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Abstract
Modern big data analysis and business intelligence applications come with high 
resource demands, along with a requirement for large data transfer between stor-
age and compute nodes. Since the available resources of a single data center might 
not be sufficient to host these applications, federated cloud systems present a prom-
ising solution. The objective of each cloud service provider in a federation is to 
maximize its own profit and to minimize its total operating cost. To achieve these 
objectives, spatial variation in the energy cost and bandwidth cost could be lever-
aged while allocating the workload. We propose a hierarchical approach for resource 
management in a federated cloud, catering to the requirements of each provider in 
the federation. We formulate the placement of a data-intensive applications as an 
optimization problem to minimize the total operating cost, including the energy and 
communication costs. We propose an algorithm to allocate the virtual components 
of a data-intensive application, in two phases; partitioning and mapping. While par-
titioning creates clusters of correlated nodes, mapping allocates the created clusters 
to data centers that minimize the total cost. Through extensive experiments in dif-
ferent scenarios, we demonstrate that the proposed algorithm achieves a significant 
reduction in the total operating cost.

Keywords Data-intensive applications · Energy cost · Federated cloud data centers · 
Resource Management

1 Introduction

The world is witnessing an enormous growth in data generation, and it is expected 
that the data generated in 2020 will be 50 times the data generated in 2011 [1, 2]. 
With cloud computing becoming the clear future of computing, data-intensive 
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applications are increasingly being deployed in the cloud to address the resource 
requirements [3, 4]. It had been reported that 71% of the cloud applications are data-
intensive applications, bringing in an income for cloud providers (CPs) to the tune 
of $126 billion [5], and this income is increasing as the cloud computing market is 
expected to touch $300 billion by 2021.1 Accordingly, it becomes increasingly chal-
lenging to manage scheduling the data-intensive applications in the cloud [6].

Data-intensive applications often involve bulk data transfer between storage and 
computing nodes, which poses a major challenge for small CPs [7]. Federated cloud 
data centers offer a promising solution for handling such applications in a scalable 
and cost-efficient manner, as they can avoid dimensioning for peak workload and 
avoid the associated resource wastage via shifting the workload to other data centers 
(DCs) in the federation [8]. Federated cloud systems aggregate the resources pro-
vided by the infrastructure of collaborating CPs into a single platform [9, 10]. They 
can increase the revenue of a CP by renting out free resources to other CPs and also 
enable elasticity in serving the workload [11, 12]. Further, federation allows a small 
CP to offer services at large and global scale without establishing new DCs, by leas-
ing resources from the other CPs [13, 14]. In addition, the geographic diversity of 
the CPs in the federation may present many other advantages, like high availability, 
low latency and cost efficiency [15].

Data-intensive applications are typically scheduled on physical servers using two 
different virtual components that are data blocks (DBs) as storage nodes, and vir-
tual machines (VMs) as compute nodes. Based on the data access patterns between 
these components, the transferred data size could well exceed 500 TB per day, 
which presents a major challenge in scheduling data-intensive applications [16]. 
The placement of communicating virtual components on a single data center is a 
potential solution to avoid latency and bandwidth cost. A single DC may not be able 
to accommodate all the virtual components of an application with large resource 
requirements [17]. Therefore, these components may be allocated across multiple 
DCs in a federation, resulting in inter-DC communication overhead, wherein the the 
data transfer cost may lead to a drastic increase in the total cost of operation (TCO) 
[7]. A recent report predicted the annual traffic between DCs to be 20.6 ZB by 2021, 
resulting in bandwidth costs to the tune of $4.45 billion [18].

Besides the bandwidth cost, the cost of energy consumed is an additional impor-
tant issue for large-scale DCs. It is reported that DCs across the globe would con-
sume 20% of the total energy in the world by 2025 [19], and it is estimated to 
account for 30% to 50% of the TCO for CPs [20]. In the U.S. alone, it is expected to 
rise up to 140 billion kWh by 2020, costing the CPs about $13 billion in electricity 
bills.2. Since the electricity price varies remarkably across different countries; rang-
ing between $60 and $250 per MWh,3 leveraging the spatial variation in the electric-
ity price would be advantageous for the CPs in a federation to reduce their operating 

1 https ://www.gartn er.com/en/newsr oom/press relea ses/2018-08-15-gartn er-says-cloud -compu ting-remai 
nstop -emerg ing-busin ess-risk.
2 https ://www.nrdc.org/media /2014/14082 6.
3 https ://en.wikip edia.org/wiki/Elect ricit y_prici ng.

https://www.gartner.com/en/newsroom/pressreleases/2018-08-15-gartner-says-cloud-computing-remainstop-emerging-business-risk
https://www.gartner.com/en/newsroom/pressreleases/2018-08-15-gartner-says-cloud-computing-remainstop-emerging-business-risk
https://www.nrdc.org/media/2014/140826.
https://en.wikipedia.org/wiki/Electricity_pricing
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costs by intelligent routing of workload [8]. While the literature focuses on only 
either the bandwidth cost or the energy consumption cost, we show that both should 
be considered to optimize the cost and performance.

In addition, the workload distribution in DCs is typically handled in a centralized 
manner, which is not scalable and not compatible with the federation requirements 
[21]. The semi-autonomous nature of each member in the federation leads to diverse 
objectives in the placement policy. To deal with this issue, we design a hierarchical 
framework for resource management and workload distribution. We also propose an 
efficient algorithm for placement of data-intensive applications in a federated cloud. 
The proposed algorithm considers the correlation of virtual components to reduce 
inter-DC communication and leverages the electricity price variations across DCs of 
the federation to minimize the cost of energy consumption.

Motivation and contributions This research is motivated by the following 
observations. First, data-intensive applications require a large amount of resources 
that could span across multiple DCs, and in this case exploiting federation is a good 
choice for small CPs. However, existing cloud management approaches do not con-
sider the semi-autonomous requirements of the federated system. Second, CPs are 
mainly interested in maximizing their profit and minimizing their operating costs. 
Energy consumption contributes a significant fraction of CPs’ operating costs, and 
it could be reduced by taking advantage of the electricity price diversity across the 
DCs. In addition, data-intensive applications may trigger large data transfer over 
WAN, wherein the cost of communication could surpass the cost of the energy con-
sumption. This requires maintaining data locality to minimize inter-DC traffic by 
carefully allocating highly communicating virtual components. Third, VM place-
ment usually consider the allocation of homogeneous VMs in isolation, which is not 
suitable when heterogeneous VMs collaborate in an application.

To address these issues, we propose a heuristic algorithm for minimizing the 
operating cost of big data applications in a federated cloud and showed preliminary 
results to demonstrate the benefits of federation [22]. The major contributions of this 
work are as follows:

– We propose a framework for resource management and workload distribution 
that satisfies the requirements of federated cloud systems, like semi-autonomy, 
privacy and scalability.

– We formulate the placement of collaborating virtual components of a data-inten-
sive application as an optimization problem to minimize the TCO, that includes 
costs of energy consumption and inter-DC communication.

– We propose an algorithm for the allocation that clusters the virtual components 
of the application based on their communication requirements and maps these 
clusters to DCs of the federation to minimize the total operating cost of the CP 
that is hosting the application. Evaluation of the algorithm using real-world data 
shows the advantages of the proposal in a federated system compared to the tra-
ditional geo-distributed cloud.

The rest of this paper is organized as follows. Section 2 discusses the literature that 
addresses VM allocation as a constrained optimization problem. We present the 
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hierarchical framework for resource management and workload distribution for fed-
erated clouds in Sect. 3. In Sect. 4, we present the optimization model and the algo-
rithm to solve it is presented in Sect. 5. Simulation results are discussed in Sect. 6 
followed by the conclusions in Sect. 7.

2  Related Work

2.1  VM Placement in a Single DC

The problem of VM allocation is mostly explored for the data center at a single site 
with minimizing the energy consumption as an objective [23]. VM consolidation is 
widely used to allocate VMs on a minimum number of physical servers and switch 
off idle servers [24, 25]. In [26], VMs that have a complementary temporal traffic 
requirements are packed in a group. Then, VMs of the same application or the same 
group are placed in nearby servers to maximize the resource utilization and mini-
mize the number of active servers. In [27], VMs of a virtual cluster are classified 
into two groups; one group where VMs are always busy, and another group where 
VMs may change to sleep mode. Accordingly, tasks are migrated between these two 
groups for trading off the energy saving and the response time. All these works aim 
to reduce the energy consumption within a single DC, where there is no diversity in 
the electricity price, and the network bandwidth is not a big issue.

2.2  VM Placement in Large‑Scale DCs

In context of large-scale DCs, the problem becomes interesting because of spatial 
variation in the electricity price across DCs. Kumar et al., in [28], proposed a meta-
heuristic approach for VM scheduling in a large-scale DCs with the objective of 
optimizing energy consumption, time, and execution cost of heterogeneous tasks. 
However, authors did not consider the energy cost variation. The work in [29], con-
sidered distributed DCs powered by different energy sources with different prices. 
The problem of VM allocation was modeled with an objective of reducing energy 
cost and carbon taxes. In [30], an algorithm was proposed to reduce the total energy 
cost in a federated cloud platform by migrating VMs to a DC where the electricity 
price is lower while considering migration cost. However, this work did not study 
large data migration. In [20], the authors proposed two algorithms for initial VM 
allocation, and for VM migration in distributed cloud DCs to minimize the energy 
cost. They also reported the trade-off between load balancing and energy cost. How-
ever, they did not consider inter-DC communication, and the cost of VM migra-
tion. Note that inter-DC VM migration is a costly operation [31], especially for data-
intensive applications where a large amount of data needs to be migrated [20, 32]. 
The work in [20] proposed an algorithm for VM allocation using a simple cost of 
running workload in the different sites of the distributed data center. The algorithm 
selects the data center with the lowest energy cost. However, it completely ignored 
the communication between VMs which affects the operating cost of the cloud 
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provider.The approach in [20] requires communication between all the data centers, 
while the information is collected in a hierarchical manner with our proposal. If the 
number of cloud providers and data centers in the federation are L and M, respec-
tively, then, the number of messages for the work in [20] would be be M2 whereas it 
would be only L +M ( L ≪ M ) in our architecture. In our proposal, the status mes-
sages are sent only on demand based on request/reply protocol, whereas they are 
exchanged periodically in [20], thereby increasing the communication overhead. 
On the whole, the literature focuses on the energy consumption cost of independent 
VMs without considering the traffic demand between them and the cost of inter-DC 
communication, that would largely affect the operating cost of a CP in federated 
platform, and the performance of user applications [33].

2.3  Placement of Data‑Intensive Applications in a Single DC

Placement of virtual components (data blocks and compute VMs) for data-inten-
sive applications should consider the traffic demand between the components of 
the application. To deal with this issue, Zhang et  al., proposed a VM placement 
algorithm for data-intensive applications in a single DC to minimize the data 
access latency [34]. They assumed that the placement of data nodes is given and 
allocate only the compute VMs. However, the allocation of both data blocks and 
compute VMs for data-intensive applications should be handled during the applica-
tion deployment. Ferdaus et  al., addressed the problem of traffic-aware placement 
of multi-tier applications in a single DC, considering the communication pattern 
between the virtual components [35]. A greedy heuristic was proposed to map the 
virtual links between the components to physical links, while satisfying the band-
width demand and minimizing the network distance. It minimizes the network traffic 
within a DC, without considering resource utilization and energy consumption cost.

2.4  Placement of Data‑Intensive Applications in Large‑Scale DCs

There are a few works that addressed the problem of deploying data-intensive 
applications in a distributed cloud environment. The work in [36] addressed the 
placement of data blocks and compute VMs in distributed DCs. They proposed a 
meta-heuristic approach based on Ant Colony Optimization (ACO) to minimize the 
network distance by selecting a subset of servers that are physically closer for VM 
allocation. They assumed that all the VMs have the same configuration and that each 
server can accommodate the same number of VMs. Gu et al. addressed big data pro-
cessing in geo-distributed DCs, considering data and task placement along with data 
transfer [37]. The problem has been formulated as MILP problem with the objective 
of minimizing the number of active servers and communication cost. However, it 
has been solved using Gurobi optimization solver which is time consuming and not 
feasible for large-scale problems. Furthermore, they assumed that all the DCs have 
equal number of servers and allocated the VMs without considering cost variation 
across the different DCs. Xiao et al., studied the distributed deployment of MapRe-
duce workload across geo-distributed DCs to minimize costs and latency [38]. The 
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problem was divided into three sub-problems including data loading, VM provision-
ing and reducer selection. Lyapunov optimization was applied for solving these sub-
problems independently. The allocation of data blocks and compute VMs was done 
separately, and the proposed solution is useful only for MapReduce applications. 
In [39], the authors proposed an algorithm that schedules data and associated tasks 
in the same DC to reduce the latency and the data transfer across the DCs, while 
achieving load balancing. However, they focused only on reducing inter-DC network 
latency to improve the performance of data-intensive applications, while they did 
not consider the cost-efficiency of resource allocation.

In the literature, most of the works focused on either minimizing the energy con-
sumption or the network traffic. We argue that deploying a data-intensive application 
in a federated cloud requires that both these factors should be considered to mini-
mize the total operating cost of the CP.

2.5  Design of Resource Management Framework

Cloud systems are mostly managed using centralized approaches [40]. In [29], it 
was assumed that the CP consists of several DCs with the information in a central 
database and the cloud broker performs the allocation based on this information. 
However, this requires a centralized view of all the resource utilization, which is 
not compatible with a federated system, where the autonomy of different CPs for 
internal management makes it difficult to maintain a central database. Similarly, in 
[41], authors introduced a central third party that is responsible for resource man-
agement and the communication with the CPs in the federation. Again, this model 
suffers from the problem of single point of failure where the entire federation fails if 
this central manager fails. In [20], a distributed approach for workload management 
across multiple DCs in different geographical areas was proposed. Every data center 
has a manager and all the managers exchange information for dynamic VM alloca-
tion. Though the idea of resource management framework is similar to our work, 
we note that in a federation, each cloud provider is autonomous with its own set of 
objectives for resource allocation. Hence, we added another layer to the management 
platform and adapted it to be compatible with the federated environment. The Fed-
erated Cloud Manager (FCM) in our proposal takes care of the privacy and semi-
autonomy requirements of the cloud providers. Hence the information exchange is 
only done between FCMs (fewer number compared to DCMs).

From the literature survey, we observed that the VM allocation was usually 
handled in a centralized manner mostly in a single DC or on a limited scale. The 
semi-autonomous nature of federated cloud environment warrants that a CP can-
not directly access the resource availability in the other CPs. Therefore, we design 
a hierarchical resource management and allocation framework for federated cloud 
systems, wherein we address the problem of cost-aware deployment of data-inten-
sive applications, taking into account both energy and communication costs. Based 
on the proposed architecture, we design an algorithm to allocate clusters of virtual 
components, instead of individual VMs, considering the inter-component traffic 
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pattern and electricity cost variation across the different DCs in the federation to 
minimize the total operating cost.

3  Hierarchical Management Framework for Federated Clouds

In this section, we propose a framework for resource allocation that is compatible 
with the requirements of a federated cloud system. Each CP is considered to be 
autonomous and has its own objectives regarding resource allocation, like cost mini-
mization, latency reduction or load balancing [40]. It may also have different allo-
cation strategies, insourcing and outsourcing strategies for renting resources from 
other CPs in the federation. All this needs to be done transparently without affecting 
the resource allocation policy. The proposed framework minimizes the information 
exchange required for workload distribution and allows each CP in a federation not 
to reveal the resource allocation strategy followed.

The federated cloud system considered here consists of multiple CPs, with each 
CP having a different number of DCs [10]. As illustrated in Fig.  1, the proposed 
framework uses two different layers for each CP in the federation. The components 
in the framework are: (i) a Data Center Manager (DCM) which serves as a local 
management layer for each DC of a CP in the federation, and (ii) a Federated Cloud 
Manager (FCM) which serves as a federation management layer, that is imple-
mented by each CP in the federation.

The DCM in each DC is responsible for managing the resources and the work-
load distribution within the DC. It communicates with the FCM of its CP to handle 
the local DC resource allocation. The functions of the DCM include: (i) sending 

Fig. 1  Proposed hierarchical management framework for federated cloud system with multiple cloud pro-
viders where each cloud provider (CP) has a federated cloud manager (FCM) and each data center has a 
data center manager (DCM). On the federation level, the communication happens between FCMs only
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updated information on the DC’s status to the FCM, (ii) receiving the workload 
requests from its CP’s FCM, and (iii) placement process inside the DC executing a 
specific consolidation algorithm. We do not discuss the placement algorithm at this 
level, as it is well studied in the literature.

The FCM of each CP in the federated cloud is responsible for communicating 
with (i) FCMs of other CPs in the federation, (ii) DCMs of the DCs that are operated 
by its CP, and (iii) the end users of the associated CP as well. Accordingly, FCM 
acts as an interface for its CP’s users. It receives resource allocation requests and 
assigns the required resources from the DCs of its CP or from the DCs of other CPs 
in the federation, that is transparent to the end user.

Consider a federated cloud with two CPs as illustrated in Fig. 1. FCMi and FCMj 
are the federated cloud managers of CPi and CPj, respectively. Three messages are 
used in the information exchange among the two FCMs as defined below. 

 (i) ReqInfo: FCMi requests the status information of CPj ’s data centers from 
FCMj. Since any FCM in the federation could allocate the DC resources, an 
FCM should request the status information of a specific DC whenever it needs 
to assign some workload to it. This can be done by sending ReqInfo message 
with a specific DC identifier.

 (ii) Status: This is a reply message from FCMj to FCMi, triggered in 
response to a ReqInfo message with the current status information, say 
{Statusj1, Statusj2,… , Statusjn} of the data centers {DCj1,DCj2,… ,DCjn} of 
the CPj.

 (iii) Submit: It is initiated by FCMi while assigning some workload to a DC of CPj.

These messages can be implemented using Simple Network Management Protocol 
(SNMP). The exact content of the status information exchanged between FCMs 
depends on the agreement between the CPs in a federation, but typically it should 
provide the minimum information required for the allocation algorithm. To suit the 
proposed algorithm in this work, we define the format of the status message as:

where DCjk is the identifier of the kth data center of the jth cloud provider, Cpujk 
is the number of CPU cores available in DCjk. Memjk and Strjk are the amount of 
memory and storage available in DCjk, respectively, and Ejk is the electricity price at 
DCjk.

On receiving a request for resource allocation, the FCM collects the status of all 
DCs across different CPs in the federation, by contacting the DCMs (for its own 
DCs) and the FCMs (for other CPs). After receiving the status information, the 
FCM coordinates with other FCMs to distribute the workload efficiently considering 
the resource availability and the operating cost.

The proposed framework can be implemented without changing the architec-
ture of the existing cloud platform. As the framework is hierarchical, it can be 
extended incrementally as more CPs join the federation. Since the status mes-
sages are sent only on demand, the framework minimizes the communication 

(1)Statusjk = {DCjk,Cpujk,Memjk, Strjk,Ejk}
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overhead. Additionally, the framework is stateless, since it uses request/reply 
paradigm and there is no state stored at the FCM. If an FCM fails, the CP can 
simply create a new FCM without any state transfer. The framework gives great 
flexibility to CPs allowing them to change their resource allocation and workload 
distribution policies autonomously and transparently.

4  Problem Formulation

In this section, we discuss the proposed optimization model for cost-aware place-
ment of data-intensive applications in federated cloud DCs. Table 1 summarizes 
the notation used. First, we state the system model and the assumptions made, 
before presenting the optimization model.

4.1  Assumptions

– We consider the initial placement of virtual components assuming that the 
resource requirement of an application is less than the total available capacity 
of the system.

– The requirements of virtual components and the capacity of the DCs are het-
erogeneous.

– The bandwidth cost within a DC is negligible, and there is no restriction on 
the bandwidth usage. The inter-DC bandwidth cost depends on the location 
[39, 42].

– The cost of a resource used is based on its energy consumption. We use the elec-
tricity price at the location of a DC as the pricing factor for CPs [37].

– FCMs exchange information that includes the DC identifier, the available 
resources in the DC, PUE, and the current electricity price (see Eq.  1).

4.2  System Model

Let ℙ denote the set of collaborating CPs in a federated cloud. Each cloud provider 
CPl in the federation has a set of data centers Dl and an FCM Fl. Let 𝔽 = {Fl, l ∈ ℙ } 
be the set of all FCMs and 𝔻 = {Dl, l ∈ ℙ } be the set of all DCs in the federated 
cloud. Each data center in the federation Dlk ∈ � is characterized by its CPU capac-
ity Cpulk, memory capacity Memlk, storage capacity Strlk, power usage effectiveness 
PUElk, and its operating cost in terms of electricity price Elk. We assume that the 
supply of these resources is controlled and can be changed by the CP. Accordingly, 
an FCM, say Fl has a freedom to announce the resource capacity available for shar-
ing at each of its data centers, say Dlk. We define the network bandwidth between 
data centers by a matrix BW|�|×|�|, where BWlk,nh represents the bandwidth of the 
link between a data center Dlk and another data center Dnh.
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4.2.1  User Request

A CP receives a request for multiple virtual components. Let ℂ be the set of all 
virtual components needed by the application, which is a union of two subsets; �, 
the set of compute virtual machines and �, the set of data blocks. Each virtual 
machine VMi ∈ � demands a number of CPU cores, VMc

i
 and memory, VMm

i
 (per 

GB), while each data block DBj ∈ � comes only with a storage demand, DBs
j
 (per 

GB).
The application request is represented as a weighted directed graph G(ℂ,W), 

where ℂ is the set of virtual components, and W is the set of weighted edges that 
represent the traffic demand between the virtual components. Figure  2 depicts 
a typical application request with squares indicating the data blocks and circles 
indicating the compute VMs. A weighted edge is directed from a source VM 
(or DB) to a destination VM, and its thickness reflects the variation in the traf-
fic demand. Data-intensive applications are usually characterized by high traffic 
between DBs and VMs, low traffic among VMs and no traffic between DBs [39]. 
We define ℂ as a multi-dimensional vector, where each dimension represents a 
type of resource; CPU, memory and storage. We represent the traffic demand by 
an adjacency matrix A|ℂ|×|𝕄|, where Aji is the data volume between DBj (or VMj ) 
and VMi. We define also a binary variable xi

lk
 to indicate whether a virtual compo-

nent VCi ∈ ℂ is placed in the data center Dlk ( xilk = 1 ) or not ( xi
lk
= 0).

Fig. 2  Graph representation of a data-intensive application request where red squares represent data 
blocks (DBs) and blue circles represent compute VMs. The thickness of an edge reflects the variation in 
traffic demand between the virtual components (Color figure online)
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4.2.2  Power Consumption

Though power consumption is usually modeled as a function of only the CPU utiliza-
tion, it was noted that the storage may consume up to 40% of the total energy of a data 
center for data-intensive applications [43]. Accordingly, we consider CPU and storage 
to consume a significant portion of power. The total power consumed by a server v is 
expressed as [44]

where BPv is the base power consumption of a server v, and FPr
v
 is the power con-

sumed by a resource r of a server v at its full utilization. r ∈ {CPU, Storage} is the 

(2)SPv = BPv +
∑

r

FPr
v
×
Ur

v

Cr
v

Table 1  Notation used in the 
model

Symbol Description

ℙ Set of cloud providers in the federation
� Set of federated cloud managers in the federation
� Set of data centers in the federation
Dl Set of data centers in the lth cloud provider
Dlk The kth data center in the lth cloud provider
Cpulk CPU capacity of data center Dlk

Memlk Memory capacity of data center Dlk

Strlk Storage capacity of data center Dlk

Elk Electricity price at data center Dlk (in $/KWh)
PUElk Power usage effectiveness at data center Dlk

mlk The number of servers at data center Dlk

Plk Power consumption of data center Dlk (KWh)
dlk,nh Cost of data transfer between Dlk and Dnh ($/GB)
BWlk,nh The bandwidth of the link between Dlk and Dnh (Gbps)
ℂ Set of virtual components
� Set of virtual machines
� Set of data blocks
VMc

i
CPU demand of ith virtual machine

VMm
i

Memory demand of ith virtual machine
DBs

j
Storage demand of jth data block

xi
lk

Virtual component i assigned to data center Dlk

Aji Traffic demand between two components j and i (GB/h)
SPv Power consumed by server v (in KWh)
BPv Base power consumed by server v when idle
FPr

v
Power consumed by resource r in server v at full utilization

Ur
v

Utilization of resource r in server v
Cr
v

Capacity of resource r in server v
yv binary variable that indicates if server v is used or not
t The running time of the application (in h)
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concerned resource, Ur
v
 and Cr

v
 are the utilization and maximum capacity of the 

resource r in a server v. The power consumption of an entire data center Dlk also 
includes the power consumed by the other data center facilities, such as cooling sys-
tem, that might account for 50% of the total energy based on the location [43]. We 
define the total power consumed (KWh) at a data center Dlk housing mlk servers as

where yv is a binary variable set to unity when the server v is being used and PUElk 
is the power usage effectiveness of a data center Dlk.

4.3  Optimization Model

Next, we define the cost components considered in the formulation of the optimiza-
tion problem.

4.3.1  Energy Cost

The cost incurred by power at a data center Dlk can be obtained by multiplying 
power usage Plk of Dlk (Eq. 3) with the electricity price Elk ($/KWh). The energy 
cost incurred by the federation per hour ( $∕h ) is defined as

4.3.2  Communication Cost

Comparing to inter-DC bandwidth cost, the communication cost is negligible for 
virtual components within a DC [39]. We define the communication cost due to 
data-intensive applications deployed within the federation CC as

where Aij is the data transfer requirement between VCi and VMj (in GB/h) and dlk,nh is 
the data transfer cost between Dlk and Dnh ($/GB).

Using all the cost factors considered above, we formulate the optimization model 
as

subject to

(3)Plk =

mlk∑

v=1

SPv × yv × PUElk
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Plk Elk

(5)
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Dnh ∈ 𝔻
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i∈ℂ

∑

j ∈ 𝕄

xi
lk
x
j
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Aij dlk,nh

(6)�������� (EC + CC) t
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Equation 6 minimizes the cost of both the energy consumption and the communica-
tion for time t (h); since we consider pay-as-you-use pricing model. The constraint 
in Eq.  7 makes sure that every virtual component is assigned to one and only one 
DC. Constraints in Eqs. 8 and 9 describe that the CPU and the memory used by all 
VMs allocated to a data center Dlk should not exceed its CPU and memory capaci-
ties, respectively. In the same way, Eq.  10 shows that the storage used by all DBs 
allocated to a data center Dlk should not exceed its storage capacity. Equation  11 
represents the limited bandwidth constraint. It describes that the cumulative traf-
fic requirement between the set of virtual components placed at a data center Dlk 
and the set of virtual components placed at another data center Dnh cannot exceed 
the bandwidth of the link between these two data centers. Equation 12 defines the 
domain of variables of the problem.

This problem is a variant of the vector bin packing problem where the items (i.e., 
VMs) are packed into bins (i.e., data centers), such that the vector sum of the items 
received by any bin does not exceed the bin’s (resource) limit. The vector bin pack-
ing problem and its variants are NP-hard problems [45, 46]. Therefore the problem 
considered in this paper is NP-hard [7]. In the next section, we propose a heuristic to 
find a near-optimal solution.

5  Proposed Algorithm

In this section, we propose a cost-aware algorithm for allocating virtual components 
of a data-intensive application in a federated cloud. It minimizes the total operat-
ing cost by taking advantage of the electricity price diversity across various DCs 
in a federation to minimize the cost of energy consumption. It assigns correlated 
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virtual components to the same DC, reducing the WAN traffic. In most of the real-
world applications a group of VMs communicate to perform a specific task, where 
intra-task communication is higher than inter-task communication. Based on this, 
the algorithm considers the traffic pattern of the application and allocates clusters 
of virtual components instead of individual components. This algorithm runs in 
two phases; Partitioning and Mapping, as illustrated in Fig.  3. Partitioning phase 
partitions the request graph, shown in Fig 2, to clusters based on the traffic density 
between the nodes, that reduces inter-DC communication and bandwidth cost. The 
Mapping phase allocates clusters of virtual components to a DC with a minimum 
energy cost to minimize the operating cost. The algorithm is executed by the feder-
ated cloud manager that receives the application request.

Algorithm 1 lists the steps in the proposed heuristic, named Cost-Aware Virtual 
Components Allocation (CAVCA). Without the loss of generality, let us consider 
that the cloud provider CPn ∈ ℙ is providing the service of data-intensive applica-
tions deployment to users, and its FCM Fn runs the algorithm to allocate the required 
resources for an application request. The algorithm takes as an input Dn ; the set of 
local data centers, �  ; the set of FCMs of CPs in the federation, and G; the graph of 
the application request. The algorithm returns AllocationMap as the output which 
includes the mapping between the virtual components and DCs of the federation, 
Dlk ∈ �.

In the initialization phase (Lines 1–6), DClist contains all the DCs in the federa-
tion, with only local data centers Dn to start with. BestDC is the DC with the lowest 
energy cost, but has resources for sharing. Clist has clusters of virtual components 
not assigned to any DC. Bestcluster is the cluster with the highest resource demand in 
Clist (the largest cluster). The resource demand of a cluster of virtual components is 

Fig. 3  The Data Flow Diagram of the proposed algorithm which allocates the virtual components of a 
data-intensive application, in two phases; partitioning and mapping. The algorithm is executed by the 
Federated Cloud Manager (FCM) of the Cloud Provider (CP) which provides the service of data-inten-
sive applications deployment to users (e.g, CP

1

 ), after receiving an application request
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the total demand across all virtual components of the cluster. AllocationMap con-
tains pairs of assignment; ( VCi, Dlk ), where a virtual component VCi is assigned to a 
data center Dlk.

When an FCM, say Fn gets an application request (as graph G), it contacts its DCMs 
to get the status (lines 7–8). It also contacts the other FCMs to collect information about 
the status of all DCs in the federation (lines 9–12). Fn combines all the received status 
messages and creates DClist. CAVCA sorts the DCs in ascending order with respect to 
the electricity price (line 13) and selects the BestDC, having lowest electricity price, for 
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placing virtual components (line 14) to minimize the energy cost. Initially, the algo-
rithm attempts to schedule the entire application to one DC to eliminate the bandwidth 
cost. Hence, it starts with the entire request graph G as one cluster (line 15). If it is not 
possible to do the same G is partitioned.

The algorithm executes the allocation process by mapping big clusters of correlated 
virtual components to the current BestDC and partitioning the smallest cluster, when 
no cluster from Clist can be placed in BestDC, by repeating the steps until all virtual 
components are placed (lines 16–36). First, CAVCA sorts the list of clusters Clist in 
descending order according to resource demand and takes the largest cluster with the 
highest resource demand for allocation (lines 17–18). Note that DCs in the federated 
cloud are used by multiple CPs simultaneously. Thus, Fn checks the resource availabil-
ity in a data center Dlk from the corresponding FCM, whenever it needs to assign some 
workload to Dlk, and that is before submitting the allocation request to that FCM (lines 
21–22). CAVCA scans the sorted Clist in order and assigns to BestDC, the clusters that 
can be placed there based on the resource availability (lines 23–32). The algorithm 
checks the availability of CPU, memory, and storage resources in BestDC (line 23). It 
also checks the availability of the required network bandwidth of Bestcluster (line 24). 
It calculates the sum of the edges between the virtual components of Bestcluster and 
the virtual components that are already placed in a DC (e.g. Dlk ), and compares this 
sum with the available bandwidth between BestDC and Dlk to satisfy the traffic require-
ments of the virtual components of the cluster Bestcluster. In case, BestDC has available 
resources but no cluster in Clist can fit into it, then Fn calls Partitioning function (Algo-
rithm 2) to partition the smallest cluster, the last one in Clist (lines 33–34). If the cur-
rent BestDC does not have free resources, Fn selects the next one based on the electricity 
price (line 36). This process is repeated till all the clusters are placed to get the alloca-
tion map (line 37).

Algorithm 2 lists the steps of Partitioning phase, that takes as input c, the cluster 
which need to be partitioned and a weight range � for edges to be removed in each itera-
tion, and it returns smaller clusters. The algorithm iteratively removes (lines 5–8) from 
C all edges with weight less than or equal to a threshold, till C becomes disconnected 
( nc > 1 ). If the range � is very small, the number of iterations in Partitioning becomes 
large. On the other hand, if � is large, then the algorithm would remove huge number 
of edges and the number of clusters would be large. We chose � based on the variation 
in traffic demand between virtual components. We normalize the traffic matrix A, such 
that the traffic demand between virtual components is in the range [0,1]. We define �, 
the range of edges to be removed in each iteration as 0.1. This algorithm minimizes 
inter-DC communication by containing traffic inside a cluster and minimizing the traf-
fic between clusters.
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5.1  Complexity Analysis

Let the number of data centers in the federation be M and the number of virtual 
components in the request be N. The size of traffic matrix A is N2. The algorithm 
sorts the list of data centers once in mathcalO(M log(M)) time. Then, it divides the 
request graph containing N virtual components recursively to create clusters where 
every time Partitioning needs to scan the matrix A. Accordingly, the complexity of 
the graph partitioning is mathcalO(N2 log(N)). As ( N ≫ M ), the overall running 
time of the algorithm is in mathcalO(N2 log(N)). Regarding required memory, the 
algorithm needs to store DClist, the list of data centers in the federation, and the 
request graph which includes the set of virtual components and the traffic matrix. 
Therefore, the space complexity of the algorithm is in mathcalO(M + N + N2) ; that 
is in mathcalO(N2).

5.2  Cost of Running the Algorithm

It is very important to ensure that the cost of running the algorithm does not exceed 
the amount of saving in the cost of hosting the data-intensive application. The pro-
posed algorithm collects the status information of all data centers of the federation. 
Then, it partitions the application request graph to clusters of correlated virtual com-
ponents and maps the created clusters to DCs to minimize the operating cost. There-
fore, the cost of running the algorithm can be modeled as two components; (i) the 
cost of data transfer due to exchange of status information messages, and(ii) the cost 
of computation to find the best placement.

5.2.1  Cost of Communication

First, the algorithm requires the status of all data centers in a federation with L cloud 
providers, where each FCM sends the status information of its data centers, which 
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involves M + L number of messages. During the placement of the clusters, check-
ing the resource availability in each data center requires on an average log(N) mes-
sages. Accordingly, the total number of messages required to run the algorithm is 
M + L + log(N).

5.2.2  Cost of Computation

The algorithm sorts the list of data centers which requires M log(M) operations. 
The request graph containing N virtual components is divided recursively to cre-
ate clusters. Partitioning requires N2 log(N) instructions. Hence, the total number of 
instructions is M log(M) + N2 log(N).

Therefore, we define the total cost of running the algorithm to be

where Statussize is the size of a Status message defined in the manuscript which is 
not more than 20 Bytes. dlk,nh is the average data transfer price between data centers. 
VMcores, VMfreq, and VMprice are the processing rate of a virtual core, the number of 
virtual cores, and the price of the virtual machine that is executing the algorithm, 
respectively.

For instance, assume a federated cloud system with 100 data centers and a very 
large application request with about 10,000 virtual components, the number of mes-
sages will not exceed 1000 messages and the data transferred due to status exchange 
is less than 1 MB with a cost less than 1$. Also, the computing time using a VM 
with 2 cores and a frequency of 2.5 GHZ (i.e, D2d v4 Azure VM) will be in order 
of minutes (less than five minutes). As the cost of such a VM is not more than 0.120 
$/hour, the cost of computing part of the algorithm will be in terms of cents. We 
notice that the cost of running the algorithm is negligible if we compare it with the 
cost of running a data-intensive application which may run for days or months.

6  Numerical Results

In this section, we present the results of evaluating the proposed algorithm (abbrevi-
ated as CAVCA) in different scenarios. The proposed algorithm was implemented 
using MATLAB Production Server R2015a on a server with Intel Xeon processor 
and 128 GB RAM, running Ubuntu 14.04 64-bit OS.

6.1  Experimental Setup

Based on practical cloud deployments and DC locations, we implemented a feder-
ated cloud system with three CPs having eight DCs distributed across three regions 
as illustrated in Fig.  4. Each DC is labeled with a tuple indicating the CP, the 

(13)(M + L + log(N)) Statussize dlk,nh +
M log(M) + N2 log(N)

VMfreqVMcores

VMprice
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location, and electricity price (in $/KWh).4 The locations were based on those used 
by Google, Microsoft and Amazon cloud providers.5 The number of servers at each 
location is chosen at random in the range of [150–250]. All the servers have a maxi-
mum configuration of 16 cores, 32 GB RAM and 2 TB disk, but a CP can announce 
varied resource availability for sharing. The base power of a server assumed is 100 
W and the peak power of CPU and disk were 70 W and 16 W, respectively [44]. The 
bandwidth between data centers is in the range [40–100 Gbps] [47]. The data trans-
fer cost is set to 0.01 $∕GB within a region and 0.08 $∕GB across regions [48].

6.1.1  Application Request

Based on real data-intensive application instances generated by Pegasus [49], We 
evaluate the proposed approach with application requests of various size. The vol-
ume of data blocks is taken in the range [0–100] GB. The number of CPU cores 
and the size of RAM required by compute VMs are chosen from {2, 4, 8} and 
{4, 8, 16}  GB, respectively. The traffic demand between DBs and VMs is uni-
formly distributed in the range [0–2] GB/h and the traffic among VMs in the range 
[0–0.5] GB/h.

Fig. 4  Simulation setup of a federated cloud system with three cloud providers having data centers dis-
tributed in three regions. Each DC is labeled with a tuple indicating the cloud provider, the country of 
the data center, and electricity price in that country (in $/KWh). Initially, only data centers inside the 
clouds are considered, while other data centers (outside the clouds) are added later on to study the impact 
of number of data centers in the federation

4 https ://www.energ y.eu/elect ricit y_natur al-gas_price s_europ ean_union , https ://www.eia.gov/.
5 https ://www.googl e.com/about /datac enter s/insid e/locat ions, https ://azure .micro soft.com/en-in/globa 
l-infra struc ture/, https ://aws.amazo n.com/about -aws/globa l-infra struc ture.

https://www.energy.eu/electricity_natural-gas_prices_european_union
https://www.eia.gov/
https://www.google.com/about/datacenters/inside/locations
https://azure.microsoft.com/en-in/global-infrastructure/
https://azure.microsoft.com/en-in/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure
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6.2  Results

To show the advantages of considering the operating cost in the placement of vir-
tual components, we also implemented three allocation approaches used commonly 
in cloud management platforms, such as Eucalyptus and OpenStack; first fit (FF), 
best fit (BF), and worst fit (WF) [50, 51]. FF scans data centers in order of resource 
capacity and allocates a virtual component VCi to the first DC that can accommo-
date it, while BF and WF allocate VCi to the DC that contains smallest and larg-
est amount of resources available, respectively. For fairness, we used First Fit Cost-
Aware (FF-CA) approach to allocate VCi to DCs according to lowest electricity price 
[20]. In all the experiments, we consider a time duration of 24 h for calculating the 
cost. Each experiment was repeated 1000 times and the 95% confidence intervals are 
shown in the plots. All the results were normalized to the maximum value.

6.2.1  Impact of Application Request Size

To understand the impact of the number of virtual components on the cost, we eval-
uated CAVCA and other baseline approaches using the setup shown in Fig. 4, while 
varying the request size from 500 to 5000 virtual components. We assume a uni-
form PUE value of 1.2 for all DCs,6 and BestDC in CAVCA is selected based on the 
electricity price. Figure 5 shows the impact of the request size on energy cost, com-
munication cost, and the total cost. As expected, the energy cost for all approaches 
increases with the size of the request. However, the energy cost with CAVCA and 
FF-CA are minimum, because they map requests to DCs operating with cheaper 
electricity, while the other approaches are oblivious to the electricity price variation. 
CAVCA gives the similar energy cost as FF-CA, which is the optimal one in terms 
of the energy cost. It can also be seen from Fig. 5b that, the communication cost also 
increases with the application request size for all the approaches. However, the com-
munication cost is lowest with CAVCA since it creates and assigns clusters of cor-
related virtual components to a single DC. While CA-FF achieves the lowest energy 
cost, it fails to reduce the communication cost. Since CAVCA results in minimum 
energy cost and communication cost, the total cost is also the lowest as evident from 
Fig. 5c.

Figure 5a shows that, the reduction in cost with CAVCA decreases with increas-
ing requests (in terms of virtual components). This is mainly because the choice 
gets limited as the capacity limit is reached. In other words, when an FCM receives 
a very big application request that requires almost all the resources offered by the 
federation, there is no option of selecting a cheaper DC. We conclude that CAVCA 
is more useful when DCs do not operate at their peak utilization, which often is the 
case.

6 https ://www.verta tique .com/no-one-can-agree -typic al-pue.

https://www.vertatique.com/no-one-can-agree-typical-pue
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Fig. 5  Impact of application 
request size on the cost

(a)

(b)

(c)
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6.2.2  Impact of PUE Variation

To understand the impact of PUE diversity, we repeat the previous experiment by 
varying the PUE across the DCs. PUE is randomly set between 1.1 and 2,7 and we 
use PUE to select the BestDC for placement along with the electricity price. Similar 
to the earlier case, the energy cost obtained with CAVCA is 14% lower than that 
with FF-CA, as seen from Fig. 6a. This is because, CAVCA selects DCs based on 
the product of electricity price and PUE, thereby reducing the total energy cost, and 
the energy consumption as well. Similarly, CAVCA also gives the minimum com-
munication cost as seen from Fig. 6b. Consequently, the total cost is also lower as 
evident from Fig. 6c.

6.2.3  Impact of the Federation

To understand the advantages of federation, we evaluated CAVCA for two scenarios; 
federated and non-federated cloud, based on the setup given in Fig. 4. We assume 
that F1 (FCM of CP1 ) receives application requests with size varying from 500 to 
2000 (the maximum capacity of CP1 ’s data centers). CP1 can use only its own DCs 
in non federated scenario, while in federated system it can assign the workload to 
any DC that shares its resources. Therefore, the energy cost using federation is lower 
than that with the non-federated system as seen from the results in Fig. 7a. Regard-
ing the communication cost, when a single DC is able to accommodate the entire 
application request, the communication cost is zero (for instance with request size of 
500 virtual components in Fig. 7b. For larger request sizes, F1 selects a nearby DC 
within the same region in the federated scenario, while it has to select a DC in dif-
ferent region in the non-federated scenario. This increases the communication cost 
as evident from Fig. 7d. Accordingly, the total cost obtained by the algorithm using 
federation is less than that in non federated system as depicted by Fig. 7c. Further, a 
CP can accept larger requests using federation as already shown in Fig. 5.

6.2.4  Impact of Varying Data Transfer Price

Since many CPs, such as Microsoft [42], use different prices for data transfer across 
the regions, we evaluated CAVCA and other methods considering this scenario. 
Since energy cost is not affected by the change in data transfer prices, we only report 
the communication cost and the total cost. The results in Fig. 8a show almost 65% 
reduction in the communication cost with CAVCA compared to the other baseline 
methods, because of clustering used in CAVCA to reduce the traffic between DCs. 
Consequently, there is a significant reduction in the total cost with CAVCA as evi-
dent from Fig. 8b. Similarly, Fig. 9 demonstrates the performance of CAVCA for 
federated and non-federated scenarios with varying data transfer price, showing that 

7 https ://www.datac enter dynam ics.com/news/apac-data-cente r-surve y-revea ls-high-pue-figur es-acros 
s-the-regio n/.

https://www.datacenterdynamics.com/news/apac-data-center-survey-reveals-high-pue-figures-across-the-region/
https://www.datacenterdynamics.com/news/apac-data-center-survey-reveals-high-pue-figures-across-the-region/
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Fig. 6  Impact of application 
request size on the cost factors 
for varied PUE

(a)

(b)

(c)



 Journal of Network and Systems Management (2021) 29:25

1 3

25 Page 24 of 33

Fig. 7  Comparison of energy 
cost, communication cost, and 
total cost in federated and non-
federated clouds
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federation can lead to profit compared to the non-federated case, because a CP can 
select DCs from other CPs in the same or closer regions.

6.2.5  Impact of Adding Data Centers to the Federation

In this scenario, we assume that four DCs located in Korea, U.K., India and Canada 
are added in sequence to the federation shown in Fig. 4. The size of the application 
request is fixed at 5000 virtual components. Since the capacity of the first eight DCs 
can satisfy the resource demands of 5000 virtual components, the energy, commu-
nication and total costs of FF approach are constant which can be observed from 
Fig. 10. The change in energy cost of BF and WF depends on the capacity of the 
newly joined DC. The energy cost with FF-CA and CAVCA decreases while adding 
new DCs, since they exploit the variation in electricity price. Hence, they can use 
the new DC for workload allocation instead of an existing DC having higher elec-
tricity price. However, CAVCA outperforms FF-CA because it considers electricity 

(a) (b)

Fig. 8  Impact of request size on the communication and total costs, while the data transfer price varies

(a) (b)

Fig. 9  Comparison of the total cost and communication cost across the federated cloud and non-feder-
ated cloud scenarios as the data transfer price changes
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price and PUE while selecting BestDC for placement. Figure 10b demonstrates the 
communication cost when the number of DCs is increased from 8 to 12. Since we 
allocate clusters of highly correlated virtual components, CAVCA method performs 

Fig. 10  Impact of number of 
data centers in the federation on 
different cost factors

(a)

(b)

(c)
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better than the others, in terms of the total cost. CAVCA reduces the total cost when 
the electricity price varies significantly across DCs, which is true in practice.

6.2.6  Impact of Data Center Locations on the Total Cost

To study how the locations of DCs affect the operating cost of CPs in the federation, 
we evaluated CAVCA with a fixed request size of 3000 virtual components for dif-
ferent sets of locations given below:

– Set1={Switzerland, Italy, U.K., HK, Japan, Singapore, Korea, India}
– Set2={Switzerland, Italy, U.S, U.K, Canada, HK, Singapore, India}
– Set3={Switzerland, Italy, U.S, HK, Japan, Singapore, Brazil, Chile}
– Set4={Italy, U.S, U.K, Canada, HK, India, Brazil, Chile}
– Set5={Italy, U.S, U.K, Canada, HK, Singapore, Brazil, Chile}
– Set6={U.S, Canada, HK, Japan, Singapore, Korea, India, Brazil}
– Set7={Switzerland, Italy, HK, Japan, Singapore, Korea, India, Chile}
– Set8={Italy, U.S, U.K, Canada, HK, Singapore, India, Brazil}
– Set9={Switzerland, Italy, U.K, Japan, Singapore, Korea, Brazil, Chile}

Figure  11 shows the energy cost, communication cost, and the total operating 
cost obtained with CAVCA executed on different sets of DCs. Set8 gives the low-
est energy cost, since it contains eight DCs in countries having the lower electric-
ity prices. However, this choice of DCs has the fifth lowest communication cost, 
because the DCs are distributed across three different regions, that leads to higher 
bandwidth cost. Set8, Set4 ,Set2 and Set6 lead to lower energy cost since all of them 
include DCs in U.S and Canada, where the electricity is cheapest. However, Set1 
leads to lowest communication cost, since the DCs of this set are nearby. Although, 
Set2 neither has lower energy cost nor communication cost, it gives the minimum 
total operating cost. This is because, the DCs of Set2 are in regions where the inter-
connection bandwidth price is low and also they have average electricity price.

We conclude that establishing DCs in countries where energy is cheap is not the 
optimum choice, because the bandwidth cost also needs to be considered. On the 
other hand, it might be preferable to have all the data centers in a single region, but 
this is not practical. Federation system gives the best balanced solution for cost and 
global coverage at the same time.

6.2.7  Average Running Time

Average running time is a significant performance metric to evaluate a placement 
approach and to check its feasibility of being used in real-time. Figure  12 shows 
the numerical results for the running time of the proposed algorithm CAVCA. It 
increases non-linearly with increasing application size. As evident from the figure, 
for small to medium applications, CAVCA takes a small fraction of time. Even for 
a large application with 10,000 virtual components, CAVCA does not need more 
than three minutes. The time taken is negligible compared to the running time of 
data-intensive application which may take days. From the results we conclude that 
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Fig. 11  Impact of data center 
locations (grouped into sets) on 
the different cost factors

(a)

(b)

(c)
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CAVCA is cost-efficient in terms of the running time for large applications and 
hence, it can be used for on-demand data-intensive application placement in feder-
ated cloud data centers.

7  Conclusion

The work in this paper shows how to place data-intensive applications in a federated 
cloud system, using a cost-aware approach. We proposed a hierarchical resource 
management framework that caters to the requirements of the federated cloud in 
terms of semi-autonomy and privacy. We formulated the problem of virtual compo-
nents allocation for data-intensive applications in a federated cloud, as an optimiza-
tion problem to minimize the costs of the energy consumption and communication. 
We proposed a heuristic algorithm to allocate a cluster of highly communicating 
virtual components to a DC, while minimizing the operating cost. We evaluated the 
proposed algorithm using extensive simulations covering realistic scenarios. A com-
parison with the most commonly used approaches in cloud management systems 
showed significant improvement in terms of the energy cost, communication cost 
and the total cost for all cases. We conclude that CAVCA algorithm achieves a bet-
ter reduction in the total cost of operation when the cost factors vary significantly 
across the CPs in a federation and the correlated virtual components are scheduled 
together. In certain cases, CAVCA reduces the total operating cost by 60%. We con-
clude that minimizing operating cost in geo-distributed clouds for data-intensive 
applications warrants the use of federation to balance the cost and global coverage 
at the same time. We plan to extend the proposed approach to fog/edge computing 
architectures hosting delay-sensitive applications. We would like to extend the work 
to other federated cloud architectures such as, interconnected cloud and multi-cloud, 
where the service provider acts as a broker between the end user and the cloud 
(infrastructure) providers. We also would exploit the concept of “MultiCloud Tour-
nament” [52] for federated cloud management and selection of the best data center 
for the VM placement.

Fig. 12  Average running time of 
the CAVCA algorithm for differ-
ent number of virtual compo-
nents, reflecting the application 
size
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