

PI
 u

sa
ge

B
in

ar
y 

de
te

ct
io

n

20
17

C
he

n 
et

 a
l. 

[2
2]

D
yn

am
ic

M
B

SS
b

M
ac

hi
ne

 L
ea

rn
in

g
A

PI
 c

al
ls

B
in

ar
y 

de
te

ct
io

n
20

20
M

ah
da

vi
fa

r e
t a

l. 
[1

1]
D

yn
am

ic
Ps

eu
do

-L
ab

el
 F

FN
N

D
ee

p 
Le

ar
ni

ng
Sy

ste
m

 c
al

ls
, b

in
de

rs
, c

om
-

po
si

te
 b

eh
av

io
rs

D
et

ec
tio

n 
an

d 
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n

20
21

O
ur

 a
pp

ro
ac

h
St

at
ic

 a
nd

 d
yn

am
ic

Ps
eu

do
-L

ab
el

 S
A

E
D

ee
p 

Le
ar

ni
ng

Pe
rm

is
si

on
s, 

in
te

nt
s, 

se
rv

ic
es

, 
re

ce
iv

er
s,.

..,
 sy

ste
m

 c
al

ls
, 

bi
nd

er
s, 

co
m

po
si

te
 b

eh
av

-
io

rs

D
et

ec
tio

n 
an

d 
fa

m
ily

 c
la

ss
ifi

ca
-

tio
n



 Journal of Network and Systems Management (2022) 30:22

1 3

22 Page 8 of 34

learning to avoid expensive labeling process. There are some studies [21, 22] that 
target the semi-supervised learning for malware detection using machine learning 
techniques, however, our approach utilizes deep learning to classify Android mal-
ware into different categories (Table 1).

3  Background

In this section, we present some preliminaries on Android apps, deep learning, and 
semi-supervised learning to help understanding the proposed framework.

3.1  Android Apps

An Android app is packaged into an APK; a zip archive file format consisting of 
several files and folders including the application code, resources, as well as the 

Fig. 1  Structure of an Android Package Kit (APK) [30]
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application manifest file as illustrated in Fig. 1. Just like Windows (PC) systems that 
use a .exe file for software installation, Android systems use an APK file for distri-
bution and installation of mobile applications. There are two primary sources for 
applications [30]:

– Pre-installed applications: Android includes a set of pre-installed applications 
as part of its open source platform or device manufacturer. e.g., phone, email, 
calendar, web browser, and contacts.

– User-installed applications: Android provides an open development environ-
ment that supports any third-party application from another market such as Yan-
dex (Russian users) and 360 Mobile Assistant (Chinese users).

The structure of an APK file typically contains the following seven components: 

1. Assets: This optional directory contains applications’ assets, which can be 
retrieved by AssetManager.

2. Lib: This optional directory contains compiled code, e.g., native libraries that 
can be used through the Native Development Kit (NDK).

3. META-INF: This directory contains several files responsible for ensuring the 
integrity and security of the application. It includes three files: (1) MANIFEST.
MF – the manifest file which stores metadata of the application, (2) CERT.RSA 
– the digital certificate of the application, and (3) CERT.SF – the file containing 
a list of resources and SHA-1 digest. The signature of the APK is also stored in 
this directory.

4. Res: This directory contains noncompiled resources (resources not compiled into 
resources.arsc), which defines UI layouts, menus, animations, languages, sound 
settings, etc. Typically, the directory contains the following three sub-directories: 
(1) drawable, (2) layout, and (3) other Extensible Markup Language (XML) files.

5. AndroidManifest.xml: An essential file in every Android application. It provides 
vital application details such as the unique application identifier, permissions 
required by the application, application version, referenced libraries, and descrip-
tion of several application components such as activities, services, broadcast 
receivers and content providers. These components are discussed below:

– Activity: An activity is the user interface component of an application that 
is launched using the Intents. The number of activities that can be declared 
within the manifest depends on the developer requirements.

– Service: The service component represents one of the two tasks; either to per-
form a longer-running operation while not interacting with the user or to sup-
ply functionality for other applications to use. It also performs background 
tasks without any UI; e.g., playing an audio or downloading data from the 
network.

– Broadcast Receiver: This component can be used as a messaging system 
across apps where it listens to the Android system generated events. For 
instance, the Android system sends broadcasts when various system events 
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occur, such as when the system boots up (BOOT_COMPLETED) or the 
device starts charging (BATTERY_CHANGED_ACTION).

– Content Provider: Content provider (also known as the data-store) is a stand-
ard interface that connects data in one process with code running in another 
process.

6. classes.dex: The .dex file is a core of an APK, which refers to a binary container 
for the code and the associated data. It includes a header containing meta-data 
about the executable followed by identifier lists that contain references to strings, 
types, prototypes, fields, methods and classes employed by the executable. The 
final part of the .dex file is the data section that contains the code and the data 
(i.e., URLs).

7. resources.arsc: This file contains pre-compiled resources such as binary XML.

3.2  Deep Learning

For decades, conventional machine  learning techniques were very limited in pro-
cessing raw data and discovering the internal representations needed for pattern 
recognition or classification. Domain experts used to engineer features manually 
based on their expertise and transform the raw input data into feature vectors that, in 
turn, could be fed into a machine learning or pattern recognition system [31]. This 
process was so computationally expensive and error-prone because it depends on 
human engineers.

Deep learning methods, so-called representation-learning methods, learn high-
level representations of input data with multiple levels of abstractions and a set 
of flexible features are obtained as the output of non-linear layer-wise processing. 
Although these non-linear modules are doing some simple calculations at each layer 
to transform the representation at one layer into a representation at a higher layer, 
one can learn very complex functions by composing these transformations. What 
distinguishes deep learning from other shallow learning algorithms is that different 
layers of features are not extracted by human agents, but they are learned hierar-
chically from input data using a general-purpose learning procedure. Deep learn-
ing models including, but not limited to FFNN, CNN, Recurrent Neural Network 
(RNN), SAE, and DBN have shown great promise in big data analysis with a wide 
range of applications, i.e., large scale image recognition tasks, NLP, bioinformatics, 
and speech recognition [32–36]. Deep learning today is mostly about pure super-
vised learning. A major drawback of supervised learning is that it requires a lot of 
labeled data and it is quite expensive to collect them. So, deep learning in the future 
is expected to be unsupervised, more human-like [37].

3.2.1  Stacked Auto‑Encoder (SAE)

An AE is a generative neural network that encodes input x into a latent variable 
using an encoder and then decodes the code into an approximate reconstruction of 
the input vector x′ using a decoder. Training the network is done in an unsupervised 
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fashion where usually the aim is to learn a representation vector z for dimensionality 
reduction.

Suppose x ∈ ℝ
m is an input sample, the encoder maps x into a representation vec-

tor z ∈ ℝ
n through a deterministic function f:

where W is a weight matrix, and b is a bias vector. The decoder maps back z into a 
reconstructed vector x′ of the input x with identical dimensionality:

where f ′ , W ′ , and b′ are the activation function, weight matrix, and bias vector, 
respectively, that might be different from the encoder’s parameters. The objective 
of training an AE is to minimize the reconstruction loss l like Mean Squared Errors 
(MSE) as the equation below:

where h is the total number of training samples, xi is the input, and x′
i
 is the recon-

struction of xi.
An SAE consists of several layers of AE where output of each hidden layer is 

connected to the input of the next hidden layer. The hidden layers are first pre-
trained using an unsupervised method and then are fine-tuned by a supervised algo-
rithm with a classifier at the top.

3.3  Semi‑Supervised Learning

Semi-supervised learning is a class of machine learning methods that takes advan-
tage of labeled data to predict the labels for unlabeled samples to increase detec-
tion accuracy. This method is specifically useful in many applications such as docu-
ment retrieval, image search, genomics, and natural language parsing, where we are 
dealing with a limited amount of labeled data and an abundant amount of unlabeled 
data. In real-world scenarios, it is very expensive or impossible to obtain labels for 
the data, while unlabeled data can be acquired in large quantities.

One of the seminal contributions in the area of semi-supervised learning is co-
training where two classifiers are trained separately on two different conditionally 
independent views of the training data. The most confident predictions of each clas-
sifier on new unlabeled examples are then used to iteratively enlarge the training set 
of the other [38, 39]. Another straightforward approach is self-training in which an 
initial model is incrementally trained using highly confident self-predictions over 
unlabeled data [40]. The main disadvantage of these methods is that in case of the 
existence of wrong predictions with high confidence, the prediction error is propa-
gated into model learning. Transductive SVMs (TSVMs) [41, 42] are other common 
approaches that aim at finding a hyperplane which is far away from the unlabeled 
points. The most important drawback of TSVMs is the lack of efficient optimization 

(1)z = f (Wx + b),

(2)x� = f �(W �z + b�),

(3)l(W, b,W �, b�) =
1

h

h∑

i=1

∥ xi − x
�

i
∥2,
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because of non-convex objective functions. Graph-based methods utilize mini-
mum energy configuration for label propagation throughout the graph, however, 
are not scalable enough because they are sensitive to the graph structure [43, 44]. 
Deep learning capability in learning internal representations of raw data has moti-
vated several deep learning-based semi-supervised methods during the past decade 
[45–49]. They mostly focus on minimizing the sum of supervised and unsupervised 
cost functions simultaneously to enable semi-supervised training, thus avoiding the 
need for layer-wise pre-training. Most of the DNN algorithms consist of two sepa-
rate phases for training, namely unsupervised layer-wise pre-training and supervised 
fine-tuning, which is not efficient in terms of computational complexity. Avoiding 
the need for layer-wise pre-training, these two phases can be combined into one, 
so-called semi-supervised learning, to minimize the sum of supervised and unsuper-
vised cost functions. In addition to being computationally efficient, semi-supervised 
learning can improve generalization performance using unlabeled data.

3.3.1  Pseudo‑label

Pseudo-Label [46] is an efficient method for training DNNs in a semi-supervised 
fashion. In this approach, for every weight update, the class which has the maximum 
predicted probability is selected as the label for unlabeled data. Then the deep net-
work is trained with labeled and unlabeled data simultaneously in a supervised way.

Because of its simplicity and efficiency, Pseudo-Label could combine almost all 
neural network models and training methods. It is equivalent to Entropy Regulariza-
tion that aims at creating a decision boundary in low-density regions by minimizing 
the conditional entropy of class probabilities for unlabeled data. As shown in Fig. 2, 
in the Pseudo-Label algorithm, we first train the model on a batch of labeled data 

labeled data

Model

unlabeled data

Pseudo-labeled data

Predic�on

1. Train the model with 
labeled data

2. Use the trained model to predict 
labels for the unlabeled data

3. Retrain the model with the pseudo 
and labeled datasets together

Fig. 2  Three main stages of the Pseudo-Label algorithm
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to calculate the labeled loss. Then we employ the trained model to select the class 
with the maximum predicted probability as the predicted label for unlabeled data. 
These pseudo labels are used to calculate the unlabeled loss. Finally, we train the 
DNN with labeled and unlabeled data simultaneously in a supervised fashion. To be 
more precise, we combine the labeled loss with unlabeled loss and backpropagate 
the error to update the weights.

Let x be an unlabeled sample of an initial dataset T, the pseudo-label of x ( y′
i
 ) is 

calculated by picking up the class with maximum probability as follows [46]:

The objective function that should be minimized in the fine-tuning stage is defined 
as:

where n and n′ are the number of labeled and unlabeled samples of each mini-batch 
in Gradient Descent, respectively. C is the number of classes. pm

i
 and ym

i
 are the out-

put units and the label of sample m in labeled data, respectively, and p′m
i
 and y′m

i
 are 

the output units and the pseudo-label of sample m in unlabeled data, respectively. 
To prevent the optimization process from getting stuck in poor local minima, �(t) is 
gradually increasing using a deterministic annealing procedure [46].

4  Threat Model

In this section, we discuss possible threats that an adversary can create against the 
proposed framework and how our framework can tackle these potential threats. One 
of the dominant ways attackers evade Android malware detection systems is repack-
aging. The malicious application can use secondary packaging to alter the source 
code or attach some malicious payload to the original app. Obfuscation and reflec-
tion are other methods to conceal malicious behavior in the source code. In our 
hybrid malware detection approach, we run the Android apps using CopperDroid 
emulator; so, any malicious behavior of the application that has been hidden using 
repackaging, obfuscation, or reflection techniques would be revealed. Since Copper-
Droid’s reconstruction mechanism is independent of the underlying action invoca-
tion methods, it can reconstruct system calls initiated from both DEX bytecode or C/
C++ native code. Therefore, it can capture all semantics from both OS and Dalvik 
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viewpoints and detect every possible execution path of an Android app. The pro-
posed framework also extracts dynamic behaviors such as binder calls that describe 
complex Intra- and Inter-Process Communications (IPC). This makes it resilient 
against multiple privilege escalation exploits.

Being based on a semi-supervised deep learning model, the framework is also 
effective in combating zero-day and unknown Android malware. As new malware 
samples arrive in batches, we do not need to engineer the features from scratch. 
The framework can automatically extract features from the new samples and incre-
mentally update the deep learning model. Furthermore, due to its semi-supervised 
nature, the framework can be trained using a substantial number of unknown mal-
ware and a few labeled samples that match the real-world scenario. Due to the high 
efficiency of the proposed framework, we can run it as a detection module on mobile 
devices that identifies the category of malware. It can work as a proactive and pre-
ventive tool to help us mitigate the malware threat and take precautionary steps to 
prevent catastrophic abuse to the device.

5  Proposed Framework

In this section, we detail the steps followed to detect and classify Android apps into 
five categories using a hybrid method, as shown in Fig. 3.

5.1  Data Collection

We managed to collect more than 17,341 Android samples from several sources 
including VirusTotal service, Contagio security blog [50], AMD [6], and other data-
sets used by recent research contributions [10, 51, 52]. The samples were collected 
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Fig. 3  Proposed framework for hybrid Android malware semi-supervised classification
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from December 2017 to December 2018. It is significant for cybersecurity research-
ers to classify Android apps with respect to the malware category to consider proper 
countermeasures and mitigation strategies. Hence, our dataset intentionally spans 
between five distinct categories: Adware, Banking malware, SMS malware, Risk-
ware, and Benign. The five categories of Android malware applications encompass 
a broad range of Android malware types. This taxonomy is very comprehensive and 
almost include all avenues an Android malware might use to gain financial profit, 
namely product payment, ransom payment, fraud SMS charge, money transfer, and 
data theft [30]. The five categories include up-to-date Android malware threats 
namely, Command and Control (C&C) malware (botnets), Trojans, SMS phishing, 
fraud, scareware, ransomware, and adware. To foster more research in this area, we 
released the accumulated dataset (CICMalDroid2020) to the research community 2. 
Each malware category is briefly described as follows:

– Adware. Mobile Adware refers to an unwanted program designed to pop up 
advertisements (ad) on the screen that typically hides inside a legitimate appli-
cation to trick the user into installing it into her/his mobile device. Adware can 
make profits for its developers by repeatedly displaying ads on the user’s screen 
even if the victim tries to force-close the application. Adware infects victim’s 
device, traces the locations have been visited by the victim over the Internet, 
and presents ads related to his/her viewing habits. It can also sells the browsing 
behavior and personal information to third parties to target the victim with more 
customized ads. In our dataset, the Adware category consists of the following 
families: Adwo, Andup, Dowgin, Kemoge, Kuguo, Minimob, Mobidash, Shua-
net, Utchi, and Youmi.

– Banking Malware. Mobile Banking malware is a specialized malware designed 
to gain access to the user’s online banking accounts by mimicking the original 
banking applications or banking web interface. Most of the mobile Banking mal-
ware are Trojan-based, which is designed to infiltrate devices, to steal sensitive 
details, i.e., bank login and password, and to send the stolen information to a 
C&C server [51]. The malware families of this category in our dataset are as fol-
lows: Bankbot, Binv, Bankun, Citmo, Fakebank, Sandroid, Spitmo, SlemBunk, 
Svpeng, Wroba, ZertSecurity, and Zitmo.

– SMS Malware. SMS malware exploits the SMS service as its medium of opera-
tion to intercept SMS payload for conducting attacks. The attackers first upload 
malware to their hosting sites to be linked with the SMS. They use the C&C 
server for controlling their attack instructions, i.e., send malicious SMS, intercept 
SMS, and steal data. The SMS malware category includes the following fami-
lies: Boxer, FakeInst, Gumen, Leech, RuMMS, SMSReg, SMSpay, SMSSend, 
SMSspy, and SMSkey.

– Mobile Riskware. Riskware refers to legitimate programs that have the potential 
to become a threat to a host device due to vulnerabilities or software incompat-
ibility. Consequently, they can be turned into any other form of malware such 

2 https:// www. unb. ca/ cic/ datas ets/ maldr oid- 2020. html

https://www.unb.ca/cic/datasets/maldroid-2020.html
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as Adware or Ransomware, which extends functionalities by installing newly 
infected applications. Uniquely, this category only has a single variant, mostly 
labeled as “Riskware” by VirusTotal.

– Benign. All other applications that are not in categories above are considered 
benign which means that the application is not malicious. For the sake of verifi-
cation, we scanned all the benign samples with VirusTotal [53].

5.2  Data Analysis

CopperDroid aims at reconstructing system call semantics as precisely as possible 
regardless of whether they were initiated from Java or native code to demonstrate 
that all Android application behaviors manifest themselves through system calls 
[54]. We statically and dynamically analyzed our collected data using CopperDroid 
[12], a VMI-based analysis system, to automatically reconstruct low-level OS-spe-
cific and high-level Android-specific behaviors of Android samples. Furthermore, 
Copperdroid is able to extract a broad range of static features from Android sam-
ples. Out of 17,341 samples, 13,077 samples ran successfully while the rest failed 
due to errors such as time-out errors or others including bad UTF-8 bytes, prob-
lems installing the app, invalid APK files, list index out of range, bad unpack param-
eters, bad ASCII characters, bad CRC-32 values, and memory allocation failures. 
The dynamic analysis module observes the behavior of Android apps while they are 
being executed in a simulated environment. The information captured during runt-
ime could demonstrate the underlying characteristics of the Android sample and 
reveal the sample’s intentions. Using dynamic analysis, we are capable of dissecting 
and comprehending every aspect of malware that result in a stable detection process. 
On the other hand, static analysis concentrates on disassembly and decompilation 
of the code, essentially Android manifest file. All the APK files are first executed in 
CopperDroid and the runtime behaviors are recorded in log files. The output analy-
sis results of CopperDroid are available in JSON format for easy parsing and addi-
tional auxiliary information. They include (1) statically extracted information, e.g, 
intents, permissions and services, frequency counts for different file types, incidents 
of obfuscation, method tags, and sensitive API invocations and (2) dynamically 
observed behaviors which are largely broken down into three categories of system 
calls, binder calls, composite behaviors, and the PCAP of all the network traffic cap-
tured during the analysis [12]. In Appendix A, we provide the snippets of static fea-
tures and dynamic behaviors of an APK file that are obtained from the CopperDroid 
analysis in the JSON format.

5.3  Feature Extraction

Hybrid analysis of Android applications benefits from the advantages of both 
static and dynamic analysis, therefore yield higher performance. In this paper, we 
used both statically and dynamically extracted information from CopperDroid to 
increase detection accuracy of PLDNN [11]. For the static features, we extract 179 
items of high-level static information from the captured JSON log files related to 
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each Android APK. The high-level static information is categorized into categorical 
and numerical feature types. We then pull out all possible values of the categori-
cal features from all APK files, such as intent actions, permissions, intent consts, 
permissions, file, method tags, sensitive APIs, services, package, receivers and con-
struct the unique categorical values of all APK files as a feature vector. The result 
is concatenated with the numerical features including number of activities, number 
of files, number of intent actions, number of libraries, number of permissions, num-
ber of providers, number of receivers, and number of services resulting in a final 
feature vector with a length of 50,621. Fig. 4 elaborates the stages of constructing 
our static feature vector. Regarding dynamic features, we combine high resilient 
system calls with binder calls and composite behaviors from the captured log files 
to acquire valuable information from the malware behavior. By putting all distinct 
low-level behaviors of all APK files together, we create feature vectors of size 470 
for each APK file. The dynamic features are similar to the ones used in our previ-
ous contribution [11]. Binder is a base class used for realizing an optimized IPC and 
lightweight Remote Procedure Call (RPC) mechanism. Composite behaviors such 
as fs_access(create, write), network_access(read, write), and fs_pipe_access(read, 
write) aggregate commonly associated low-level system calls. We provide samples 
of binder calls, namely getDisplayInfo, registerCallback, getProxy and composite 
behavior network_access(read, write) that are obtained from the CopperDroid anal-
ysis in the JSON format in Appendix A.

5.4  Pre‑processing

In the pre-processing stage, we first calculate the frequencies of the distinct static 
information and dynamic behaviors. Then we clean the data by replacing NaN val-
ues with zero. We also encode categorical feature values using Pandas in Python 
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Fig. 4  Static feature vector construction
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and replace boolean feature values, i.e., True and False with one and zero, respec-
tively. Since we have a very sparse feature matrix, we apply the Variance Threshold 
algorithm from SKlearn library [55] to remove all low-variance features. In other 
words, features with a training-set variance lower than a specified threshold will 
be removed. As a result of this refinement operation with variance threshold 0.1, 
static features length is shrunk from 50,621 to 302 and the dynamic feature vector is 
shrunk from 470 to 262. We then concatenate the static and dynamic feature vectors 
into a final feature vector of length 564. We finally normalize the feature vectors into 
values between [0, 1] using �2 normalization method which scales each feature vec-
tor such that the square root of the sum of squares of all the values, i.e., vector’s �2

-norm, equals one.
Let x = (x1, x2,⋯ , xn) be a vector in the n-dimensional real vector space ℝn , the 

�2-norm of vector x, denoted by |x| , is defined as:

To point out the most influential features for detecting a malicious Android appli-
cation, we rank the top-40 dynamic behaviors using Mutual Information. As illus-
trated, binder getInstallerPackageName and system call newselect have the highest 
score with a meaningful distance from the subsequent features. Most of the mali-
cious activities of an application are manifested through file and network manage-
ment system calls [56]. File management system calls can be exploited by malware 
to communicate with file descriptors related to sensitive resources in an OS. Also, 
malware can use network-related system calls to communicate with C&C servers for 
establishing malicious activity. Hence, these types of system calls contain precious 
information about the malicious behavior of that application. Another important 
source of features are those related to binder transactions, i.e., IPC operations that 
actually transfer data and are also responsible for RPC [12]. Malware can employ 
binder calls to escalate the privileges of a process and gain the root access to an 
Android system. All Binder transactions are fired by invoking ioctl system calls sent 
from the client application to the IActivityManager. As can be seen from Table 2, 
the vast majority of the learned features are related to file and network manage-
ment system calls and composite behaviors that aggregate commonly associated 
low-level system calls. For instance, newselect, create_folder, mkdir, pwrite64, 
pread64, unlink, fdatasync, fs_pipe_access, fs_access(read), fs_pipe_access(write), 
and fs_access system calls, which are amongst the top twenty features, are required 
for every application for communicating with sensitive resources in a system [56]. 
Besides, network_access composite behavior can be used by malware to commu-
nicate with a C&C server [56] to obtain encryption keys in ransomware or send/
receive SMS message to/from premium services owned by a malware author [57, 
58]. There are also a small handful of system calls related to memory management 
(mmap2 and mummap) and process management (mprotect, nanosleep, and getuid) 
that though selected as being significant, might not provide valuable information 
for usual malicious activities of malware. All applications could use these system 
calls for handling normal operations. A noticeable number of system calls are also 
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binders including getInstallerPackageName, getPackageInfo, getReceiverInfo, get-
ServiceInfo, getActivityInfo, getApplicationInfo, and queryIntentServices.

5.5  Detection and Classification

The first step in this module is training the PLSAE with the provided normalized 
feature vectors. To train PLSAE, first we need to pre-train all layers by encoding 
x into a code and then decoding the code into x′ . The network is trained by mini-
mizing the reconstruction error, and then the weights and biases are frozen. In 
the fine-tuning step after the network is pre-trained, the decoder part is ignored, a 
Softmax classifier is put at the top of the network, and the whole network work-
ing as a typical FFNN is trained with the Pseudo-Label algorithm. Using Pseudo-
Label, the feed forward network is trained in a supervised fashion with labeled 
and unlabeled data simultaneously. Pseudo-labels, which are recalculated with 
every weight update, are used along with the real labels to optimize the super-
vised loss function in each mini-batch. Fig.  5 illustrates the architecture of the 
PLSAE. The input layer has 564 neurons representing the total number of static 

Table 2  Top-40 extracted features using Mutual Information algorithm

Rank Feature Merit Type Rank Feature Merit Type

1 getInstallerPackage-
Name

0.272 binder 21 fs_access() 0.138 file

2 newselect 0.263 file 22 pipe 0.136 file
3 mprotect 0.187 process 23 fcntl64 0.136 file
4 getPackageInfo 0.183 binder 24 fs_access(create_write) 0.134 file
5 create_folder 0.181 file 25 nanosleep 0.133 process
6 getReceiverInfo 0.172 binder 26 getApplicationInfo 0.131 binder
7 mkdir 0.163 file 27 fs_access(create_read_

write)
0.131 file

8 pwrite64 0.164 file 28 rename 0.13 file
9 getServiceInfo 0.158 binder 29 access 0.131 file
10 pread64 0.158 file 30 chmod 0.129 file
11 unlink 0.155 file 31 gettid 0.128 process
12 munmap 0.15 memory 32 fs_access(create) 0.128 file
13 statfs64 0.146 file 33 brk 0.127 memory
14 getActivityInfo 0.146 binder 34 device_access 0.127 input/output
15 fdatasync 0.146 file 35 queryIntentServices 0.126 binder
16 fs_pipe_access 0.143 file 36 network_access 0.125 network
17 fs_access(read) 0.142 file 37 stat64 0.125 file
18 fs_pipe_access(write) 0.14 file 38 fs_access(write) 0.125 file
19 fs_access 0.139 file 39 open 0.125 file
20 mmap2 0.139 memory 40 lstat64 0.124 file
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and dynamic features whereas the output layer consists of five neurons represent-
ing the number of classes in our classification task.

For the prediction step, the trained model is fed the test data, and then clas-
sifies the input feature vector into one of the five categories. Finally, the corre-
sponding classification measures are calculated and reported as an output.
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Fig. 5  Greedy layer-wise training of PLSAE
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6  Performance Analysis

In this section, we evaluate how effectively and efficiently the semi-supervised 
deep learning-based framework can classify Android APK files into one of the 
pre-defined categories.

6.1  Implementation

We implemented the proposed semi-supervised deep SAE framework using a PC 
with 3.60 GHz Core i7-4790 CPU and 32 GB RAM. We implemented our code 
using Tensorflow in Python which is a major modification of our previous contribu-
tion [11] based on Pseudo-Label using FFNN. We added an implementation of a 
PLSAE with unsupervised pre-training and supervised fine-tuning. We also changed 
the pre-processing parts related to analyzing the static features, numericalizing the 
data, removing the features with low variance that carry a little information, fea-
tures concatenation, and normalization. The input layer of the DNN consists of 
564 neurons, with reference to the number of input feature vectors as detailed in 
Sect.  5, and the output layer consists of five neurons equivalent to the number of 
categories. The Deep PLSAE includes an encoder and decoder section whose hid-
den layers and hidden neurons need to be fine-tuned. We used the Sigmoid func-
tion as the activation function for all hidden layers in encoder and decoder and the 
mini-batch RMSPropOptimizer as the optimization algorithm. All the weights are 
initialized using normal distribution with zero mean and standard deviation of one. 
The mini-batch size was set to 100 for labeled samples, and the learning rate was set 
to 0.007. These parameters were determined using hyper-parameter tuning. As men-
tioned previously in Sect. 3, the balancing coefficient, �(t) was slowly increased to 
dynamically adjust the network performance with the parameter settings of �f = 1.5 , 
T1 = 100 , and T2 = 400 (We refer the reader to [46] for more details about these 
parameters). We trained each PLSAE model until convergence or the number of 
1500 epochs was reached. We ran each set of experiments 20 times and computed 
the average over all runs to find the evaluation metrics. To make sure that the train-
ing samples in each mini-batch are randomly selected, we shuffled the entire dataset 
at the beginning of each epoch.

6.2  Dataset

As discussed earlier in Sect. 5, we ran 17,341 APKs in CopperDroid to observe the 
behavior of each sample. Out of this number of samples, 13,077 ran successfully 
while the rest failed because of different error types including but not limited to 
bad unpack parameters, bad ASCII characters, bad CRC-32 values, and bad UTF-8 
bytes. Then we loaded all analysis results where about 12% of the JSON files failed 
to open mostly due to “unterminated string”. The final remaining Android samples 
in each category are as follows: Adware (1,253), Banking (2,100), SMS malware 
(3,904), Riskware (2,546), and Benign (1,795).
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6.3  Experimental Results

In our experiments, we used Precision (PR), Recall (RC),  F1-Score  (F1), Accuracy 
(ACC), False Positive Rate (FPR), False Negative Rate (FNR), and classification 
error to assess the overall classification performance. We examined the classification 
performance of our proposed framework under different train/test split ratios. After-
ward, we picked the best architecture and train/test split ratio (70% − 30%) and com-
pared the effectiveness of our approach with other state-of-the-art machine learning 
and deep learning algorithms while changing the number of labeled samples. We 
plotted the ROC curves per class, the micro/macro average ROC curves, and com-
puted the confusion matrix, as well. Furthermore, we compared the performance of 
the semi-supervised deep SAE with the supervised deep SAE, PLDNN, DNN, some 
common machine learning algorithms including the semi-supervised approach (LP) 
while changing the number of labeled samples. Finally, we estimated the average 
runtime of the feature extraction, pre-processing, and detection stages.

6.3.1  Malware Classification Performance

We investigated the impact of hidden layers and hidden neurons of the PLSAE on 
the classification performance of our malware detector. For this set of experiments, 
we set the number of labeled samples and train/test ratio to 1000 and (70% − 30%) , 
respectively. The fine-tuning of PLSAE architecture demonstrated that the deep net-
work with four hidden layers and neurons of [564 450 300 150 10 5] is superior to 
other deep networks, and from this point on, it was used as the deep network archi-
tecture for the subsequent experiments. In the experiments, SAE is the deep Stacked 
Auto-Encoder model trained without unlabeled data (supervised) whereas PLSAE is 
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Fig. 6  ACC of SAE and PLSAE for different train/test split ratios
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the one trained with both labeled and unlabeled data (semi-supervised) considering 
the same dataset. Additionally, PLDNN is the semi-supervised DNN that is trained 
on the dynamic features [11].

Fig. 6 visualizes accuracy of SAE (supervised) and PLSAE (semi-supervised) for 
different train/test split ratios of %(90 − 10, 80 − 20, 70 − 30, 60 − 40, 50 − 50) . As 
shown in Fig. 6, the classification performance under the 70-30 train/test percentage 
outperforms other sets for both SAE and PLSAE. However, the classification results 
are too close under all split percentages. This shows how robust our trained deep 
network is because it performs excellently in all train/test split percentages. Moreo-
ver, in all settings, the accuracy of PLSAE and SAE is almost similar, which dem-
onstrates that the proposed semi-supervised framework (PLSAE) in this paper with 
unlabeled data can be used instead of the supervised one (SAE) that needs labeled 
data. This is really helpful because the labeling process is expensive when handling 
such a real-world problem where some pieces of malware can avoid detection.

Receiver Operating Characteristic (ROC) curve plots True Positive Rate (TPR) 
vs FPR which shows the overall quality of the classifier’s output. Therefore, the 
top left corner of the plot is the optimum point which leads to the maximum Area 
Under Curve (AUC). Fig. 7 juxtaposes ROC curves of each class, micro average, 
and macro average. Micro averaging considers the metrics globally whereas macro 
averaging calculates metrics per label and finds their unweighted mean. As shown 
in both figures, the micro and macro averages AUC for both PLSAE and SAE are 
close to one, i.e., 0.96-0.97 . All the plots are clustered in the ideal area at the top 
left corner where the AUC of class 2 (SMS malware) is a bit higher (0.98) than 
those of other ROC curves. This means that our detection system could distinguish 
SMS malware slightly better than other classes, however the detection performance 
of the rest of the classes is excellent regarding the high degree of similarity between 
the categories of Adware, Riskware, and Benign. Overall, the ROC curves demon-
strate that PLSAE precisely discovers the underlying behavior of the Android mal-
ware with only 1000 labeled training samples. This shows that regardless of the 
small number of labeled samples, our semi-supervised approach exhibits highly 

(a) SAE (b) PLSAE

Fig. 7  Receiver Operating Characteristic (ROC). (Class 0 is Adware, class 1 is Banking, class 2 is SMS 
Malware, class 3 is Riskware, and class 4 is Benign)
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competitive performance for malware categorization, which is even higher than the 
supervised SAE.

Table 3 shows the confusion matrix of PLSAE for each Android app category. 
We have set the number of labeled training samples to 1000. We listed TPR, 
i.e., the fraction of predicted apps with respect to the total number of apps for 
each category. The diagonal illustrates the correct classification. SMS malware 
achieves the highest TPR of 99% whereas Riskware and Benign both achieve 
the lowest TPR among other categories (95%). Riskware and Benign have been 
mostly mistaken for each other, 3% and 4%, respectively, due to inherent similar-
ity and common characteristics they share. As shown, PLSAE could remarkably 
improve the TPR of Adware samples (0.96) in comparison with PLDNN (0.85) 
[11].

Table  4 compares the classification error of PLSAE with that of basic SAE, 
PLDNN [11], DNN, semi-supervised approach LP, and four common machine 
learning classifiers, namely RF, SVM, and k-NN on the Android malware dataset 
with 100, 300, 500, 1000, 5000, and all labeled training samples. We applied all 
the machine learning methods on the hybrid feature vector used with PLSAE and 
SAE except for PLDNN and DNN. The results of PLDNN and DNN are both from 
our previous research contribution [11] where the features were merely dynamic. 
We applied stratified 5-fold cross-validation for all machine learning algorithms. 
The results presented in the table show that by increasing the number of labeled 

Table 3  Confusion matrix of category classification

Prediction Category

Adware Banking SMS Riskware Benign

Real category Adware 0.96 0.01 0.01 0.01 0.02
Banking 0.02 0.96 0.0 0.01 0.01
SMS 0.0 0.01 0.99 0.0 0.0
Riskware 0.0 0.01 0.01 0.95 0.03
Benign 0.0 0.0 0.01 0.04 0.95

Table 4  Classification error (%) 
on the Android malware dataset 
with 100, 300, 500, 1000, 5000, 
and all labeled training samples. 
DNN and PLDNN are applied 
on dynamic features [11]

Method Labeled training samples

100 300 500 1000 5000 All

RF 14.34 7.38 6.58 5.08 2.09 1.68
SVM 68.16 65.78 65.65 65.59 65.24 65.17
K-NN 30.47 20.54 17.36 13.33 7.23 5.60
LP 9.74 9.5 9.05 8.82 9.56 6.89
DNN

D
10.82 9.44 7.93 3.52 2.77 2.4

PLDNN
D

8.37 6.93 4.54 3.3 2.6 2.4
SAE 6.65 3.41 2.55 1.93 1.64 1.52
PLSAE 4.81 3.23 2.54 1.72 1.61 1.48
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samples the classification error of all algorithms decreases. For any number of 
labeled training samples, PLSAE (semi-supervised hybrid) prominently outper-
forms LP (semi-supervised hybrid). The classification error of PLSAE is 1.6% 
less in comparison with the error of PLDNN (semi-supervised dynamic) for 1000 
labeled training samples. For the small number of labeled samples, the superior-
ity of PLSAE over PLDNN becomes more clear.

For instance, for approximately 1% of the total number of labeled training sam-
ples (100 labeled samples), PLSAE achieves an ACC of 95.19% for malware cat-
egorization, justifying its stability even in the presence of scarce labeled data. In 
contrast, PLDNN obtains an ACC of 91.63% for 100 labeled samples. For almost all 
labeled samples, e.g., 300-5000, the gap between the classification error of SAE and 
PLSAE is almost negligible. For instance, for samples=5000, the error is decreased 
to 1.64% and 1.61% for SAE and PLSAE, respectively.

In Fig. 8, the average training cost of PLDNN and PLSAE are compared accord-
ing to the number of iterations.

The number of iterations is calculated by multiplying the number of epochs 
(1500) and the number of labeled mini-batch (10), i.e., 15,000. As expected, the 
average cost of both methods constantly decreases as the number of iterations 
increases. However, the first iterations have massive improvements, but after a 
while, the cost slightly changes and is stabilized. As shown in both plots, the average 
cost of PLSAE is much lower than PLDNN, which can be justified by the higher 
detection capability and effectiveness of our hybrid semi-supervised deep AE com-
pared with PLDNN. Besides, the average costs of training semi-supervised deep net-
works are higher than the ones of the supervised deep networks. The reason for this 
is that we expand the loss function of labeled samples by adding 
(�(t)

1

n�

∑n�

m=1

∑C

i=1
L(y�

m

i
, p�

m

i
)) term to the overall loss function L in Eq. 5. As we 

proceed with training, this gap gradually shrinks, and the two diagrams approxi-
mately converge after 15,000 iterations which demonstrates that our semi-super-
vised DNN with many unlabeled and small amount of labeled samples could easily 
substitute all-labeled scenarios.

(a) PLDNN and DNN (b) SAE and PLSAE

Fig. 8  Average training cost vs total number of iterations
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6.3.2  Runtime Performance

In this section, we evaluated the efficiency of PLSAE by estimating the detection, 
pre-processing, and feature extraction time. The detection time is the total time 
needed to predict the category of the test samples, including pre-training and fine-
tuning stages. For the runtime performance, we set the number of labeled samples 
to 1000 and the batch size to 100. As presented in Fig. 9(a) and (b), the total time 
needed for feature extraction (23.63 h) and pre-processing (27.5 min) of PLSAE is 
approximately 3.7 h larger than PLDNN (20.4 h and 0.25 min) because of the huge 
size of initial static information added to the dynamic features. However, in estimat-
ing runtime performance, we are concerned about detection time rather than pre-
processing and feature extraction stages. The total detection time of PLSAE is 13.38 
min (including pre-training and fine-tuning) for the whole test data (3480) compared 
with PLDNN (4.15 min). Consequently, the average prediction time per sample for 
PLSAE is 230 ms as compared with 60 ms for PLDNN. This low amount of detec-
tion time is negligible considering the noticeable improvement we achieve with 
hybrid PLSAE versus PLDNN. Therefore, our proposed Android malware detec-
tion system is very efficient and could be easily deployed in computationally-limited 
devices.

7  Conclusion

In this paper, we have proposed an effective and efficient Android malware cat-
egory classification approach based on semi-supervised DNNs. It is a hybrid 
approach that integrates both static and dynamic analysis of malware to utilize 
the strengths of both of them. The pre-training scheme of the deep network 
using SAE helps in better generalization. As a result, in spite of the small num-
ber of labeled training samples, the proposed detection approach is effective and 
superior in comparison to other state-of-the-art techniques. This eliminates the 

PLDNN PLSAE
Model

0

5

10

15

20

25

30

35

40
R

un
tim

e 
(m

in
ut

es
)

Pre-processing
Pre-training
Fine-tuning

(a) Pre-processing and Detection

PLDNN PLSAE
Model

0

5

10

15

20

25

R
un

tim
e 

(h
ou

rs
)

Feature Extraction

(b) Feature Extraction

Fig. 9  Comparison of runtime performance for different steps of PLSAE and PLDNN



1 3

Journal of Network and Systems Management (2022) 30:22 Page 27 of 34 22

need for a high number of labeled instances, which is very expensive to acquire 
in the domain of malware analysis. Additionally, it is efficient in terms of execu-
tion time, and it helps us to prioritize our mitigation techniques by specifying 
the category of the malware. We have offered a new 17,341 Android malware 
dataset which includes the most complete captured static and dynamic feature 
sets and spans between five distinct categories of malware. As future work, we 
are planning to test if the proposed detection system can run on resource-limited 
IoT devices such as Raspberry Pi. Our approach also could be enhanced using 
advanced deep learning models like RNN or CNN. Additionally, we are plan-
ning to keep updating CICMalDroid2020 by including new samples together 
with their analysis and to study how increasing the number of samples will 
affect the experimental results.
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