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Abstract
The exponential increase in Internet of Things devices on the Internet causes a del-
uge of traffic at the cloud. Most of the traffic data is redundant. However, fog com-
puting solves the problems by processing data at the network’s edge. Lately, the fog 
layer is a target of cyberattacks, due to its resource constraints. In this paper, we 
proposed a lightweight, human immune, and anomaly-based intrusion detection sys-
tem (IDS) for the fog layer. The proposed system achieves low resource overhead by 
distributing the IDS functions among the fog nodes and the cloud. We obtained an 
accuracy of up to 98.8%. Also, we recorded a 10% reduction in the energy consump-
tion of the fog node when compared with deploying a neural network on the fog 
node.
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1  Introduction

Lately, there is an exponential rise in the deployment of IoT devices. By 2020, the 
number of devices connected to the internet may reach 50 billion [1]. Also, the vol-
ume and velocity of data received by the cloud have been increasing exponentially. 
Thus, leading to the degradation of the quality of services provided by the cloud. 
However, forty percent (40%) of IoT-generated data can be analyzed at the network’s 
edge that is physically close to the IoT nodes [2]. This discovery led to the develop-
ment of fog computing (FC).

FC (see Fig. 1) is a system where computing devices are placed physically close 
to the end-user devices (Things) to process data on behalf of the cloud. Thus, reduc-
ing latency. Any device with computing, storage, and network connectivity can be 
deemed a fog node/device [3]. The fog and the cloud layers complement each other. 
They provide interdependent and mutually beneficial services that make communi-
cation, computing, control, and storage possible throughout the system. Therefore, 
the security of the fog layer cannot be overemphasized. A compromised fog layer 
can lead to access of users’ vital information or denial of service.

For example, Li et al. [4] demonstrated how a Man-in-the-Middle attacker could 
eavesdrop or compromise an IoT-fog network. The authors show how attackers can 
place themselves between the cloud and the fog nodes, thereby intercepting any 
information sent between them. Stojmenovic and Sheng [5] argued that since the fog 
nodes are physically close to the IoT layer, attackers can physically tamper with the 
fog nodes. More examples of attacks on FC systems have been extensively discussed 
in [6].

Fig. 1   Fog computing structure
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Traditional security systems such as firewalls and anti-viruses have limita-
tions: They only block attacks, but they cannot detect security breaches [7]. Hence, 
researchers propose intrusion detection systems (IDSs) or intrusion detection and 
prevention systems (IDPSs). An IDS is a reactive system that can detect behaviors 
attempting to compromise the confidentiality, integrity, or availability of a resource 
[8]. An IDPS (also known as Intrusion Prevention System (IPS) [9]) is a proactive 
system that identifies potential threats and tries to stop them before they occur [8]. 
An IDPS permits or blocks traffic base on a set of rules [7]. They observe and record 
events in the network, and they notify the network administrator [10].

In this paper, we propose a network-based, anomaly-based IDS for FC. The 
system mimics the human immune system. It models the white blood cells (Leu-
kocytes) behavior, which allows it to provide security with minimum overhead. It 
also achieves lightweight by distributing detection roles to different components of 
the FC network. Thus, allowing the fog nodes to provide services to the IoT layer 
with little overhead. The proposed IDS finds application in static distributed FC. An 
example of such applications are network access points (AP) that serve as fog nodes 
[11]. The proposed system can also be used in time-critical industrial IoT applica-
tions [12]. The main contributions of this paper are as follows; 

1.	 The paper proposes a modified human immune-based IDPS for FC networks using 
OMNET++.

2.	 The proposed IDPS mimics both granulocytes and monocytes in the leukocytes 
to improve the system’s accuracy.

3.	 Also, the paper shows how distributing the functions of the different components 
of the leukocytes to the different components of an FC network reduces energy 
consumption and latency of the system.

The remaining parts of this paper are as follows: Sect. 2 presents a literature review 
of the IDS/IDPS in FC. Section 3 presents our proposed system. Section 4 discusses 
the experiments and simulations carried out, and the results obtained, while Sect. 5 
concludes the paper.

2 � Literature Review

Currently, FC is gaining interest among researchers. Fog nodes (FGNs) are physi-
cally closer to the IoT layer, making them more vulnerable than the cloud layer. In 
addition, the FGNs are resource-limited compared to the cloud. As such, it is impos-
sible to apply traditional IDS techniques to them. Table 1 shows a summary of the 
latest IDS in FC discussed in this section.

Generally, IDS can be classified (base on detection) into two broad categories: 
anomaly—and signature-based. An anomaly-based IDS detects intrusion by detect-
ing abnormal activities in the system, while signature-based IDS looks for tell-tale 
signs of a particular attack. Otoum and Nayak [13] proposed an IDS for IoT that 
combines both techniques. The system achieved a 96.9% detection rate when tested 
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on the NSL-KDD dataset. Almiani et  al. [14] proposed a multi-layered recurrent 
neural network for FC security. The system reached up to 92% accuracy on the NSL-
KDD dataset. They achieved high accuracy because the system has two recurrent 
neural networks (RNN) cascaded: Whenever the first detects an event as benign, it 
passes it to the second for further test. The system only considers an event normal 
when both neural networks declare it harmless. Otherwise, it is an attack. The sys-
tem is resource-demanding and has high false-positive rates due to the use of the 
two RNNs. Therefore, it is not ideal for an FC security system.

In another research, Pacheco et al. [15] achieved an accuracy of 97%. The authors 
proposed an artificial neural network (ANN) host-based IDS that monitors memory, 
CPU usage, and other hardware resources of the FGNs. Whenever there is a devi-
ation from normal activities, the alarm goes off. This system has two limitations; 
1) there are many listener processes for the system to monitor, which increases the 
energy and the latency overhead, and 2) The system observes the host processes and 
not the received packets. Therefore, the intrusion is only detected after the attack 
had begun.

To reduce the overhead associated with using traditional machine learning tech-
niques, the authors in [16] proposed the use of the decision tree technique. The 
authors used the Gini Index technique to develop their tree. The authors tested the 
system using UNSW-NB 15 datasets and found that the system has an accuracy of 
96.7%. Also, it is lightweight and accurate, but it is prone to over-fitting [21]. It is 
also unable to adapt to changes to input [22].

An alternative to ANN and decision tree techniques is the Human Immune-based 
Intrusion Detection System (HI-IDS). Several works have been carried out on HI-
IDS security systems because of their adaptability [23]. An artificial immune system 
is a group of machine learning algorithms that mimic the human immune system. 
They work base on two distinct theories; self-nonself theory and danger theory [24]. 
The self-nonself theory consists of a family of algorithms that classify all activities 
into self (non-malicious) and non-self (malicious). The technique is analogous to 
the human body’s way of differentiating cells into human cells (self) and antigens 
(non-self).

The danger theory models the signals our body generates in response to the 
unnatural death of its cells. Ou [17], proposed a danger theory host-based IDPS 
using machine learning. The system is modeled based on the dendritic cells (DC) 
and the T cells (TC). The DCs have three states; (1) immature state, which is their 
initial state, (2) semi-mature state where the system is safe, and (3) mature state 
where the DCs detect danger, then the body activates the TCs to attack the antigens. 
Unfortunately, the author failed to capture the analytic power of the TCs. Also, they 
ignored the memory T-cells, which allow the TCs to attack antigens without alerts 
from the DCs.

Wang et al. [18], proposed an IDS for industrial cloud storage using the dynamic 
artificial immune algorithm. The system is base on the self-nonself theory. The 
authors used an improved version of the Negative Selection Algorithm (NSA) [25]. 
They mimic the immune system’s strategy of filtering leukocytes that are autoim-
mune. Rather than removing the self detectors, they mutate them into non-self. The 
authors obtain a detection rate of 99.97% , when tested on the KDD 99 dataset. The 
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result shows that the immune system can provide efficient intrusion detection in an 
industrial network. However, NSA generates numerous detectors for future detec-
tions. Hence, increasing the memory requirement of the system, which disqualifies 
it for use in FC.

Hosseinpour et al. [26, 27] proposed a lightweight network-based IDS for an IoT 
system using Artificial Immune System (AIS). The network consists of IoT devices, 
edge nodes, FGNs, and the cloud server. The authors point out the large overhead 
associated with deploying AIS-based meta-heuristics like NSA and DCA. There-
fore, the authors proposed a system where; (1) The cloud is responsible for creating 
and training the non-self detectors using unsupervised clustering techniques (NSA 
in this case). (2) The fog layer analyzes the intrusion alerts received from the edge 
nodes and decides whether they false alarms by counting the number of detectors 
detecting the event. When an attack is properly detected, the FGN creates a mem-
ory cell detector capable of identifying the attack in the future. Then, the FGN dis-
tributes the memory cells to the edge nodes. (3) The detectors created by the cloud 
are deployed at the edge layer, where the network traffic is sensed, and attacks are 
detected. The authors tested the system on KDD 99 dataset, and they obtained an 
accuracy of 77%. However, the fog and the edge nodes perform the same function; 
the detectors in the fog layer are duplicated and sent to the edge. This leads to the 
duplication of memory cell detectors saved in the edge nodes, thus wasting the pre-
cious memory. Furthermore, the limited-resourced edge node cannot keep up with 
the ever-increasing number of memory cell detectors generated in a high traffic 
network.

Our paper proposes a HI-IDPS similar to that in [26, 27]. However, we consider 
each component of the network analogous to a component of the white blood cells: 
A special type of nodes in the fog layer called “IDS nodes” (IDSN) behave like 
the lymphocytes. They store detectors for future detections. The cloud uses NSA 
to develop the detectors in the form of a neural network. The use of ANN ensures 
low memory overhead regardless of the number of FGNs, the frequency –, and the 
variety of attacks. Finally, the FGNs behave like monocytes. They carry out the 
innate defense using statistical analysis on the packets before servicing them. Sta-
tistical analysis is used because of its low latency and energy overheads. The system 
achieves lightweight by distributing IDS activities to different parts of the networks. 
Moreover, the system achieves higher accuracy because each network component 
carries out detection using a different technique.

3 � Proposed System

The proposed system aims at detecting intrusions in the fog layer of a network. The 
fog layer consists of FGNs and Intrusion Detection System Nodes (IDSN) as shown 
in Fig. 2. The novelty of the proposed system is its ability to combine innate and 
adaptive immune systems in one IDS. On the innate immune system side, are the 
FGNs. In addition to providing services to the IoT layer, the FGNs use statistical 
techniques to detect malicious packets. Just like the monocytes, they then forward 
the suspicious packets’ attributes to the IDSNs for verification.
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On the adaptive immune system part of the IDS, are the IDSNs. The IDSNs use 
a pre-trained neural network classifier they are downloaded from the cloud to detect 
attacks. When an IDSN detects an attack, it first notifies the neighboring FGNs, who 
in turn blacklist the culprit IoT node. Then, it notifies the cloud/server. The cloud/
server uses the Negative Selection Algorithm (NSA) to verify the event. It then uses 
the information to update the neural network used by the IDSNs. This allows the 
IDSN to dynamically learn about new threats, which is analogous to the behavior of 
a T-cell. Sections 3.1 and 3.2 describe the functions of the different components of 
the proposed system in details, while Sect. 3.3 describes the attacker model.

3.1 � Fog Nodes

The sole function of the FGNs is to provide services to the IoT nodes. Therefore, 
the IDS added to the FGNs only carry out an innate immune system function, such 
that it does not affect the primary function of the FGNs. They observe the incoming 
traffic from the network using statistical techniques. Statistical techniques were used 
because they consume less memory and computation power [28]. However, the cost 
of using this low resource-demanding technique is lower accuracy [28]. Hence, the 
FGNs send a detection alert to the nearest IDSN for further analysis.

Figure 3 shows the activity diagram describing the IDS mechanism for the FGNs. 
When an FGN receives a packet from the IoT layer, it first checks it against a black-
list. Nodes found in the blacklist are blocked, their packets are discarded. This forms 
part of the IPS that mitigates attacks at the fog layer.

However, packets that are not from the blacklisted nodes are tested using statisti-
cal techniques to determine whether they are malicious. Those that are found to be 
non-malicious are serviced, and the results are replied to the respective senders. But, 

(a) The Network Topology of the Proposed
System

(b) The proposed IDPS Structure

Fig. 2   The proposed network structure of the IDPS
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malicious packets are forwarded to the IDSN for further analysis. Also, the FGN 
suspends communication with the node until the IDSN vindicates it. In addition, 
the IDSN periodically sniffs packets and tests them. If the IDSN sniffs a malicious 
packet, it notifies its neighbors so that they can blacklist the culprit. However, if the 
node is benign, the sniffed packets are discarded.

3.2 � Intrusion Detection System (IDS) Nodes

The IDSNs simulate the lymphocytes (i.e., the T Cells, B Cells, and NK Cells). This 
is achieved with the help of neural networks, which the IDSN downloads from the 
cloud as an update. One might wonder why a neural network classifier? Neural net-
work is chosen because of its accuracy [15]. In our analogy with HIS, the neurons 
in the ANN emulates receptors of the lymphocytes. The neural network allows the 
cloud to compress information about the attack surface. Thus, reducing memory 
overhead compared to detectors used in [19]. Another merit of this technique is that 
the cloud obtains information about possible attacks from all IDSNs in the network. 
As such, the generated neural network has a global knowledge of the attack space.

Fig. 3   Activity diagram for the fog nodes
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In addition, the IDSNs are responsible for intrusion prevention by blocking mali-
cious nodes from the network; when an FGN detects anomalous behavior in the net-
work, it informs the nearest IDSN. The IDSN checks the event. If the behavior is 
malicious, the node is blacklisted. Also, other FGNs in the network are informed to 
blacklist the node. Otherwise, the FGN that sends the request is informed that the 
node is non-malicious.

A summary of the IDSNs’ activity is shown in Fig.  4. The IDSNs sample the 
packets in the network. The sniffed packets are tested; if an IDSN detects a mali-
cious packet, the IDSN sends it to the cloud for further verification. If the cloud 
affirms that the node is malicious, the IDSN blacklists it. Also, the IDSN notifies all 
neighboring FGNs so that they blacklist the node. However, if the node is not mali-
cious, the IDSN removes it from its blacklist. Then, the IDSN notifies the FGNs to 
remove the node from their blacklists.

3.3 � Attacker Model

Figure 5 shows the attacker model considered in the development of the proposed 
system. The following are the characteristics of the attackers:

–	 The attackers resides in the IoT layer and the attack(s) arrive randomly with an 
inter-arrival time of following an exponential distribution.

Fig. 4   Activity diagram for the IDS nodes



	 Journal of Network and Systems Management (2022) 30:11

1 3

11  Page 10 of 27

–	 The attacker(s) possess large amount of resources, which are more than those 
possessed by both the FGNs and the IDSNs. However, their resources are less 
than that of the cloud.

–	 The attacker(s) can communicate with the FGNs. But they cannot access the 
IDSNs, because the IDSNs only communicate with the FGNs.

–	 Also, the attacker(s) and other IoT nodes in the IoT layer cannot communicate 
directly with the cloud. Rather, all requests are serviced through the FGN

4 � Discussion of Results

In this paper, we assume the FGNs are made from Single Board Computers (SBCs), 
which is in line with the latest trend [29, 30]. As such, we carried out experiments 
to obtain their transmission and computational characteristics. The data obtained is 
then used in simulating the proposed system. For this reason, this section is broken 
into three subsections; Sects. 4.1 and 4.2 discuss the experiments and the simula-
tions respectively, while Sect. 4.3 compares the performance of the proposed system 
with that of similar systems in the literature.

4.1 � Experiment

Here, we obtain the characteristics of the SBCs to enable us to simulate the IoT 
layer, the Fog layer, and the Cloud layer. The IoT layer is required for the simula-
tion because attacks and service requests come from there. The cloud layer helps the 
FGNs with services they cannot provide. It also validates the possibility of an intru-
sion for the IDSNs.

For IoT layer, Orange Pi (OPi) Lite was used [31]. We chose an OPi because its 
hardware is similar to that of an average smartphone, which makes it a good candi-
date to simulate the characteristics of the IoT layer. The OPi is an open-source SBC, 
which can run on either Android 4.4, Ubuntu, Armbian, or Debian Image. It uses the 
Allwinner H3 1.2 GHz quad-core Cortex A7 SoC as a processor and 512 MB DDR3 
SDRAM main memory.

Fig. 5   Block diagram of the 
attacker model
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For the fog layer, the Raspberry Pi (RPi) model 3 B+ was used [32]. We chose 
the RPi because it has more computing power than the OPi. Like OPi, RPi is an 
SBC that runs on the Linux kernel. The processor is a 64-bit quad-core ARM Cor-
tex-A53 CPU and 1 GB LPDDR2 SDRAM main memory.

The experiments aim to investigate the performance of the devices that we can 
use in the different layers of an FC system. The results obtained enable us to accu-
rately simulate the proposed system in Sect. 4.2. In the experiments, we investigated 
the devices’; energy consumption, latency and communication bandwidth, delay due 
to extracting data from packets, and delay of using ANN for intrusion detection. Fig-
ure 6 shows the setup of the proposed experiment.

As mentioned earlier, we investigated the energy and network performance of 
OPi and RPi. Then the results are used to model the IoT- and the fog layer. The 
performance of the RPi was investigated as follows; the power consumption of the 
RPi during booting and when the wireless radio is turned on were investigated. This 
is carried out by connecting the RPi in series with a ( 1� ) shunt resistor. The resis-
tor was connected along the negative line of the RPi’s power supply. This allows 
us to safely connect a voltmeter across the shunt resistor. In the case of our experi-
ment, an Arduino Nano’s analog to digital converter (ADC) was used as a voltmeter. 
Equation 3 is used in calculating the power consumption of the RPi. See Table 2 for 
definition of terms. The current (I) passing through the shunt resistor (R) is the same 
current passing through the RPi since the two are connected in series. Therefore, I 
can be obtained by dividing the voltage measured with the Arduino Nano ( VADC ) by 
R. Also, the voltage across the RPi ( VRPi ) is given by Eq. 2.

Figure 7 shows the power consumption of the RPi, which was used to model both 
FGNs and IDSNs. The power consumption was sampled every 500 ms. Figure 7a 

(1)I =
VADC

R

(2)VRPi = Vcc − VADC

(3)P = I × VRPi

Fig. 6   Experiment setup for the IoT and fog characteristics
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Table 2   Table of Notations

Notation Description

FC Fog computing
FGN Fog node
IDSN IDS node
HIS Human immune system
R Resistance of shunt resistor
I Current passing a shunt resistor as well as the load
VADC Voltage measured by the voltmeter (using Arduino ADC)
VRPi Voltage across the raspberry Pi
�fog Time it takes the FGNs to reply to a request from the IoT layer
�i_f_comm Latency due to communication between IoT and fog layer
�f_proc Latency due to processing request from the IoT layer
� Hit/Miss factor
�f_proc Latency of Fog node during data processing
�ANN Time taken by ANN to convert an input to an output
�extract Time taken to extract information from a packet
�service Time taken by the proposed system to service a request from IoT layer
TP True positive, when an attack event is correctly detected
TN True negative, when a benign event is correctly detected
FP False positives; when benign event is detected as malicious
FN False negative; when malicious event is detected as benign
Efog Total energy consumption of FGN
Eservice Energy consumed by FGN when servicing request from IoT
Edetection Energy consumed by FGN during detection
EIDS Total energy consumption of IDSN
Esniffed Energy consumed by IDS when sniffing packets
Efog−IDS Energy consumed due to communication between FGN and IDSN
Ecloud−IDS Energy consumed due to communication between cloud and IDSN

(b)(a)

Fig. 7   Power-time graph of raspberry Pi during different operation
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shows the power consumption of the RPi from the time it was switched on until 325 
s later. It was found that the power consumption of the RPi peaks at 3.5 W during 
booting. Afterward, it fell to 2.4 W when the node was idle. However, it should be 
noted that a display screen was connected to the RPi, which consumes 0.7 W [33]. 
After the operating system has finished booting, the Wi-Fi was turned on and the 
power consumption peaks at 3.6 W, but on average the power consumption is just 
above 2.5 W. The PC was pinged from the RPi, but no much difference in power 
consumption was observed. The reason is that when the Wi-Fi is listening for data, 
it is consuming nearly the same amount of power as when it is transmitting data. 
To closely observe the power consumption of the Wi-Fi, Fig. 7b was obtained. The 
figure shows a power consumption of 0.2 W on average and a maximum of 1.3 W.

Perhaps the most important parameter in FC is the latency ( �fog ). The latency of an 
FC system is shown in Eq. 4. It consists of; latency due to communication between 
IoT and fog layer ( �i_f_comm ) and latency due to processing requests from the IoT 
layer ( �f_proc ). However, if the FGN cannot process the request, a miss has occurred. 
Then the request is forwarded to the cloud. In such cases, the �fog becomes the sum 
of; �i_f_comm , the latency of processing the request in the cloud ( �c_proc ), and the 
latency of communication between the cloud and the fog layer ( �f_c_comm).

We used network performance tools to obtain the communication latency 
between an FGN and an IoT node or a cloud. Matt’s Traceroute (MTR) was used to 
measure the latency of the link between the IoT layer and the fog layer, and between 
the fog layer and the cloud layer. Figure  8 and Tables  3 and  4 show the experi-
ment results for User Datagram Protocol (UDP) and Transmission Control Protocol 
(TCP) latency for the links. Figure 8 shows the cumulative frequency curves of the 

(4)�fog = �i_f_comm + ��f_proc + (1 − �)(�c_proc + �f_c_comm)

(5)� =

{

1 if fog hit

0 if fog miss

(b)(a)

Fig. 8   Cumulative frequency curve for latency of different links in an FC network
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communications, which allows us to investigate whether the data is skewed. This is 
necessary because the latency of networks is known to be widely skewed, especially 
for Internet-based networks [34]. From Fig. 8a, it can be seen that up to 90% of the 
sample data have a little deviation from the mean. However, links involving the OPi 
(see the highlighted rows) show more deviations due to lower resources, especially 
memory. Table 3 shows a summary of latency for TCP. Therefore, in our simulation, 
we shall use the mean for links with low standard deviation, such as; RPi-Internet 
(i.e. fog-cloud), OPi-Internet (i.e. IoT-cloud), and RPi-RPi (i.e. fog-fog) links. How-
ever, the maximum latency will be used to describe the TCP latency of the OPi-RPi 
(i.e. IoT-fog) link.

Also, similar latency experiments were carried out for the UDP. This will allow 
users to simulate UDP-based FC systems. Figure 8b shows the cumulative frequency 
for a sample size of 50. Table 4 shows that the communications involving OPi (see 
the highlighted rows) have a standard deviation greater than 150. This is attributed 
to the fact that OPi is resource-constrained. Therefore, all links that are connected to 
the OPi must be modeled using the maximum latency values, while other communi-
cations can be modeled with the mean value.

Next, the bandwidth of OPi and RPi were investigated. The bandwidth of the 
nodes is important because it helps in calculating the energy consumed during the 
transmission. The network performance tool iperf was used to measure the band-
width. We investigated the bandwidth between the PC and the OPi, and between 
the PC and RPi. The tests were carried out between the SBCs and the PC because 
the PC has abundant resources. Thus, the maximum performance of each SBC is 

Table 3   Latency of TCP communication between PC, internet, Fog- and IDSN’s in a LAN

Configuration Mean (ms) SD (ms) Min (ms) Max (ms)

PC—Internet 202.94 9.09 191.48 254.53
Raspberry Pi—Internet 148.94 56.2 95.44 326.3
Orange Pi—Internet 49.41 183.62 4.6 1247.86
PC—Raspberry Pi 5.41 17.6 2.33 126.94
PC—Orange Pi 81.66 308.17 2.22 1615.85
Orange Pi—Raspberry Pi 1348.84 774.91 202.91 2007.88

Table 4   Latency of UDP communication between PC, internet, fog- and IDSN’s in a LAN

Configuration Mean (ms) SD (ms) Min (ms) Max (ms)

PC—Internet 202.94 9.09 191.48 254.53
Raspberry Pi—Internet 216.81 36.75 195.89 355.23
Orange Pi—Internet 270.95 262.22 206.16 1707.34
PC—Raspberry Pi 7.8 17.43 2.2 89.42
PC—Orange Pi 29.84 165.62 2.23 1166.41
Orange Pi—Raspberry Pi 95.34 430.97 3.46 2768.09
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obtained. A sample size of 50 was used. As can be seen from the highlighted num-
bers in Table 5, the standard deviation of the data is small (less than 10). Therefore, 
the mean values can be used.

It is known from Eq. 4 that in some cases, the latency of the fog layer depends on 
the data processing latency of the FGNs ( �f_proc ). Therefore, an experiment was car-
ried out to measure the latency ( �ANN ) of using the artificial neural network (ANN) 
by the IDSN to detect intrusion as discussed in Sect. 3.2. As shown by Eq. 6, the 
latency of detecting an intrusion is the sum of the latency of extracting information 
from a packet ( �extract ), the latency of using that information to detect intrusion using 
ANN ( �ANN ), and the latency to service the request for the IoT layer ( �service).

OpenNN [35] was used to model and train a single layer Multi-layer Perceptron 
(MLP) for the IDSN. The MLP used for this experiment has 100 neurons in the hid-
den layer, 121 input neurons, and 23 output neurons. OpenNN was chosen because 
it is flexible and lightweight. Figure 9 shows the delay and energy consumption of 
applying ANN intrusion detection on the RPi using KDD99 dataset. For the NSL-
KDD dataset, 126 input neurons, 3 hidden layers (504, 252, and 126 neurons), and 

(6)�f_proc = �extract + �ANN + �service

Table 5   Bandwidth for transmission

Orange Pi Raspberry Pi

TCP UDP TCP UDP

BW (Mbps) BW (Mbps) Jitter (ms) BW (Mbps) BW (Mbps) Jitter (ms)

Mean 46.840 1.050 0.150 49.370 1.050 3.610
Std 4.270 0.000 0.060 5.130 0.010 6.690
Min 35.900 1.050 0.085 39.400 1.030 0.195
Max 49.400 1.050 0.279 54.000 1.050 18.161

(a) (b)

Fig. 9   Performance of raspberry Pi on the basic operations of both fog- and IDSNs
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2 output neurons were used on the Scikit-learn library [36]. We experimented with 
this database, to compare the accuracy of the proposed system with some selected 
papers that carried out similar work in the literature (see Sect. 4.3).

We developed C-programming language-based packet sniffing code to obtain 
the time (i.e., �extract ) it takes the IDSN to extract information from a packet. The 
program measures �extract for each received packet. Then store it in an external file. 
The program is a modification of [37]. Figure 9a shows the distribution of the data 
obtained for both the TCP and UDP. A summary of the experiment is shown in 
Table 6. The table shows that the standard deviation is low compared to the mean. 
Therefore, the mean value can be used in the simulation.

Lastly, we investigated the latency of ANN classification ( �ANN ). The �ANN is the 
time taken from when an input is given to the ANN to when an output classifying 
the packet as malicious or benign is obtained. Table 6 shows �ANN for both KDD99 
and NSL-KDD on RPi. The results were obtained from a sample size of 120. The 
samples were uniformly randomly selected from the dataset. This allows us to obtain 
a statistically accurate �ANN . The ANN code was manually executed 120 times to 
avoid experimental errors. As highlighted in the "Std" column of Table 6, the sam-
ple has a small standard deviation compared to the mean. Therefore, the mean of 
the samples can be used in the simulation. Also, the power consumption for running 
the ANN using a loop with 1000 iteration is shown in Fig. 9b. Numerous iterations 
were used because the ANN classification has a latency of 0.94 ms ≤ �ANN ≤ 1.08 
ms. This makes it difficult for the Arduino Nano to monitor a single execution. The 
power-time graph in Fig. 9b shows that the power consumption due to ANN clas-
sification ranges from 2.25 to 2.45 W. To get the worst case of ANN impact on the 
system, 2.45 W was chosen.

4.2 � Simulations

OMNET++ was used to simulate the proposed system. OMNET++ is a C++ based 
simulator that allows for modular development of network simulations [38]. The 
simulator allowed us to investigate different aspects of the proposed system and 
allowed for easy modification where necessary.

In this paper, four (4) simulation scenarios were investigated as shown in Table 7. 
Also, Fig. 10 shows the different network scenarios simulated. The simulations were 
aimed at investigating the performance of the FC system.

Table 6   Latency of fog- and IDSN when extracting data from packet

Protocol Min (ms) Max (ms) Mean (ms) Std (ms)

UDP 0.09 0.34 0.14 0.06
TCP 0.16 0.44 0.22 0.07
ANN classification (KDD99) 0.94 1.08 0.96 0.02
ANN classification (NSL-KDD) 1.57 4.65 2.21 0.28
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To get accurate simulations, the results obtained from the experiments in 
Sect. 4.1 were used as simulation parameters. However, we obtained the accuracy 
of the negative selection algorithm (NSA), ANN, and statistical techniques from the 
literature [18, 39, 40] respectively. Tables 8 and 9 shows the parameters used in the 
simulation of the proposed system. The first column contains the components of the 
network, which includes the channels connecting the different parts of the network. 
The second column is the variable names as used in the simulation. This will come 
in handy for those studying our simulation code. Our simulation code is available 
on GitHub [41]. The third column shows the assigned values used in the simulation. 
These values were used in all experiments carried out in this paper unless mentioned 
otherwise. Finally, the fourth column gives a brief description/comment on the vari-
ables and how the values were obtained.

The simulations were carried out to investigate the performance of the pro-
posed system. Three main performance metrics were investigated, these are; accu-
racy, energy consumption, and latency. Figure 11 shows the accuracy of the differ-
ent components of the proposed system, as well as the accuracy of the system as a 
whole. Figure 11a, b show the results obtained when the KDD99 and the NSL-KDD 
datasets were used respectively. The results were recorded with a 95% confidence 
interval (CI). We found that the accuracy of the proposed system Fog_IDS_29 is 
93.96%, which is close to the IDSN accuracy of 95.0%. This is akin to using ANN 
directly on the FGN for anomaly detection without deploying the IDSN. As such, 
experiments were carried out to investigate the overhead of using only ANN on the 
FGN later in this section. When the duty cycle was increased to 67%, the accuracy 
increased to ≈ 96.71%. However, this will increase the energy consumption of the 
IDSN since its wake-up period is longer. Moreover, there are overlaps in the CI for 
Fog_Naive_10, Fog_Naive_26, and Fog_Naive_67, in both datasets. It shows that 
there is no significant difference in the setup. As such, we take Fog_Naive_10 and 
Fog_Naive_26, for further analysis.

Fig. 10   Comparison of different security setups for the FC system
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Surprisingly, the accuracy of the proposed system improved when the FGN does not 
carry out any intrusion detection. As shown in Fig. 11a, b, the accuracy of the pro-
posed system, Fog_Naive_29 and Fog_Naive_10, improved to ≈ 98.77% on KDD99 
and ≈ 96.74% on NSL-KDD respectively. Thus, there is a need for further inves-
tigation. We carried out a diagnostic test on the systems using the KDD99 data-
set. We choose one dataset since both systems show a similar trend. The diagnos-
tic test parameter investigated are; True Negative (TN), True Positive (TP), False 
Negative (FN), and False Positive (FP) (see Table 2). As shown by Eq. 7, the diag-
nostic test parameters gave us an insight into why we obtain the accuracy values 
aforementioned.

Figure  12 shows a diagnostic test of Fog_IDS_29, Fog_IDS_67, Fog_
Naive_10 and Fog_Naive_29 as Fig. 12a–c respectively. In each figure, the per-
formance of the cloud, the FGN, the IDSN, and the whole system investigated. 
The IDSN receives packets from the FGN for double-checking, and it also sniffs 
packets independently to test them. Hence, we used RX_IDS and Sniffed_IDS 
to show the IDSN’s performances when it receives packets from the FGN and 
sniffed ones. Furthermore, the y-axis is on a logarithmic scale to make the vari-
ation in the values more visible. It is vivid that the values from Fig. 12a, b show 
the same pattern. But the IDSN sniffed more packets in Fog_IDS_67. Therefore, 
the Fog_IDS_67 has slightly larger values because it stays up longer than the 
Fog_IDS_29.

Similar behavior is observed between Fig. 12c, d. Also, there is no reading for 
the FGN (labeled“Fog” in the charts) and packets received by the IDSN (labeled 
“RX_IDS”). It is because the FGN neither tests the packets nor forwards them to 
the IDSN for testing. We learn from the performance of the system in Fig. 12 that 
the improvement in accuracy seen in Fig. 11 is due to a sharp fall in False Posi-
tive cases after removing the statistics-based IDS from the FGN, which is known 
for high false alarm rates [40]. It also leads to a reduction in the false-positive 
values at the cloud and the system in general.

(7)Accuracy =
TP + TN

TP + TN + FP + FN

Table 8   Simulation parameters continued

Component Variable Value Comment

Cloud Layer cloud_accuracy 0.98 Detection accuracy of the cloud server. Obtained from 
[18]

cloud_service_time 0.01 s The latency of service provision. It depends on appli-
cation

cloud_security_time 0.0013 s The latency due to IDS detection. Obtained from 
experiment

Channel ch_IoT_fog 2007.88 ms Channel latency. Obtained from experiment
ch_fog_cloud 150.09 ms Channel latency. Obtained from experiment
ch_fog_ids 89.73 ms Channel latency. Obtained from experiment



	 Journal of Network and Systems Management (2022) 30:11

1 3

11  Page 20 of 27

Ta
bl

e 
9  

S
im

ul
at

io
n 

pa
ra

m
et

er
s

C
om

po
ne

nt
Va

ria
bl

e
Va

lu
e

C
om

m
en

t

Io
T 

la
ye

r
ar

riv
al

_r
at

e
1.

0 
s

Th
e 

m
ea

n 
ar

riv
al

 ra
te

 o
f s

er
vi

ce
 re

qu
es

ts
. T

hi
s v

ar
ia

bl
e 

is
 a

pp
lic

at
io

n 
sp

ec
ifi

c
us

er
s

10
0

Th
e 

nu
m

be
r o

f n
od

es
 in

 th
e 

Io
T 

la
ye

r
at

ta
ck

er
s

0.
1

Th
e 

pe
rc

en
ta

ge
 o

f n
od

es
 th

at
 a

re
 p

os
si

bl
e 

at
ta

ck
er

s
ID

S 
la

ye
r

id
s_

ac
cu

ra
cy

0.
95

Th
e 

co
m

bi
na

tio
n 

of
 tr

ue
 p

os
iti

ve
 a

nd
 tr

ue
 n

eg
at

iv
e.

 O
bt

ai
ne

d 
fro

m
 [3

9]
id

s_
se

cu
rit

y_
tim

e
0.

00
13

 s
Th

e 
la

te
nc

y 
du

e 
to

 ID
S 

de
te

ct
io

n.
 O

bt
ai

ne
d 

fro
m

 e
xp

er
im

en
t

T_
sl

ee
p

5 
s

Th
e 

tim
e 

(s
ec

) u
nt

il 
no

de
 st

ar
ts

 sn
iffi

ng
 a

ga
in

. I
t d

ep
en

ds
 o

n 
ap

pl
ic

at
io

n
T_

w
ak

e
2 

s
D

ur
at

io
n 

(s
ec

) f
or

 sn
iffi

ng
 ti

m
e.

 It
 d

ep
en

ds
 o

n 
ap

pl
ic

at
io

n
ha

nd
ov

er
_t

im
e

0.
00

02
 s

D
ur

at
io

n 
(s

ec
) t

o 
pr

oc
es

s a
nd

 h
an

do
ve

r p
ac

ke
t. 

It 
de

pe
nd

s o
n 

ap
pl

ic
at

io
n

id
s_

w
ifi

_p
ow

er
2.

3 
W

Th
e 

av
er

ag
e 

tra
ns

m
is

si
on

 e
ne

rg
y 

in
 w

at
ts

. O
bt

ai
ne

d 
fro

m
 e

xp
er

im
en

t
id

s_
id

le
_p

ow
er

2.
1 

W
Th

e 
av

er
ag

e 
id

le
 p

ow
er

 c
on

su
m

pt
io

n 
in

 w
at

ts
. O

bt
ai

ne
d 

fro
m

 e
xp

er
im

en
t

id
s_

bw
49

.3
70

 M
bp

s
TC

P 
ba

nd
w

id
th

 (M
bp

s)
 o

f t
he

 fo
g 

no
de

. O
bt

ai
ne

d 
fro

m
 e

xp
er

im
en

t
Fo

g 
la

ye
r

fo
g_

ac
cu

ra
cy

0.
8

Th
e 

co
m

bi
na

tio
n 

of
 tr

ue
 p

os
iti

ve
 a

nd
 tr

ue
 n

eg
at

iv
e.

 O
bt

ai
ne

d 
fro

m
 [4

0]
se

rv
ic

e_
tim

e
0.

01
 s

Th
e 

tim
e 

un
til

 n
od

e 
re

sp
on

ds
 w

ith
 so

lu
tio

n 
to

 re
qu

es
t. 

It 
de

pe
nd

s o
n 

ap
pl

ic
at

io
n

fo
g_

se
cu

rit
y_

tim
e

0.
00

13
 s

Th
e 

la
te

nc
y 

du
e 

to
 ID

S 
de

te
ct

io
n.

 O
bt

ai
ne

d 
fro

m
 e

xp
er

im
en

t
fo

g_
se

cu
rit

y_
po

w
er

2.
45

 W
Po

w
er

 c
on

su
m

pt
io

n 
du

e 
to

 ID
S 

de
te

ct
io

n.
 O

bt
ai

ne
d 

fro
m

 e
xp

er
im

en
t

fo
g_

hi
t

0.
7

Th
e 

fo
g 

no
de

s h
it 

ra
te

. I
t d

ep
en

ds
 o

n 
ap

pl
ic

at
io

n
cl

ou
d_

2_
io

t
0.

02
 s

Th
e 

tim
e 

ne
ed

ed
 b

y 
fo

g 
to

 h
an

do
ve

r p
ac

ke
ts

 fr
om

 c
lo

ud
 to

 Io
T.

 It
 d

ep
en

ds
 o

n 
ap

pl
ic

at
io

n
fo

g_
w

ifi
_p

ow
er

2.
3 

W
Th

e 
av

er
ag

e 
tra

ns
m

is
si

on
 e

ne
rg

y 
in

 w
at

ts
. O

bt
ai

ne
d 

fro
m

 e
xp

er
im

en
t

fo
g_

id
le

_p
ow

er
2.

1 
W

Th
e 

av
er

ag
e 

id
le

 p
ow

er
 c

on
su

m
pt

io
n 

in
 w

at
ts

. O
bt

ai
ne

d 
fro

m
 e

xp
er

im
en

t
fo

g_
bw

49
.3

70
 M

bp
s

TC
P 

ba
nd

w
id

th
 o

f t
he

 fo
g 

no
de

. O
bt

ai
ne

d 
fro

m
 e

xp
er

im
en

t



1 3

Journal of Network and Systems Management (2022) 30:11	 Page 21 of 27  11

(a) (b)

Fig. 11   Accuracy of different setup of the IDS system

(b)(a)

(c) (d)

Fig. 12   Results for the diagnostic test in the different components of the proposed system
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Another important factor, especially in resource-limited FC, is energy. We use the 
results obtained from Fig. 9b to investigate the energy consumption of the system. 
Figure 13a, b show the energy consumption of the FGNs and the IDSNs for the dif-
ferent simulation scenarios in Table 7 respectively. However, we ignore the energy 
consumption of the cloud and the IoT layer because they are beyond the scope of 
this paper. The energy consumption of the FGN in the Fog_ANN system shows the 
most energy consumption. Equation  8 supports the result. It shows that the total 
energy consumption of the FNG is the sum of energy consumption due to services 
it provides to the IoT layer and energy consumption due to intrusion detection. The 
second energy consumer is the system without any intrusion detection technique, 
Fog_Baseline. It consumes energy because it processes more packets than when it 
does not deploy an IDS. When it deploys an IDS, it only processes benign packets, 
while without IDS, it processes both malicious and non-malicious packets.

In summary, Fig. 13a shows that the energy consumption of the FGNs is linear. It 
is also clear that the duty cycle of the IDSN has no impact on the energy consump-
tion of the FGNs in the proposed system. Therefore, the energy consumption rate is 
directly proportional to the ability of the proposed system to accurately detect true-
negative values. This notion is plausible because the system only deepens investiga-
tion on getting a positive result (i.e., TP or FP). But, deeper investigations mean 
more energy consumption.

However, the energy consumption of the IDSNs shown in Fig.  13b mainly 
depends on their duty cycle, albeit it partly depends on the ability of the nodes to 
accurately detect true-negative packets too. We can see that the energy consumption 
of the system is linear. Also, the energy consumption is directly proportional to the 

(8)Efog =
∑

Eservice +
∑

Edetection

(9)EIDS =
∑

Esniffed +
∑

Efog−IDS +
∑

Ecloud−IDS

(a) (b)

Fig. 13   Energy consumption for different FC systems
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duty cycle in each of the results. As the duty cycle of the IDSN increased from 29% 
to 67%, the energy consumption of the system doubled. Furthermore, the energy 
consumption increased by a factor of 3 when the duty cycle of the IDSN increased 
from 10 to 29%. Moreover, the IDSN in Fog_Naive_29 saves 33% more energy than 
Fog_IDS_29, even though they have the same duty cycle. It is because, in the case 
of Fog_Naive_29, Eq. 9 has the term 

∑

Efog−IDS = 0 since there are no communica-
tions between the FGN and the IDSN.

We also investigated the latency of the proposed system. A queue was added to 
the IoT layer. When the FGN is busy, it replies with a negative acknowledgment. 
The request is then added to the queue because it is assumed that the IoT node will 
continue trying until they are serviced. In this paper, latency is defined as the time it 
takes to service a request—from the time an IoT node generates it until an FGN ser-
vices it. Figure 14a shows the performance of the queue. Figure 14b is the latency of 
service provided by the Fog layer.

A study of Fig. 14a shows the minimum queue size and the mode are zero (0), 
which means most of the time, there is no congestion in the queue. As expected, the 
Fog_Baseline scenario has the smallest value for the maximum queue size (MQS) 
at any time because it has no IDS. The two naive simulations of the proposed sys-
tem have the second least MQS because their FGNs do not carry out any intrusion 
detection. Only their IDSNs do. Moreover, Fog_Naive_10 has less MQS than Fog_
Naive_26 because its IDSN sleeps more. Thus, reducing the frequency of detection, 
which in turn reduces the notification messages sent to the FGN. Hence, the FGN 
has more time to service more IoT nodes. The highest MQS are found in Fog_ANN, 
Fog_IDS_29, and Fog_IDS_67 because their FGNs perform two activities; intrusion 
detection and servicing the IoT layer.

To investigate the latency, Fig. 14b is used. Notice that Fog_Naive_29 has lower 
latency than all the other systems. Intuitively, the Fog_Baseline should have the least 
latency, since it did not deploy IDS. As such, it has no IDS-related overhead like the 
other scenarios. But this is not the case; the FGN in the Fog_Baseline services every 
node, both malicious and non-malicious, while the FGN in Fog_Naive_29 only 

(b)(a)

Fig. 14   Performance different FC systems
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services those nodes that are non-malicious and drops packets from those that are 
malicious. In addition, it does not carry out any intrusion detection—it lets its IDSN 
do the detection. Thus, allowing it to save more time.

Also, the figure shows that the latency of Fog_Naive_10 higher than that of 
Fog_Naive_29. The reason is that Fog_Naive_10 wakes up for only 10% of the time. 
As such, Fog_Naive_29 discovers more malicious nodes per unit time compared to 
Fog_Naive_10. Therefore, it reaches a steady-state where all malicious nodes are 
blacklisted earlier. Consequently, its FGN saves more time by dropping packets from 
the blacklisted malicious nodes. Thus, increasing the service rate of its FGN.

4.3 � Comparison

In this paper, we propose a HIS-based IDS. The proposed IDPS detects intrusions 
in the fog layer and mitigates the attack by blacklisting the attacking node. In this 
section we compare the proposed system with [13, 27, 39]. These papers were dis-
cussed in Sect. 2. Furthermore, we compared the performance of the proposed sys-
tem using both KDD99 and NSL-KDD.

Table 10 shows the accuracy of the proposed system along with the accuracy of 
other systems in the literature. The results show that the KDD99 dataset outper-
forms NSL-KDD. The reason is that the NSL-KDD test set contains some classes/
labels excluded from the training set. It can be seen that our proposed system (at its 
best configuration) outperforms [13] and [39]. Its improved performance is due to 
the collaboration of the FNGs, the IDSNs, and the cloud in detecting attacks. The 
FGN asks the IDSN, and the IDSN asks the cloud to validate detection results when-
ever the results are positive.

Table 10   Comparison of the proposed system with papers in literature

a The authors provided data rate, not accuracy

IDS Accuracy (%) Latency (s) Ave queue size Dataset Source

Fog_IDS_29 93.96 6.27 1.57 KDD99 Proposed system
Fog_IDS_67 96.71 6.18 1.58
Fog_Naive_10 98.36 5.49 1.23
Fog_Naive_29 98.52 5.06 1.23
Fog_Naive_67 98.77 4.97 1.22
Fog_IDS_29 85.38 6.07 1.50 NSL-KDD Proposed system
Fog_IDS_67 90.65 6.00 1.53
Fog_Naive_10 96.74 5.18 1.21
Fog_Naive_29 96.69 4.98 1.25
Fog_Naive_67 96.14 5.19 1.22
[13] 96.90a – – NSL-KDD Literature
[39] 94.00 – – ADFA-LD
[39] 74.00 – – ADFA-WD
[27] 98.40 6.19 1.4 KDD99
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On the contrary, a lower accuracy is recorded, when the statistics-based IDS is 
deployed in the FGNs. As in Fog_IDS_29 and Fog_IDS_67, the FGNs generate 
more false-negative results. Thus, increasing the false alarm rates in the system. As 
for [13] and [39], the detection is only carried out on the FGN, which lowers the 
performance of the IDS.

Consequently, when we deployed the system in [27] in the setup in Fig. 10b, we 
found that our system is slightly faster. The proposed system has similar perfor-
mance with [27], because it deploys a similar strategy. The system carries out detec-
tion with the help of both the cloud, the fog layer, and the edge nodes. However, [27] 
is not scalable, because the system generates detectors in the resources-limited fog 
layer and IoT layer.

5 � Conclusion

In this paper, an Intrusion detection system that mimics the human immune sys-
tem is proposed. Just like the human immune system, the proposed system breaks 
down the intrusion detection technique into smaller functions. It allocates the func-
tions to the different parts of the FC system: the FGNs carry out innate immune by 
using the statistics-based IDS, while specialized IDSNs carry out adaptive detection 
using ANN. This mechanism achieves an accuracy of 98.8% in KDD99 and 96.7% 
in NSL-KDD datasets. Also, it reduces the energy consumption by 10%.

Also, it is found that the system’s accuracy improves with an increase in the duty 
cycle. However, this causes an increase in energy consumption and latency. More-
over, it is found that higher accuracy is achieved when the statistics-based IDS is 
removed from the FGN. This also reduces the energy overhead of both the IDS and 
the FGN and reduces the system’s latency.
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