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Abstract
The password is the most prevalent and reliant mode of authentication by date. We 
often come across many websites with user registration pages having different pass-
word strength estimation techniques. Most of them run lightweight java-script-based 
rules on the client-side, while others take it to the server and evaluate. The same 
password is measured on different scales and is treated as invalid, weak, medium, 
or strong by different meters. These constraints compel users to choose weak pass-
words. The state-of-the-art password guessing and strength estimating techniques 
are trained on the publicly available leaked data sets. They are able to cope with the 
dictionary attacks but became prone to adversarial attacks. Creating dynamic rules 
for such attacks is tedious and infeasible. This paper proposes an ensemble approach 
with a classification and guessing strategy. We devise a bi-directional generative 
adversarial network based algorithm to generate personalized passwords with an 
improved convergence rate. It generates as many numbers of samples compared to 
GAN in less time. The one-class SVM is trained over the leaked and generated pass-
words to estimate password strength. The passwords mainly comprise the medium 
and weak category, and it gives better performance drawing a similarity between 
weak passwords. LSTM has been tuned to predict the difficulty level to crack the 
given test password. Based on their combined results, the password strength is deter-
mined. This paper also proposes three password design methods to create memo-
rable and reasonably strong passwords. They are simple to design by taking user 
personal information and adding randomness based on functional patterns.
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1  Introduction

Passwords have been the primary source of authentication since we started secur-
ing our resources. Technology leapfrogged to new advances, with everyone sur-
rounded by devices with various applications running over the internet. They all 
store sensitive information and, therefore, require security services for authen-
tic usage. Meanwhile, recent advancements in IoT have propelled various other 
mechanisms like pins [1], fingerprints [2], and face locks [3]. They face severe 
issues of hardware and software constraints. Among all these user-friendly tech-
niques, the text-based password remains the most prevalent method as it is easy 
to implement, and no special hardware is required.

With cheap computation and readily available resources, passwords have 
become vulnerable and susceptible to various attacks. User often choose or con-
catenate common texts (e.g., “password”, “123456”) and their leet transforma-
tion. Usually, they tend to choose a password based on their personally identifi-
able information (PII) like name, dob, age, phone number, or organization. The 
user-chosen passwords are vulnerable to guessing attacks is because passwords 
follow Zipf’s law, a very skewed distribution [4]. However, Zipf’s law also men-
tions that the guess’s success rate decreases as this guess increases in the guess 
list. Social exposure of individuals and organizational information together makes 
it easy to guess one’s password. Attackers learn over the multiple leaked data 
sets and devise a smart password cracking strategy. Wang et al. [5] conducted an 
empirical study of many password creation policies over high-profile web ser-
vices and found them vulnerable to targeted online guessing attacks. Another 
issue arises from the non-uniformity of password strength estimation and their 
approach across different applications. Many of the applications adopt a rule-
based evaluation strategy, that can be easily analyzed by a chrome debugger. 
Some make it tough by processing the password at their server and pushing back 
the result. Existing password strength, guessing, and generation techniques suffer 
from easy prediction, frequent attacks, and massive computation. The prevailing 
estimation techniques do not account for smart rules to omit sensitive informa-
tion and simple structures. Hence, they fail to mitigate targeted and personalized 
attacks.

The above study motivates us to design an effective approach for generating 
passwords and measuring their strength on a uniform scale. The art of evaluating 
password strength started using basic rules of using chars in different cases, dig-
its, and special chars. New estimation techniques [6] were designed using some 
mathematical inference and theoretical computer science using Probabilistic 
grammars and Markov models [7].

Brute force and dictionary attacks were the basic attacks to guess the pass-
words and had a fair success rate. Researchers enhanced guessing attacks using 
probabilistic context-free grammar (PCFG) [8]. It calculates the probability of the 
frequency of the structure and guesses a password. For example, “password123” 
may be more probable than “P@ssW0rd!23”, depending on the password creation 
policy. The dynamics of research changed after the evolution of machines and 
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deep learning. Many works have been proposed applying different classification 
and perceptron techniques. Machine learning techniques heavily rely on smart 
feature processing and extraction mechanism to learn from the data available. 
Deep learning does both feature extraction and modeling on a massive amount of 
data. All these techniques work well with existing databases but suffer from noisy 
and adversarially created samples.

Limitations of trained models on human-generated passwords have laid the 
requirement for generating new personalized passwords. Training with these sam-
ples would help to mitigate unseen attacks and evaluate the passwords on a sub-
stantial scale. John the Ripper1 and HashCat2 are the state-of-the-art techniques to 
generate new, highly likely passwords. Generative Adversarial Network (GAN) has 
been widely used to generate new and unseen samples [9]. In GAN, we find the 
distribution of the data set P(w). With the help of a generator and discriminator, we 
try to create a distribution with noise(o), similar to P(w). The existing methodology 
takes a longer time to converge the distribution. PASSGAN [10] is a GAN based 
theory-grounded password generation approach. It takes a large no of epochs to con-
verge and a long time to generate passwords. Bi-directional GAN (BiGAN) is an 
extension of GAN and performs faster in comparison [11]. It converges much faster 
by adding one more component and gives satisfactory results for generating new 
passwords.

Different service providers, social sites, and corporates also suffer from framing 
rules for a secure and memorable password. The keyspace of the password and its 
corresponding entropy has been widely considered to design strong policies. How-
ever, Weir et al. [12] performed an extensive study and proved entropy as ineffec-
tive. Poor combinations of large key spaces suffer from offline dictionary attacks. 
We have tried to address these issues by putting the different spaces based on a ran-
dom function to generate a strong and memorable password. Wang et al. [13, 14] 
have discussed the vulnerabilities arising due to the usage of PII (name, birthday) 
and sister passwords across different websites. Authors in [15] have discussed the 
difficulties of implementation by considering the above issues.

This work proposes a PassMon: Password Monitor incorporating password 
estimation, cracking, and generation strategies. We predict passwords’ complexity 
by guessing and evaluating their strength on a uniform scale and likely generated 
password data sets. The major contributions are as follows.

–	 This paper devised an effective deep learning approach using bi-directional GAN 
for generating new highly likely passwords. It has a faster convergence rate com-
pared to GAN.

–	 One-class SVM has been trained to evaluate password strength. It draws test 
password similarity with most of the weak passwords in the dataset.

–	 LSTM has been tuned for guessing the difficulty to crack the password by calcu-
lating the low probability ranking of prediction.

1  https://​www.​openw​all.​com/​john/.
2  https://​hashc​at.​net/​hashc​at/.

https://www.openwall.com/john/
https://hashcat.net/hashcat/
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–	 New password design methods and compliances have been proposed and com-
pared. They are easy to remember and based on user-related inputs by adding a 
fair amount of randomness on functional patterns.

The remainder of this paper is organized as follows. Section 2 discusses the related 
works. Section 3 briefs the preliminaries of bi-directional GAN and machine learn-
ing models used in this experiment. Section 4 discusses password design methods to 
create a strong and memorable password. Section 5 discusses the security model and 
the capabilities of the adversary. Section 6 summarizes the proposed framework and 
methodology. Section 7 lists the experiment setup, configuration and architecture. 
Section 8 illustrates the result and comparison with existing strength meters. Sec-
tion 9 concludes and briefs the scope for future work.

2 � Related Work

The science of password strength estimation evolved with the increased capabilities 
of attackers. Several techniques based on mathematical, theoretical computer sci-
ence to machine learning have been proposed to evaluate the strength of a given 
password [16–18]. Researchers suggested different guessing strategies to crack the 
password.

Brute-Force and Dictionary Attack are the most traditional password guess-
ing tools [19] where the attacker obtains the hash of the victim’s password. It then 
tries to retrieve the plain text by guessing for thousands and a million times. It takes 
an ample amount of time and storage [20]. In a dictionary attack, the attacker tries 
to guess the password by adding new words to the input by applying pre-selected 
mangling rules. It requires the original word to be in the attacker’s input dictionary 
to use the correct word-mangling rules [21]. The main challenge is to generate an 
ordered list of password guesses that match the victim’s password. Authors in [22] 
created a strong password by salting durations of keystrokes and latencies between 
them.

The user often chooses weak passwords tuning the password policy using a com-
mon dictionary word adding some special character or numbers. This password can 
easily be compromised if the attacker has the user details. With this fact, researchers 
created three different password policies for generating secure and easy-to-remem-
ber passwords with diverse groups of experiment [23]. They proposed three strate-
gies and evaluated them on various measures as Pearson’s correlation and password 
compliance. Method one takes a random text and number. It changes the charac-
ters into uppercase based on the number’s digits and appends them in the password. 
Method 2 proposes a random combination of letters and keyboard characters, which 
mixes the string with a random number taken as input from the user. Method three 
suggests choosing a favorite phrase or quote and make the alternate characters 
uppercase. Woods et al. [24] performed their study on the number of verification. 
They proved that verifying passwords three times can increase password memorabil-
ity from 42% while 17% improvement two times. Though, it does not have any effect 
on memorability.
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Markov model is based on the Markov chain rule, which is a state-based math-
ematical representation. It maps the transition of one state to another state according 
to specific probabilistic rules. For password generation, it uses the idea of a transi-
tion between the characters or group of characters [16]. If we take the word ‘Alice’ 
and use the Markov model of 3 rd order, it gets divided into ‘Ali’, ‘lic’. The idea of a 
transition between the characters itself becomes its limitation as we have to check all 
the Markov model’s possible orders.

Probabilistic context-free grammar (PCFG) model is the extension of the 
Markov model with regular grammar. Each production is assigned with some prob-
ability, which is calculated as the multiplication of every production. This grammar 
also helps to generate word mangling rules [25]. Weir et al. [8] observed that not all 
guesses have the same probability of cracking a password. They aimed to decrease 
the likelihood of breaking the password with a limited number of estimates. They 
created the structure of each leaked password. They calculate the frequency and the 
probability of the n-gram character of the password. Yazdi et al. [17] have shown the 
use of context-free grammar for attacking passwords and their defenses. Ma et al. 
[26] used the probability-threshold graphs, which showed a significant advantage 
over guess-number graphs. Wang et al. [6] proposed an algorithm that automatically 
creates a fuzzy probabilistic context-free grammar of the password. Guo et al. [27] 
proposed a Lightweight Password Strength meter (LPSE). They make a vector rep-
resentation of the password, assigned scores based on cosine similarity, and edit the 
distance between the passwords. Combining all the scores, they framed a set of rules 
that can be easily deployed to the client-side to measure the password’s strength. In 
this model, when a user tries to register, it takes a small bit of information from the 
user. The base dictionary of less sensitive passwords trains their fuzzy PCFG model 
and evaluates the password’s strength. They also suggest a strong password for every 
weak text password.

Machine learning and deep learning in practice improvised the existing pass-
word guessing and generation strategies. These algorithms make use of publicly 
available leaked data sets and learn to scale and guess the password. Melicher et al. 
[18] proposed a Recurrent Neural Network (RNN) based model that takes an input 
and learns to predict the next character in a sequence. They have used character-
level language models. The RNN can then generate text character by character that 
will look like the original training data. In 2016, Yong et al. [28] proposed that neu-
ral networks would model human-created English passwords. They trained their 
model by splitting the password into the n-gram character for predicting the next 
character. PassGAN [10] is a deep learning method for password generation using 
Wasserstein GANs (IWGAN) [29] as the model. GAN learns the distribution of the 
training set and mimics the same distribution taking noise as an input. The main 
component of the PassGAN is a residual block. They comprise two 1-d convolu-
tional layers, connected by rectified linear units (ReLU) activation functions. Liu 
et al. [30] proposed a password generator called the GENPass. It uses a combination 
of probabilistic and neural networks to guess passwords. PCFG divides a password 
into basic units consisting of characters and numbers. For example, ’password123’ 
can be divided into two units, ’ L8’ and ’D3’. Neural networks can detect the rela-
tionship between characters that PCFG cannot. A password is first encoded into a 
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sequence of units. LSTM model is trained with the preprocessed wordlist. The gen-
erated password is sent to a CNN classifier trained with different raw datasets. The 
classifier predicts which dataset the password most likely comes from. Ciaramella 
et al. [31] designed a proactive password checking, which self-updates whenever a 
user tries to choose/change the password using neural networks and statistical tech-
niques. Authors in [32] analyzed the password policies of a hundred websites and 
proposed an integrated approach for modeling the attackers with multiple layer per-
ceptron (MLP) neural networks. They used the features produced by TF-IDF (term 
frequency-inverse document frequency) and claim to achieve a classification accu-
racy of 97.7 with only 10,000 passwords. However, this work does not talk about 
password modeling and memorability.

The above-discussed schemes state different password strength estimation tech-
niques based on static rules and machine learning models. Rule-based schemes are 
easily susceptible to dictionary attacks, while machine learning models are prone to 
adversarial attacks. These models also become cumbersome when it comes to light-
weight deployment at the client page. This work tries to mitigate these challenges 
and proposes a BiGAN based password generator to train an effective ensembled 
strength meter. We present new password compliances after performing experiments 
and comparisons based on existing as well as proposed estimators.

3 � Preliminaries

3.1 � Bi‑directional GAN (BiGAN)

A generative model is an unsupervised model, which learns any data distribution 
to generate new unseen samples. These samples can be used for training intelligent 
models, testing limitations of existing solutions. GANs lack an efficient inference 
mechanism, which prevents them from reasoning about data at an abstract level. Bi-
directional GAN is an extension of the GAN-like adversarial network by adding a 
latent generative component. The generator learns the probability distribution of the 
data and generates new samples by adding noise to it. It aims to fool the discrimina-
tor. The additional component, i.e. encoder also learns the data distribution and gen-
erates real encoding. The discriminator discriminates both the distributions from the 
data and latent space. Though these components are not allowed to communicate, 
they should learn to generate different samples to fool the discriminator.

3.1.1 � BiGAN Components

–	 Generator (Decoder) has a prior belief on the latent space z i.e., 
PZ(z)

 . Given a 

draw from this latent space, the generator (G) outputs a synthetic sample i.e., 
G(z|�Z) ∶ z → xsynthetic.

–	 Encoder works like the inverse of the generator. From a given data space, the 
encoder (E) outputs a real encoding i.e., E(x|�E) ∶ x → z . The equation states 
that given the input x, which is a real image, it outputs real encoding.
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–	 Discriminator classifies if a sample given to it is from the real data distribution 
PX(x) or the synthetic data distribution PG(x|z) . It also classifies the encoding as 
real PE(z|x) or synthetic PZ(z).

3.1.2 � BiGAN Objective Function

BiGAN has the following objective funciton, similar to GAN. It aims to minimize 
the loss of generator and encoder, while maximize the discriminator’s loss to get the 
most real encoding.

3.1.3 � Advantages over GAN

–	 GAN generator maps latent samples to generated data. In BiGAN, Encoder helps 
in reverse mapping and ends up learning arbitrary distributions.

–	 In GAN, the generator extracts only certain semantic features and updates the 
parameter. In BiGAN, Encoder assists in extracting all semantic features, which 
serves as a useful feature representation for learning semantic tasks.

–	 It has a faster converge rate than GAN as it sends a joint distribution sample to 
the discriminator and ends up generating similar unseen samples in less time.

3.2 � One‑Class Support Vector Machine

Let us take a look at the traditional two-class support vector machine(SVM). Con-
sider a data set having data points (w1, u1), (w2, u2),… , (wn, un) where wi is the 
input point, and ui indicates the target class. SVM learns to segregate these data 
points into their respective target labels with maximum inter-class distance [33, 34]. 
It is used for both classification and regression tasks.

One-class SVM, a variant of SVM, is useful in scenarios when most of the data 
points belong to the same class. It has been proved quite successful in detecting 
anomalies, fraudulent activities, document classification [35], and boundary detec-
tion [36]. The leaked password datasets and similar generated BiGAN samples com-
prise to same target label as a weak password. Therefore, it suits to use one-class 
SVM over the SVM in this context.

3.3 � Long Short Term Memory (LSTM)

LSTM is a variant of the recurrent neural network (RNN), capable of learning long-
term dependencies. It is good in extracting patterns because it contains memory, 
which helps memorize the next event on looking at continuous data. We have used 
it to crack the password. We proposed to split each password into a 3-g character, 
train, and predicted the next character. We calculate the number of guesses for a 

(1)min
G(z∣�G),E(x∣�E)

max
D({x,z}∣�D)

V
(
D
(
{x, z} ∣ �D

)
,G

(
z ∣ �G

)
,E

(
x ∣ �E

))
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password to determine the strength of the password. We have kept the threshold at 
105 for a strong password.

Using weighted ensembling of the strength estimation and guessing time evalu-
ated by one-class SVM and 3-g LSTM, we determine the password’s strength. We 
have trained the one-class SVM model with the combination of leaked passwords 
and the generated ones by BiGAN. LSTM predicts the time and effort required for 
guessing the password.

4 � Proposed Password Design Techniques

4.1 � Issues in Existing Systems

The password guessing success has been defined based on space and entropy. A 
high entropy makes a password strong and unpredictable. However, it is not a suf-
ficient condition for a strong password. NIST password policies have entropy in the 
range of 4 to 32. It also achieves entropy as high as 236 with intelligent combi-
nations. Increasing computing power and GPU resources requires a minimum of 
50-bit entropy for a semi-secure password. The above-proposed password policies 
have entropy in the range of 60 to 100. There has been a tradeoff between length, 
entropy, their secure combinations, and memorability. Passwords with high entropy 
also suffer offline trawling attacks. Table 1 lists the available keyspaces, entropy, and 

Table 1   Entropy estimation of password policies

Type Pool of characters

Lower case characters 26
Upper case characters 26
Digits 10
Special case characters 10
Total space 72

Length Bits of entropy 
( log
2
(space(72)length)

10 61.70
11 67.87
12 74.04
13 80.20
14 86.39
15 92.55
16 98.71

Poor passwords With high entropy

Password@123 74.04
User#9000000009 92.55
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weak passwords with high entropy. We consider these issues and propose new poli-
cies by placing the different keyspaces based on some random function to increase 
difficulty.

Usually, users choose passwords based on their memory and related information. 
We publicize our details on social platforms that make the password vulnerable to 
attack. It is not challenging to generate a strong password as any randomly generated 
text would be hard to guess. On the other hand, it makes it tough to memorize such 
passwords. While creating rules and running experiments, we studied several rules 
used across different sites. They force users to abide by certain constraints, which 
makes the selection harder and challenging. That restriction policies and pieces of 
advice make users settle with a compromised and stringent to remember password.

4.2 � Proposed Policies

We propose three password design methodologies in Algorithm 1 and further ana-
lyze their strength. With the proposed techniques, we add enough randomness that 
makes it immune to guessing attacks while allowing them to memorize and retrieve 
the password if the user forgets.
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Algorithm 1 Generate Secure and Memorable Passwords
1: procedure GenSecurePassA(phrase, year, dob)
2: securePhrase ← turn characters to uppercase at the index places of each digit of

the year. � “SeCUre password”.
3: randSum ← add the year to dob to make it more random. � 3998.
4: indexSum ← find the sum of the digits of randSum. � 2.
5: securePhrase ← append each digit of randSum at the index places.
6: � “SeCU3re pa8s9sword”.
7: securePhrase ← update the spaces by choosing the special symbol at indexSum

and subsequent indexes of set specialSymbols. � “SeCU3re@pa8s9sword”.
8: return securePhrase
9: end procedure

10: procedure GenSecurePassB(phrase, rand, number)
11: remainderList ← take mode of rand with the length of each word. � [3, 7].
12: securePhrase ← turn characters to uppercase for each element in the array

remainderList. � “secUre passworD”.
13: randSum ← add the rand to number to make it more random. � 9000019159.
14: indexSum ← find the sum of the digits of randSum. � 3.
15: securePhrase ← append each digit of randSum at the index places.
16: � “s0e1cUre5 pas9sworD”.
17: securePhrase ← update the spaces by choosing the special symbol at indexSum

and subsequent indexes of set specialSymbols. � “s0e1cUre5#pas9sworD”.
18: return securePhrase
19: end procedure

20: procedure GenSecurePassC(phrase, number, year)
21: securePhrase ← add the digit to each letter of the phrase. � “ugewtg rcuuyqtf”.
22: securePhrase ← turn characters to uppercase at the index places of each digit of

the year. � “uGewTg RcUuyqtf”.
23: remainder ← calculate mod of every digit in input year by number. � 1101.
24: indexSum ← find the sum of the digits of remainder. � 3.
25: securePhrase ← append each digit of remainder at the index places of each digit

of the year. � “uG1ewT0g R1cU1uyqtf”.
26: securePhrase ← update the spaces by choosing the special symbol at indexSum

and subsequent indexes of set specialSymbols. � “uG1ewT0g-R1cU1uyqtf”.
27: return securePhrase
28: end procedure

29: specialSymbols ← [!,*,@,-,$,%, ,#,(,)] � users may define their own set of symbols.
30: phrase ← choose a phrase of min length 10. � “secure password”.
31: S ← choose password generation function.
32: switch S do
33: case A
34: year ← choose any year of importance. � let user inputs 2003.
35: dob ← enter your date of birth. � let user inputs 1995.
36: securePhrase ← GenSecurePassA(phrase, year, dob)
37: case B
38: rand ← choose any random number. � let user inputs 159.
39: number ← choose any large number. � let user inputs 9000019000.
40: securePhrase ← GenSecurePassB(phrase, rand, number)
41: case C
42: number ← enter a number between 1 to 10. � let user inputs 2.
43: year ← choose any year of importance. � let user inputs 1947.
44: securePhrase ← GenSecurePassC(phrase, number, year)

There are some universal principles and compliances of keeping passwords 
long and a mix of different symbols. Users fail to memorize due to a more com-
plex design. The proposed methods take care of maintaining inputs memorable 
and straightforward. It helps us keep the plain text in memory and use any tran-
scription technique to convert into a strong password. As the methods are public, 
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we add enough randomness to add strength to our passwords. In most cases, inputs 
for passwords are personal information like name, organization, self-owned acces-
sories, etc., which makes them essentials for a memorable password. Thus, the pro-
posed methods take the same inputs from the user’s memory and parse them in a 
function by adding a fair amount of randomness. It makes the generated passwords 
both memorable and reasonably secure. These policies are also designed to be safe 
against targeted attacks. There needs to be enough randomness to resist targeted 
attacks in the age of social exposure and availability of personally identifiable infor-
mation (PII) across social sites. The most vulnerable PII are name and phone, fol-
lowed by the date of birth and interests. There arises a question of usage and mem-
orability again. So, the above-proposed rules mingle all the requirements and test 
them with severe guessing attacks.

The proposed methods have been tested against various meters on different scales. 
It has been evaluated based on password length, compliance, PARS, zxcvbn, LPSE, 
and our proposed strength estimator. We generated around two hundred responses 
for each policy.

5 � Security Model

This work focuses on designing secure and memorable passwords. The system com-
prises a social site or any cloud service provider where a user registers. There is a 
malicious site where the user is also associated. There is a natural tendency to use 
sister passwords across different sites, which leaks much sensitive information. A 
computing server is configured to run all-out guessing attacks using the proposed 
generation and guessing algorithms. Both the adversary and service providers con-
figure the server based on their capabilities.

An adversary can gather information by establishing various channels. He can 
gather level I (more sensitive information) on a private channel. Level I personal 
identifiable information (PII) generally comprises private information like hobbies, 
interests, educational qualifications, etc. The adversary tries to collect the Level II 
PII from social sites, cloud providers, and malicious servers. Level II information 
consists of publicly available data like name, date of birth, and so. Adversary frames 
targeted offline attacks on individuals to breach their security. The computing server 
consists of efficient BiGAN architecture, which generates multiple possible pass-
words. An LSTM framework calculates the number of guesses required to guess in a 
locking or throttling server.

The computing server uses the proposed password policies and suggests strong 
and memorable passwords. It uses all the factors like entropy, the chances of break-
ing the password based on the available keyspace, and proper combination to defy 
the dictionary attacks. For simulating the above-discussed scenarios, we have gath-
ered information from different users and ran experiments to evaluate and sug-
gest secure passwords based on different metrics. Fig. 1 illustrates the relationship 
between all the actors and entities discussed above.
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6 � Proposed Password Generation and Estimation Framework

The proposed password strength estimation technique learns to estimate the strength 
of user passwords. It evaluates the strength based on the prediction by a weighted 
average of one-class SVM and tuned 3-g LSTM. These models have been trained 
on the adversarial passwords generated by a tuned BiGAN. It helped to increase 
the accuracy, adding more vulnerable passwords to the training list. It is the very 
first approach that combines generation, strength estimation strategies, and guessing 
attacks on a password to the best of our knowledge.

In the first phase, the framework collects the leaked dataset as input. After pre-
processing cleaning and conversion steps on the input dataset, it is fed to the BiGAN 
generator and encoder. The discriminator performs intensive training to generate 
real adversarial samples. The input dataset and the generated data are taken as input 
for training by one-class SVM and LSTM in the next phase. One-class SVM model 
learns to classify the password strength while LSTM predicts the efforts for guess-
ing the password. Based on both these strengths and prediction scores, the password 
is categorized as strong, medium, or weak. The major components of this frame-
work are shown in Fig. 2 and described subsequently.

6.1 � Data Collection, Cleaning and Conversion

We have used two publicly available leaked password datasets, i.e., RockYou data-
set3 and MySpace dataset.4 RockYou dataset contains 14,341,564 unique passwords 
from 32,603,388 accounts. All the RockYou passwords are unencrypted and stored 

Fig. 1   Security model

3  https://​www.​kaggle.​com/​wjbur​ns/​common-​passw​ord-​list-​rocky​outxt.
4  http://​downl​oads.​skull​secur​ity.​org/​passw​ords/​myspa​ce.​txt.​bz2.

https://www.kaggle.com/wjburns/common-password-list-rockyoutxt
http://downloads.skullsecurity.org/passwords/myspace.txt.bz2
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in plain text. My Space dataset contains 27,484,128 unique passwords from a total 
of 60,213,024 distinct emails.

Many passwords in the data set are not hashed. There exists a repetition of pass-
words that needs to be removed. They contain non-ASCII characters. We removed 
the non-ASCII characters from the data set. Many passwords are of only four char-
acters and do not fit for a strong password. We have taken the minimum password of 
length six and a maximum of fourteen characters.

We split the data set as training and testing in the ratio of 80:20. We take the 
training data and convert it into an image of shape seven x max size of the pass-
word. We set the maximum size as fourteen by either padding space or truncating 
the extra to make all the equal dimension input. We have considered all the digits 
(0–9), upper case alphabets (A, B, … , Z), lower case alphabets (a, b,c, … , z), and 
special characters (@, +, −, & … ) a total of ninety-two including space. Every char-
acter is assigned a number by taking its decimal representation and converting it into 
a seven-bit binary representation.

6.2 � Training

Every single password in the training set is represented as a seven-bit binary rep-
resentation and represented as an image, an input for BiGAN. The image’s size is 
(seven x n), where n is the maximum password length. Seven bits are used for rep-
resentation as we have ninety-two unique characters stated in the previous subsec-
tion. For one-class SVM, we have extracted the feature as the password’s length, the 
number of uppercase and lowercase characters, the number of special characters, 
and the number of digits.

In the proposed framework, BiGAN is trained in the first phase, and their gener-
ated samples become the input for training in the next phase. In the second phase, 
one-class SVM and LSTM models are trained. Their weighted score is used to eval-
uate the strength of the password.

6.2.1 � BiGAN Training

The leaked password samples become an input to the generator and encoder of the 
BiGAN setup. The samples are preprocessed first and then converted into an image 
with a dimension of seven x maximum size of the password, i.e., fourteen in our 
case. We transformed each password into an image and fed it to the discriminator 
(D). The generated samples of encoder (E) and generator (G) become an input to 
the discriminator D. It generates a picture with a dimension of seven x fourteen as 
output. The discriminator predicts the samples as real and fake, and the prediction 
value ranges between 0 and 1. The samples less than equal 0.5 are represented as 0, 
and the rest as 1. Then, we take seven-bit sequentially and convert the binary repre-
sentation to decimal. We do the reverse of character to binary mapping as we need 
the character back. Using character to decimal representation, we turn the decimal 
back to its character representation. All the passwords will be fourteen characters 
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as we had added space padding. After generating and converting it into a password, 
we remove the padded space from the password. With a faster convergence rate of 
BiGAN, we successfully generated new unseen samples of passwords.

6.2.2 � Ensemble Training

In one-class SVM, 80% of the RockYou dataset and MySpace dataset with BiGAN 
generated samples have been used for training. It trains on features like the length 
of the password, the number of uppercase and lowercase characters, the number of 
digits, and the number of special characters. For labeling the training set, password 
strength estimator PARS5 has been used. It gives a rough estimate of the password 
strength. Using one-class SVM is influenced by the fact that all the leaked pass-
words should be categorized as weak. PARS evaluation metrics have been scaled 
down to fit this observation. LSTM is trained with the same dataset to measure the 
efforts required to guess the password. Each sample is split into three character 
grams to predict the next character. The number of passwords generated for guess-
ing tells about the password’s strength. Observing the results, we fixed 105 guessing 
attempts as a threshold for a weak password and 1010 as a medium. By doing the 
weighted average of both these models, the strength of the password is estimated.

7 � Experiment Setup and Configuration

7.1 � Setup

Docker setup with an ubuntu image has been used to run these experiments. It helps 
in easy installation and migration. We configured a host machine with processor 
Intel®Core

TM
 i7-7700 CPU @ 3.60GHz 8, and Memory of 8 GB. It takes nearly a 

day to run BiGAN architecture with one lakh epochs. We have used the same setup 
for running our ensemble model of one-class SVM and 3-g LSTM model. It took 
around five hours for training.

Fig. 2   Proposed framework

5  http://​www.​pars.​gatech.​edu/.

http://www.pars.gatech.edu/
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7.2 � Model Configuration

This section lists all the hyperparameters required for training the BiGAN, one-
class SVM, and LSTM.

7.2.1 � BiGAN Architecture

–	 Batch size indicates the number of data points as input in BiGAN at each step. 
The batch size is chosen to be 64.

–	 Number of iterations tells about the number of iterations in BiGAN train-
ing. We ran 199,000 iterations to compare the results with PASSGAN, but we 
improved results in 100,000 iterations.

–	 Hidden Layers:  Our BIPASSGAN model consists of Generator (G), Dis-
criminator (D), Encoder (E), each consists of two hidden layers with 512 units 
each. First, the hidden layer is followed by nonlinearity. The second layer is 
followed by batch normalization and nonlinearity. It becomes the input to a 
linear prediction layer.

–	 Output sequence length is the number of characters in the strings generated 
by the generator (G). We have kept the maximum length of the password as 12 
characters.

–	 Input noise vector size (seed) indicates how many random numbers from a 
normal distribution are fed as input to generate samples. We set this size to 
128 floating-point numbers.

–	 Maximum number of examples represents the maximum number of the pass-
words generated by our BIPASSGAN. We have set the maximum number of 
examples as 1,000,000.

–	 Nonlinearity:  In discriminator (D) and encoder (E), leaky Relu with a leak of 
0.2 is used. In generator (G), a standard Relu is used.

–	 Adam optimizer’s hyper-parameters: 

–	 Learning rate ( � ), i.e., how the curve goes to optimizes the loss. It has been 
set as 20−5.

–	 Coefficient ( �1 ), specifies the decay rate of the running average of the gra-
dient. It has been set as 0.5.

–	 Coefficient ( �2 ), specifies the decay rate of the gradient’s square’s running 
average. It has been set as 0.9.

7.2.2 � One‑Class SVM Architecture

–	 The size of the input is the number of passwords available. We have 
1,000,000 passwords as input.

–	 Kernel: The function of the kernel is to take data as input and transform it 
into the required form. We have used the default RBF(Radial Basis Function).
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–	 Gamma(� ): It defines the influence of a single training example. We have cho-
sen the default value auto.

–	 Nu(� ): The parameter nu is an upper bound on the fraction of margin errors and 
a lower bound on the fraction of support vectors relative to the total number of 
training examples. It is set to be 0.005.

7.2.3 � LSTM Architecture

–	 Order: The order of LSTM has been set to 3.
–	 Step length: The step length we take to get samples from the corpus. It has been 

set as 1.
–	 Epochs: Number of times we train on our complete data is set as 190,000.
–	 Batch size: The size of data samples in each training step. It is set as 32.
–	 Latent dim: Dimension of the LSTM network has been set as 64.
–	 Dropout rate: Regularization with dropout is set 0.2.
–	 Gen amount: It is the number of passwords generated for guessing. We generate 

1000 passwords in every iteration to guess the input password.

8 � Result

This section covers password generation results using BiGAN, password strength 
evaluation using one-class SVM, and password guessing using 3-g LSTM. It also 
lists comparison based on different existing schemes [10, 17, 18, 27]. It describes 
the results of experiments run over the proposed password policies and compares 
them with the existing policies [23].

8.1 � BiGAN Results

Training with BiGAN shows significant improvement in time and cost, maintain-
ing the equivalent performance of password generation. Figure 3 illustrates the com-
parison of the proposed technique BIPASSGAN and LSTM with PASSGAN, John 
the Ripper, and Hashcat. The horizontal axis represents the number of passwords 
generated by different techniques on different datasets. The vertical axis shows 
the number of password matches. The proposed techniques show the best match-
ing rate compared to the existing models. Training with leaked datasets achieved 
87% accuracy, as it was labeling similar to the existing password meters. It was not 
able to classify many of the weak passwords. Adding the BiGAN generated samples 
dropped the accuracy and strength of strong passwords to 52%. It ranks more weak 
passwords, which were initially misclassified as secure by the raw model or other 



1 3

Journal of Network and Systems Management (2022) 30:13	 Page 17 of 23  13

strength estimators. It generated meaningful passwords considering different key-
spaces, higher entropy, and the use of personally identifiable information (PII).

We have also checked BiGAN capabilities on different password policies, i.e., 
1class8, 1class16, 3class12, and 4class8. They are based on different password lengths 
and classes, indicating the composition of upper-case letters, lowercase letters, num-
bers, and symbols [18]. Figure 4a illustrates 1class8 password policy results with pass-
words of minimum length 8. It achieves a high matching rate of up to 70,000 using 
BiGAN due to less space and low entropy. Figure 4b illustrates the 1class16 password 
policy results, which has a password of minimum length 16. It is where our guessing 
suffers some loss due to larger space and higher entropy. BiGAN also suffers from gen-
erating meaningful passwords of 16 characters. Our proposed model has a limitation of 
generating matching passwords up to 12 characters. This work can be extended to pro-
duce more realistic results using multi-task GAN fed with user PII. Figure 4c illustrates 
3class12 password policy with password of minimum length 12. It should have any 
of the three uppercase, lowercase alphabet, or numeric symbols. It achieved the best 
results even with larger keyspace and higher entropy. Both BiGAN and LSTM faired 
well and outperformed PASSGAN with less computing effort. Figure 4d illustrates a 
4class8 password policy with a password of minimum length 8. It should have all of 
the uppercase, lowercase alphabet, and numeric symbols. Passwords of length eight 
characters are more standard ones and framed with tested policies. A moderate entropy 
but complex design led to optimum but not the desired performance. However, over-
all these results show that BiGAN could generate more unique passwords than PASS-
GAN, while our tuned LSTM architecture also faired well.

10^6 10^7 10^8 10^9 10^10
LSTM 6542 32546 154865 254125 512546

John The Ripper 3686 34586 135485 284586 498751

Hashcat 4875 35412 125486 256478 502142

PASSGAN on Rockyou 7543 40320 133061 298608 515079

Bipass on myspace 6234 32571 154879 315478 652142

Bipass on Rockyou 7318 39648 184759 325487 689521

0
100000
200000
300000
400000
500000
600000
700000
800000

PPPaaasssssswwwooorrrddd MMMaaatttccchhhiiinnnggg ooonnn DDDiiiffffffeeerrreeennnttt MMMooodddeeelll

LSTM John The Ripper Hashcat

PASSGAN on Rockyou Bipass on myspace Bipass on Rockyou

Fig. 3   Password generation results
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8.2 � Password Collection, Estimation, and Suggestion

Every user puts his randomness in choosing the password. This randomness revolves 
around his sensitive information about what he thinks is private. With privacy becom-
ing a myth and confidential information getting leaked, it has become easier to crack 
someone’s password. We ran another experiment asking users to fill in strong pass-
words. We also asked for personally identifiable information (PII) like name, dob, and 
phone number. We tested those passwords with our proposed model, which classified 
many of them as weak or moderate.

Table  2 lists a few of the surveyed passwords with their corresponding strengths 
evaluated by existing password meters and the proposed model. These passwords were 
evaluated against different password meters (Pars, zxcvbn, LPSE, and our proposed 
model). It can be observed that there is a significant difference between the evaluations. 
With most user passwords classified as weak, we suggested a strong password generat-
ing new unseen samples using BiGAN and testing its strength by our ensemble method.

We have tested our Ensemble model with 20% of RockYou and MySpace leaked 
password datasets. The result illustrates that 11,983 (16%) of the passwords were clas-
sified as strong, 23,257 (31%) as a medium, and the remaining as weak (52%). It can be 
inferred from these comparisons that our proposed strength estimator is guessing most 
of the vulnerable passwords as weak compared to the existing ones.

(a) 1class8 Password Policy

1class16

(b) 1class16 Password Policy

3class12

(c) 3class12 Password Policy (d) 4class8 Password Policy

Fig. 4   Comparison based on different password policies
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8.3 � Password Design Methods Evaluation

The passwords based on the proposed design methods in Sect.  4 were gener-
ated by taking personal user inputs and adding a fair amount of randomness over 
that. We designed scripts for every method and successfully created around two 
hundred passwords in each category. We analyzed each of the methods on vari-
ous meters and different scales. These methods have also been compared with 
the methods proposed by authors in [23]. Figure  5a compares the result based 
on the scale of length. It clearly illustrates that the proposed methods (one, two, 
and three) edge over the existing methods. Figure  5b draws a further compari-
son based on the compliance of the methods (four, five, and six) and successfully 
generates stronger passwords. Figure  5c and d evaluates the methods based on 
existing and proposed metres. The result illustrates a better performance of the 
proposed algorithms.

The proposed policies consider entropy one of the strengths but not the suffi-
cient condition for a secure password. The rules mingle the key spaces integrating 
PII to make memorable passwords. A large sample of generated passwords is then 
tested for guessing attacks. The attacks are carried in various scenarios like locking 
and throttling service providers’ environments, SSH login, or even relaxing those 
assumptions. It easily passes both the level 1 and 2 criteria of password certifica-
tion. Level 1 demands a minimum of 1024 attempts, while level 2 asks for 16,284 
attempts. With high processing GPU available, these numbers are not enough. We 
also considered another attack scenario of a 50% leak, where the attacker has access 
to half of the keyspace. However, the generated passwords using the proposed poli-
cies require significantly more severe attempts.

9 � Conclusion and Future Work

This paper presented a password monitor with modeling, generation, and estima-
tion frameworks. The password generation techniques use a bi-directional genera-
tive adversarial network (BiGAN), which successfully generated an equal number 
of new unseen samples in 1,00,000 epochs, nearly half computationally intensive 
to the existing techniques. We also listed some password creation policies based on 
functional patterns, high entropy by adding a fair amount of randomness. The pro-
posed methods allow users to take personally identifiable information for designing 
memorable passwords. These policies helped to gain a 5% to 10% surge in creating 
strong passwords. A password strength estimation scheme based on the weighted 
evaluation by a one-class SVM and tuned LSTM has been proposed. It successfully 
classified the most vulnerable passwords as weak and marked only 16% of the test 
set as strong passwords. The proposed BiGAN technique can be extended as a multi-
task GAN with more inputs to the discriminator, aiming for targeted classification 
and generation.
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Table 2   Password-strength estimation

Password Pars zxcvbn LPSE Our model

$ANju8820 Very strong Strong Strong Weak
Kundan@#1994 Very strong Medium Medium Good
JAY!@#882037820 Very strong Strong Medium Good
Bhavendra206 Strong Good Weak Weak
8963343643 Weak Weak Medium Medium
25081998@devil Strong Good Strong Weak
lucy@!#9863 Strong Weak Weak Weak
Sirdhar123456!@ Strong Good Medium Medium
lovemysoul Weak Weak Weak Weak
liveThelife@1231224 Strong Strong Medium Medium
netdome8752dxja Strong Good Medium Strong
amazon2345da Good Good Medium Medium
SANjgaydyatig Good Strong Medium Strong
Riya@199578fdjy Strong Good Strong Weak
juhiGyani@kichkich Strong Strong Medium Weak
Shikhatek+457674 Strong Good Strong Medium
JyotiKhateN1235 Strong Good Medium Weak
PiyaDon45678 Strong Medium Medium Weak
RiyaJay14758788534 Strong Strong Medium Medium
123456789 Weak Weak Weak Weak
987654321 Weak Weak Weak Weak
am1AStrongPassword# Very strong Strong Strong Weak
11@Mushtehara Very strong good Medium Strong
@nebullae Very strong Weak Weak Medium
!ThereisnoHope12! Strong Strong Strong Strong
Creator@92 Strong Weak Weak Medium
ds101@iitpnitrkl Very strong Strong Medium Strong
Xiaomi Redmi Airdots Strong Medium Medium Medium
joinstar1Q! Strong Medium Strong Medium
Indianlovesindia@9371 Very strong Strong Strong Strong
@Enjoy321# Very strong Weak Medium Medium
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