
Vol.:(0123456789)

Journal of Network and Systems Management (2021) 29:26
https://doi.org/10.1007/s10922-021-09590-z

1 3

AAC: Adaptively Adjusting Concurrency by Exploiting Path
Diversity in Datacenter Networks

Weimin Gao1,2  · Jiawei Huang1 · Shaojun Zou1 · Weihe Li1 · Jianxin Wang1 ·
Jianer Chen3

Received: 6 September 2020 / Revised: 21 December 2020 / Accepted: 6 February 2021 /
Published online: 5 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Recent datacenter load balancing designs make full use of all available multi-
ple paths to achieve high bisection bandwidth and support the increasing traffic
demands. However, a multitude of uncertainties, such as congestion and asym-
metry, easily leads to long tailed latencies for unlucky flows on bad paths. In this
paper, we aim at adjusting the maximum number of multiple paths used by exist-
ing load balancing designs to achieve good tradeoff between the tailed latency and
link utilization. Specifically, we propose a packet-level load balancing called scheme
Adaptively Adjusting Concurrency (AAC) to spread packets across the multiple
paths, which are adaptively selected according to path diversity. AAC is deployed
at switch, without any modifications on end-hosts. The experimental results of NS2
simulation and Mininet implementation show that AAC significantly reduces the
flow completion time by ∼21–56% over the state-of-the-art datacenter load balanc-
ing designs including MPTCP, LetFlow and RPS.

Keywords  Datacenters · Path diversity · Flow completion times · Concurrency

1  Introduction

Modern data centers with thousands of servers host a variety of large-scale data pro-
cessing applications and services such as web search, cloud storage, and big-data
analytics. A rich body of datacenter load balancing schemes has emerged to improve
transmission performance for the increasing traffic over the multiple paths in multi-
rooted tree topologies such as Fat-tree [1] and Clos [2].

Equal Cost MultiPath (ECMP) [3] is the standard load balancing scheme used in
data center network. However, as randomly assigning flows across available paths

 *	 Jiawei Huang
	 jiaweihuang@csu.edu.cn

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0912-9014
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-021-09590-z&domain=pdf

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 2 of 26

using flow hashing, ECMP performs poorly due to hash collisions and low link utili-
zation. To resolve the problem, many congestion-aware load balancing schemes are
proposed. For example, MPTCP [4] uses parallel subflows to minimize packet reor-
dering and obtain high link utilization. Random Packet Spraying (RPS) [5], DRILL
[6] and Hermes [7] flexibly split flows at packet-level to make full use of all avail-
able paths.

Unfortunately, these state-of-the-art load balancing schemes do not consider the
important feature that a multitude of uncertainties widely exist in production data
centers. The traffic dynamic, topology asymmetry and switch failure arise as data
center operate over time [7, 8]. Under such uncertainties, the multiple paths become
diverse or asymmetric. When load balancing schemes scatter packets on the bad
or congested paths, the unlucky flows unavoidably experience unpredicted conges-
tion and packet disordering, resulting in long tailed latency and suboptimal network
goodput.

In this paper, we explore a self-adjusting approach AAC that selects the multi-
ple paths used by existing load balancing designs to achieve both low tailed latency
and high link utilization. To mitigate the impact of uncertainties under high path
asymmetry, AAC shrinks the number of multiple paths to avoid high tailed latency
and packet reordering. On the contrary, when the path asymmetry is low, AAC uses
more paths to spread packets to achieve high utilization and network goodput. More-
over, AAC only needs to be deployed on switch, while making no modifications on
existing TCP/IP protocols at end hosts.

In summary, our major contributions are:

•	 We conduct an extensive simulation-based study to analyze the impact of path
asymmetry on the load balancing performance. We demonstrate experimentally
and theoretically why controlling number of paths is effective in avoiding large
tailed flow completion time (FCT) and packet reordering under large path asym-
metry.

•	 We propose a packet-level load balancing scheme AAC to spread packets across
the multiple paths, which are adaptively selected according to path diversity.
AAC rationally adjusts the number of paths to improve link utilization under
small path asymmetry and reduce tailed latency under large path asymmetry.

•	 By using both Mininet testbed and large-scale NS2 simulations, we demonstrate
that AAC performs remarkably better than the state-of-the-art load balanc-
ing designs under different realistic traffic workloads. Especially, AAC greatly
reduces the tailed FCT by ∼21–56% over MPTCP, LetFlow and RPS.

The remainder of this paper is structured as follows. In Sect. 2, we describe our
design motivation. The design detail of AAC is presented in Sect. 3. In Sects. 4 and
5, we show the experimental results of NS2 simulation and Mininet implementation,
respectively. In Sect. 6, we demonstrate existing approaches. Finally, we conclude
the paper in Sect. 7.

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 3 of 26  26

2 � Background and Motivation

In this section, we present empirical studies to show the path asymmetry is very
common in the modern data centers. Then, we analyze the impact of path asym-
metry on load balancing performance and demonstrate that controlling number of
paths is effective in reducing latency under large path asymmetry.

2.1 � Path Asymmetry in Production Data Center

Modern data center networks use multi-rooted tree topologies such as Fat-tree
and Clos to enable multiple paths between host pairs. However, the multiple
paths become asymmetric under network uncertainties, such as traffic dynamic
and switch failure [9–12]. In the following, we measure the round trip time of
multiple paths in a production data center to show the wide existence of path
asymmetry.

To investigate the path asymmetry, we analyze the network trace of an uni-
versity data center in a leaf-spine architecture with 26 switches and 120 servers.
There are 10 spine switches(Huawei Quidway S9306) and 16 leaf switches(Ruijie
RGS-2928G), respectively. The uplink and downlink bandwidth of switches are
1Gbps. The university data center provides a variety of services including web
service, distributed database system and E-mail service.In the test, one host sends
1000 ping packets to other 10 application servers under different leaf switches.
Each application server responds with 100 pong messages. Then the host meas-
ures the average RTT of each path to application server. RTT distribution is
shown in Fig. 1a. The path RTT varies from 25 to 1271 μs.

In the production network, the RTT distribution is effected by the locations of
source and destination hosts [13, 14]. The RTT between servers in the same rack
is usually low. However, the network traffic changes greatly between racks, eas-
ily forming a long-tailed distribution. Figure 1b shows the RTT’s CDF. Though
the median RTT is 408 μs, there are also about 10% cases where the RTT value
becomes larger than 1 ms.

average RTT

R
T

T
 (

s)

0
200
400
600
800

1000
1200
1400
1600

Path No.
1 2 3 4 5 6 7 8 9 10

(a) RTT distribution

Total range 1246 sC
D

F

0

0.2

0.4

0.6

0.8

1.0

Round-trip time(s)
0 500 1000

(b) RTT CDF

Fig. 1   RTT measurement results in production data center

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 4 of 26

2.2 � Impact of Path Asymmetry on Load Balancing Performances

In order to explore the impact of path asymmetry on load balancing performances,
we use the NS2 simulation to test the performance of RPS, which is the typical
datacenter load balancing design already implemented on the commodity switches.
The test topology is a leaf-spine topology [15] with 10 spine switches and 2 leaf
switches. The bandwidth of each path and buffer size of each switch are 1Gbps and
250 packets, respectively. Each sender sends a DCTCP flow to a single receiver via
leaf switches with RPS scheme, which randomly spreads the arriving packets to all
10 paths. To produce the path asymmetry, we change the round trip propagation
delay of each path.

Firstly, we measure the flow completion time of 10 short flows respectively trans-
ferring 20 packets (1500 Byte per packet). We set the round trip propagation delay
of one path as 100 μs and increase RTT by RTT difference Dt . The degree of path
asymmetry increases with larger RTT difference. Figure 2a shows the flow comple-
tion time of each flow under different degree of path asymmetry. When the RTT dif-
ference is 0, all flows experience almost the same flow completion time. With larger
degrees of path asymmetry, however, more packets are blocked on the slow paths,
resulting in larger flow completion time.

Next, we set the RTT difference to 100 μs and change the number of paths used
by RPS to test the average flow completion time (AFCT). Here, the used paths are
randomly selected from 10 paths with different round trip propagation delay. The
experiments are repeated for 20 times to measure AFCT. Figure 2b shows the test
results with different number of flows. When the number of paths is small (i.e.,<
5), AFCT decreases with more paths because of the larger link utilization. However,
when the number of paths is larger than 5, AFCT becomes larger with more paths,
because the probability of packets scattered on slow paths also increases, eliminat-
ing the benefit of larger link utilization.

Finally, we test the impact of path asymmetry in the realistic workloads of web
search and data mining. In the web search workload, about 30% flows are larger than
1MB, while in data mining less than 5% flows are larger than 35MB [16, 17]. Fig-
ure 3 shows the average and 99th percentile flow completion time with increasing

Dt=0µs
Dt=50µs
Dt=100µs
Dt=150µs

F
C

T
 (

s)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Flow ID
2 4 6 8 10

(a) Change the difference of paths

A
F

C
T

 (
s)

0

0.005

0.010

0.015

Number of paths
2 4 6 8 10

(b) Change the number of flows

Fig. 2   FCT under different path asymmetry

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 5 of 26  26

number of paths. The RTT difference is 100 μs. Figure 3a shows that AFCT of both
workloads firstly declines and then arises with the increasing number of paths. In
Fig. 3b, the 99th percentile FCT shows the similar trend. This result shows that,
more paths reduce the tailed delay under small path asymmetry. However, under
large path asymmetry, more packets experience large tailed delay with more used
paths, resulting in large 99th percentile FCT.

2.3 � Summary

Based on the above analysis, we draw the following conclusions that (i) more paths
provide higher link utilization to reduce flow completion time under small path
asymmetry, (ii) more paths easily increase the tailed delay under large path asym-
metry. These conclusions motivate us to design a novel load balancing scheme that
adjusts the maximum number of multiple paths to achieve good tradeoff between
the tailed latency and link utilization. In the rest of this paper, we present our AAC
scheme as well as a prototype implementation in real testbed system.

3 � Adaptively Adjusting Concurrency

In this section, we will firstly describe the design overview of AAC. Then, we pre-
sent the details on how to measure the path delay at switch. Moreover, we theo-
retically analyze how to obtain the optimal number of concurrent paths and give the
details of adaptive adjusting the number of paths according to network congestion
state. Finally we evaluate the accuracy of model analysis by comparing the results of
theoretical analyze and simulation test.

3.1 � Design Overview

In Fig. 4, we plot the architecture of AAC, which includes the congestion detection
module and path adjustment module. Firstly, AAC measures the delay between the
source and destination leaf switch (i.e., leaf-to-leaf delay) to reflect the real-time

data-mining
web-search

A
F

C
T

 (
s)

0

0.1

0.2

0.3

Number of paths
0 2 4 6 8 10

(a) AFCT of real workload

data-mining
web-search

A
F

C
T

 (
s)

0

0.2

0.4

0.6

0.8

Number of paths
0 2 4 6 8 10

(b) 99th percentile AFCT

Fig. 3   FCT under realistic workloads

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 6 of 26

congestion state of end-to-end path. According to current and history delay informa-
tion, the paths are divided into congested paths and uncongested ones. With the path
states, AAC makes packet-level forwarding decisions for each arrival packet. Spe-
cifically, AAC calculates the optimal number of paths n based on the path diversity.
Then AAC spreads packets on n paths to balance the long tailed delay and high link
utilization.

AAC design involves several key challenges. Firstly, AAC needs to gather the
leaf-to-leaf delay to distinguish the congested and uncongested paths. Secondly, the
path adjustment strategy should cope with the rapid changes in network dynamics
with limited overhead. Finally, AAC should be compatible with existing transport
layer protocols for large-scale deployment in production data centers.

3.2 � Leaf‑to‑leaf Delay Measurement

Modern data center networks are usually organized in multi-rooted tree topologies,
in which the load balancing schemes split flows across multiple paths between the
source leaf switch and the destination one. To obtain the path congestion state, AAC
should measure the leaf-to-leaf delay between the source and destination switch.
However, though it is not hard for end host to measure the round-trip-time (RTT),
leaf-to-leaf delay measurement at switch is still a challenging task.

Traditional, delay measurement can be divided into active and passive measure-
ment. In the active measurement, the probe packets are proactively injected into
network. Though the active measurement can obtain accurate results, it inevitably
introduces additional traffic overhead. On the other hand, the passive measurement
only monitors the network traffic and measures the delay without any traffic over-
head. Due to its passive feature, however, the passive measurement potentially suf-
fers from the accuracy loss [18].

In our design, we propose an effective yet simple scheme on the leaf switch to
accurately measure the leaf-to-leaf delay without additional traffic overhead. Spe-
cifically, the source leaf switch firstly records the sequence number and departure
time of a data packet. Then, once receiving the corresponding ACK packet of the
data packet, this switch calculates the path delay by subtracting the departure time of

Input
Traffic

Data
Flow Path Congestion

Detector Module
Concurrency
Optimization

Module

Flow Intensity
Estimation

Statistical
History RTTSwitch

Packet-level
Transmission

Scheme

Routing
Descision

(Calculate n)

Output
Queues
Queue1

Queue3

Queue2

Queuen-1
Queuen-1

Path2

Pathn-1
Pathn-2

Path3

Path1

Fig. 4   The architecture of AAC​

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 7 of 26  26

the data packet from the receiving time of the ACK packet. To limit the computing
and memory overhead, the leaf switch measures the path delay every 100 μs. Fur-
thermore, since the congestion on the reverse path has negative effect on the meas-
urement accuracy, AAC lets ACK packets have higher priority than data packets to
reduce the queueing delay of ACK packets [19].

Figure 5 illustrates how to measure the leaf-to-leaf delay at switch [20]. The leaf
switch L1 scatters packets across multiple paths to the destination switch L2 . The 1st
data packet is forwarded to the core switch C2 , while the 2nd data packet is sent to
C1 . If L1 needs to measure the real-time delay of a path, it selects a data packet being
forwarded to the path as the probe packet. For example, when the 2nd data packet
arrives at L1 , it is chosen as probe packet to measure the delay of path L1 → C1 →
L2 . Then L1 records the sequence number and departure time of the 2nd data packet.
When the ACK packet of the 2nd data packet is received by L1 , L1 get the real-time
delay of path L1 → C1 → L2 by subtracting the departure time of the data packet
from the receiving time of the ACK packet. It is worth noting that the data packet
and its corresponding ACK may be transmitted on different paths. Fortunately,
whether data packet and its ACK are transmitted on the same path or not, our design
can measure global path delay.

On the other hand, though L2/L3 switch cannot track transport layer header infor-
mation like sequence number, fortunately, the commonly used switch can obtain
these information in current production data center network. For example, the
default load balancing scheme at datacenter switch is ECMP, which hashes each
flow to one path according to 5-tuple information in TCP and IP header. Therefore,
AAC also utilizes the information of TCP header (i.e., sequence number) to measure
the leaf-to-leaf delay.

3.3 � Tuning the Flow Concurrency

In the multipath transmission, a large number of concurrent paths provide high link
utilization to reduce flow completion time under small path asymmetry, while easily
suffering from the long tailed delay under large path asymmetries. Therefore, AAC
elaborately tunes the flow concurrency under different degrees of path asymmetry.
In this section, we use the continuous-time absorption birth-death Markov model to
analyze the optimal flow concurrency [21–23].

We consider the typical case that m concurrent TCP flows are transferred
on m paths, which include � bad paths and m-� good ones. For simplicity, we
assume that the round trip time of good and bad paths are BaseRTT​ and MaxRTT​

Fig. 5   RTT measurement on
switch

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 8 of 26

, respectively. According to reference [24, 25], the empirical threshold for the
MaxRTT​ is set as 2x average RTT​ of all paths. We summarize the key notations in
Table 1.

In data center, most TCP flows are very small (normally less than 100KB [26])
and usually can be finished in their slow-start phase. For example, the transfer of
a 40 KB flow only needs 5 rounds of RTT. During slow-start phase, the TCP con-
gestion window exponentially increases in every round of RTT. Given the initial
congestion window of k packets, the congestion window in the k-th round of RTT
is 2k [27, 28]. Then, for a flow with its size as Fsize packets, the total number of
RTTs r to finish transmission is

We assume that there are m TCP flows arriving at the same output of source leaf
switch and their arrival times follow a Poisson process. Given the average packet
arrival rate � and the service rate � , we get the flow intensity � as � =

�

�
.

According to the history data trace, AAC can randomly select multiple paths,
and the probability that each path becomes bad path is different. For example,
according to reference [19], each path has a less than 10% probability of becom-
ing a bad path. To simplify the analysis, we assume that there are m paths from
the source leaf switch to the destination leaf switch, and only one path is a bad
path. When the switch selects n paths from m paths, and the probability that the
switch selects bad paths is p =

n

m
.

We assume that the link capacity of one good path and bad one are C and
C×BaseRTT

MaxRTT
 , respectively. For n parallel paths, we get the average service rate � as

(1)r = log2

(
Fsize

k
+ 1

)
.

Table 1   Notations definition

Notations Implication

Fsize The size of flow
p Probability of selecting hotspot path from m paths
BaseRTT​ The round trip time of good paths
MaxRTT​ The round trip time of bad paths
FCT Flow completion time
𝜆̄ Average arrival rate
� Average service rate
� Traffic intensity of each path
C Link bandwidth
k Initial window size in slow-start
�i Average arrival rate when packet amount is i in the stationary state
�i Average service rate when packet amount is i in the stationary state
�i The traffic intensity when packet amount is i in the stationary state
pi State distribution after the system reaches equilibrium
X Degree of path diversity

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 9 of 26  26

We define the degree of path diversity X as X =

MaxRTT

BaseRTT
 , according to the birth and

death process of queuing theory, the equilibrium equation in any state can be calcu-
lated as

where i and pi denotes the number of packets and the state distribution after the sys-
tem reaches equilibrium, respectively [29].

According Eq. (3), we have

For the sake of description, we use Ci to denote �i�i−1…�0

�i+1�i…�1

 . Then distribution of the
stationary state can be expressed as

According to the probability distribution, we have

Then we have

For one queue, it follows M/M/1/∞ . Then we have �i = � and �i = � ( i ≥ 0 ).
Besides, the traffic intensity is � =

�

�
 and Ci can be expressed as (�

�
)
i . Therefore,

Eq.(7) and (5) can be rewritten as

According to the distribution of queue length in the stationary state, the average
queue length L̄ can be caculated as

(2)� = (1 − p) × n × C + p × n × C ×

BaseRTT

MaxRTT
.

(3)

⎧
⎪⎨⎪⎩

�1 ⋅ p1 = �0 ⋅ p0 i = 0

�i−1 ⋅ pi−1 + �i+1 ⋅ pi+1 = (�i + �i) ⋅ pi i ≥ 1,

(4)

⎧
⎪⎨⎪⎩

p1 =
�0

�0

× p0 i = 0

pi+1 =
�i�i−1…�0

�i+1�i…�1

× p0 i ≥ 1.

(5)pi = Ci × p0, i ≥ 1.

(6)
∞∑
i=0

pi =

(
1 +

∞∑
i=1

Ci

)
× p0 = 1.

(7)p0 =
1

1 +
∑

∞

i=1
Ci

.

(8)p0 =
1

1 +
∑

∞

i=1
�i

=

�
∞�
i=0

�i

�
−1

=

�
1

1 − �

�
−1

= 1 − �,

(9)pi =�
i
× p0 = (1 − �) × �i, i ≥ 1.

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 10 of 26

Furthermore, we can leverage the Little formula to calculate the queueing delay tq of
packets as

Combining Eq. (1) and (11), we can obtain the average flow completion time ( FCT  )
as

To get the optimal flow completion time, we calculate the derivative of FCT with
respect to n as

With Eq. (2), we calculate the derivative of � with respect to n as

Then we let
d

(
FCT

)

dn
= 0 . In the right side of Eq. (13), only d�

dn
= 0 can satisfy the

condition. It is very easy to deduce (2 × n × (1 − X) + m × X) = 0 . Therefore, the
optimal concurrency for AAC is given by:

We evaluate the correctness of the theoretical analysis by NS2 simulations. In this
test, the sender leverages TCP as the underlying transport protocol. Besides, the flow
size, MaxRTT​ and BaseRTT​ are 200 packets, 1000 μs and 100 μs, respectively. Other
parameters are the same as the experimental scenario in Sect. II-B.

When the number of paths n increases from 1 to 10, we calculate the theoreti-
cal completion time FCT for a flow with size of 200 packets. The experimental
value of FCT is consistent with the varying trend in NS2 simulation test (Fig. 6).

(10)L̄ =

∞∑
i=0

i × pi =

∞∑
i=1

i × (1 − p) × 𝜌i =
𝜌

1 − 𝜌
.

(11)tq =
L̄

𝜆
=

(
𝜌

1 − 𝜌

)
×

1

𝜆
=

1

𝜇 − 𝜆
.

(12)FCT = r × tq =
log2(

Fsize

k
+ 1)

� − �
.

(13)

dFCT

dn
=

log2(
Fsize

k
+ 1)

(1 − �)
×

1

d�

dn

=

log2(
Fsize

k
+ 1)

(� − 1) × �2
×

d�

dn
.

(14)

d�

dn
=

C

m × X
×

d((1 − X ⋅ C) ⋅ n2 + X ⋅ C ⋅ n)

dn

=

C

m × X
× (2 × n × (1 − X) + m × X).

(15)n =

{⌊
m×X

2×(X−1)

⌋
X > 2;

m 1 ≤ X ≤ 2.

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 11 of 26  26

3.4 � AAC Algorithm

Based on above analysis, we obtain the optimal number of transmission paths. How-
ever, under the dynamic network traffic, RTT may change dynamically. It is unrea-
sonable to adopt a fixed flow concurrency. Thus, we design the adjustment strategy
shown in Algorithm 1, which consists of path congestion detector module and con-
currency optimization module.

Fig. 6   Theoretical numeric and
simulation comparison theroetical

simulation

F
C

T
(s

)

0.001

0.002

0.003

The number of selected path
2 4 6 8 10

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 12 of 26

3.4.1 � Path Congestion Detector Module

The path congestion detector at the sender side of AAC periodically (e.g.100 μs) sends
probe packets to measure the congestion state. If a path has the RTT larger than 2X
average RTT of all paths, this path is deemed abnormal. Then, the abnormal path is
deleted from the available path set, and AAC recalculates the optimal number of trans-
mission path.

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 13 of 26  26

3.4.2 � Concurrency Optimization Module

When the path state changes, AAC recalculates the optimal number of paths based
on the current number of available paths, the congested paths and uncongested
paths.

As a typical flow-based multi-path algorithm, ECMP randomly hashes the flow to
one of the equivalent paths [30]. LetFlow uses flowlet as the switching granularity to
randomly send flowlets to available paths. Thus, the time complexity of ECMP and
Letflow is O(1). Since AAC needs to probe all m paths to adjust the flow concur-
rency, its time complexity is O(m). Fortunately, in the typical leaf-spine topology,
the number of leaf-to-leaf paths m is the number of leaf switches, which is not very
large.

4 � Simulation Experiment

In this section, we conduct large-scale NS2 simulations to evaluate AAC perfor-
mance. Firstly, we conduct the feature test to evaluate the basic performance of
AAC. Secondly, we test AAC performance under symmetric and asymmetric topol-
ogies. Finally, we compare performance of AAC with the other state-of-the-art load
balancing schemes such as ECMP, RPS, MPTCP and LetFlow in realistic datacenter
workloads.

4.1 � Feature Test

We firstly conduct NS2 simulations to test how AAC and RPS deal with path diver-
sity under the network uncertainty. The experimental topology is shown in Fig. 7
[31]. There are 4 available paths path1 path4 from the one leaf switch to another leaf
switch. The RTT of each path is 100 μs.The downlink and uplink bandwidth of leaf
switch is 1 Gbps.

In this test, one sending host under one leaf switch sends a flow to a receiving
host under another leaf switch. Path1 is hotspot path with latency of 500 μs. Here,
we compare the performances of RPS and AAC on the source leaf switch.

Figure 8 shows the instantaneous throughputs on path1–path4. As shown in
the Fig. 8a, RPS randomly spreads packets across all paths. Thus, the instantane-
ous throughputs of 4 paths are almost equal. However, though path1 experiences

Spine

Leaf

Fig. 7   Simple test topology

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 14 of 26

link failure, RPS still sends packets on all paths, resulting in throughputs loss on
all paths. The reason is that, when some packets are transferred on the slow path
by RPS, these unlucky packets may lead to out-of-order issue at the receiver and
thus unnecessary reduction of TCP congestion window at the sender side. As a
result, even when only one path deteriorates, the instantaneous throughputs of
four paths are decreased.

In contrast, as shown in Fig. 8b, AAC adaptively decreases the flow con-
currency once a hotspot path occurs. After detecting the RTT diversity, AAC
decreases the number of paths to 3 until it finally selects the fast paths. Since the
packets automatically avoids the slow path, the instantaneous throughputs of the
remaining three paths increase, showing good adaptability in load balancing.

Next, since most flows are short ones in data center traffic, we compare the
performances of short flows under AAC and RPS. We test 10 short flows with 100
packets in a leaf-spine topology, which has 10 paths between two leaf switches.
The round trip propagation delay of 9 paths and one hotspot path are 70 μs and
700 μs, respectively. Figure 9a shows that, since the data packets of each flow
are evenly scattered on 10 paths under RPS, the completion time of each flow
is almost same. Under AAC scheme, since the numbers of data packets passing

Path1 Path2 Path3 Path4

T
hr

ou
gh

pu
t(

M
bp

s)

0

200

400

600

800

Time(ms)
0 5 10 15 20 25 30 35 40 45 50

(a) RPS

Path1 Path2 Path3 Path4

T
hr

ou
gh

pu
t(

M
bp

s)

0

200

400

600

800

Time(ms)
0 5 10 15 20 25 30 35 40 45 50

(b) AAC

Fig. 8   RPS vs. AAC path throughput comparisons

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 15 of 26  26

through the hotspot path are different in each flow, the completion time of each
flow is different. Figure 9b shows, with the increasing number of flows, AFCT of
RPS and AAC increases accordingly. Nonetheless, AAC performs much better
than RPS.

4.2 � Performance Under Symmetric and Asymmetric Topologies

We test ACC performance under symmetric and asymmetric topologies. We use the
leaf-spine topology with four paths between any pair of hosts. Figure 10a shows
the symmetric topology, i.e., all paths have 20 μs latency and 1Gbps bandwidth.
Figure 10b shows the asymmetric topology due to latency or bandwidth difference
between paths. Under the RTT asymmetry, one path has the large RTT of 800 μs,
while the others have 20 μs. For bandwidth asymmetry, only one path experiences
the link failure and its bandwidth is decreased to 200Mbps. The switch buffer size is
100 packets.

We compare AAC with ECMP, MPTCP and RPS. ECMP is the standard flow-
level load balancing mechanism in data center. Based on the hash result of the
five-tuple in packet header, an outgoing port is selected for each flow. MPTCP [3]

RPS
AAC

F
C

T
(S

)

0

0.0005

0.0010

0.0015

0.0020

1 2 3 4 5 6 7 8 9 10

(a) 10 short-flows FCT

RPS
AAC

A
F

C
T

 (
s)

0

0.002

0.004

0.006

10 20 30 40 50

(b) change number of short-flows

Fig. 9   RPS vs. AAC comparisons

Fig. 10   Leaf-spine topology

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 16 of 26

divides a TCP flow into 2 subflows. Each subflow has its own congestion window
and uses ECMP to select its path independently.

In Figs. 11 and 12, we increase the number of flows and network load to test
AFCTs of different protocols, respectively. Figures 11a and 12a shows the test
results under symmetric topology. The average flow completion times (AFCTs) of
all schemes increase with larger flow amount and network load. Since MPTCP and
ECMP are flow-level load balancing schemes, they are hard to effectively make full
use of the available paths when some flows finish their transmissions, resulting in
low link utilizations and large AFCT. As the packet-level load balancing schemes,
RPS and AAC fully utilize the link resources and achieve low AFCT under the sym-
metric topology.

Figures11b and 12b show the test results under bandwidth asymmetry while
Figs. 11c and 12c evaluate performance of AAC under RTT asymmetry. Due to the
out-of-order problem under bandwidth and RTT asymmetry, RPS experiences long
AFCT. MPTCP obtains lower AFCT than RPS and ECMP, because the sublfows
adjust their congestion windows according to congestion state on each path, thus
achieving traffic balance without out-of-order issue. Since AAC adjusts the flow
concurrency according to path diversity, it mitigates the impact of slow path and
achieves the lowest AFCT.

4.3 � Performance of TCP Friendliness

When load balancing schemes use multiple paths to transfer flows, it is important to
ensure TCP friendliness. Here, we compare the performances of TCP friendliness

A
F

C
T

(S
)

0

0.002

0.004

0.006

M
PTCP

ECM
P

RPS
AAC

(a) Symmetric topology

A
F

C
T

(S
)

0

0.02

0.04

0.06

M
PTCP

ECM
P

RPS
AAC

(b) Link failure

A
F

C
T

(S
)

0

0.05

0.10

0.15

M
PTCP

ECM
P

RPS
AAC

(c) RTT difference

Fig. 11   Comparison of AFCT under different scenarios

MPTCP
ECMP

RPS
AAC

A
F

C
T

 (
s)

0
0.04
0.08
0.12
0.16
0.20

Load
0.2 0.4 0.6 0.8

(a) Symmetric topology

MPTCP
ECMP

RPS
AAC

A
F

C
T

 (
s)

0

0.1

0.2

Load
0.2 0.4 0.6 0.8

(b) Link failure

MPTCP
ECMP

RPS
AAC

A
F

C
T

 (
s)

0

0.04

0.08

0.12

0.16

Load
0.2 0.4 0.6 0.8

(c) RTT difference

Fig. 12   AFCT of different workload

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 17 of 26  26

under AAC and MPTCP+OLIA [32]. We build the topology with the shared bot-
tleneck shown in Fig. 13. The path delay is set to 100 μs, and the link bandwidth is
1 Gbps. Firstly, two MPTCP subflows with 1000 packets are sent from S1 to R1 . A
single TCP flow is sent from S2 to R2.

The simulation results are shown in Fig. 14a. Though two subflows share the bot-
tleneck link L2 → L3 with the single TCP flow, with the help of OLIA, MPTCP
senders couples the two subflows after detecting the shared bottleneck link. Thus,
the total throughput of two subflows is not much larger than of the single TCP flow.
Secondly, two TCP flows f1 and f2 are respectively sent from S1 and S2 , competing

S1 R1

L1 L2 L3

R2

S2

C3

C2

C1

Fig. 13   Topology for testing fairness

Single TCP
MPTCP

B
an

dw
id

th
 r

at
io

0

0.2

0.4

0.6

0.8

1.0

Time(ms)
0 5 10 15 20 25 30 35 40

(a) MPTCP VS. Single-TCP

Single TCP
AAC

B
an

dw
id

th
 r

at
io

0

0.2

0.4

0.6

0.8

1.0

Time(ms)
0 5 10 15 20 25 30 35 40

(b) AAC VS. Single-TCP

Fig. 14   Performance comparison of TCP friendliness

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 18 of 26

at the bottleneck link L2 → L3 . AAC works at L1 to balance the traffic from f1 and
f2 . Figure 14b shows that, on the bottleneck link of L2 → L3 , the throughput of f1 is
almost equal to f2 , exhibiting good TCP friendliness.

4.4 � Large‑Scale Simulation Test

We conduct large-scale simulation test to evaluate AAC’s performance under real-
istic datacenter workloads. We use a leaf-spine topology with 16 core switches and
16 leaf switches. Each leaf connects 20 end-hosts. The link capacity, the round trip
propagation delay and buffer size of switches are 1Gbps, 100 μs and 200 packets,
respectively. We set the round trip propagation delay of one randomly selected path
as 1000 μs to produce delay asymmetry. In this test, we also test the performance
of LetFlow, which uses the flowlet as the switching unit. In LetFlow, the switch
randomly assigns a available path to a new flowlet when time interval between two
adjacent packets belonging to the same flow is larger than a threshold, which is set
as 500 μs [8].

We use realistic workloads in production data centers. We consider the web
search [24] and data mining [15] workloads, both of which exhibit heavy-tailed
characteristics with a mixture of small and long flows. In the web search workload,
over 95% of the bytes are from 30% of flows larger than 1MB. In the data mining
workload, 95% of all bytes are from 3.6% flows that are larger than 35MB, while
more than 80% of flows are less than 10KB. Flows are generated between random
pairs of hosts following a Poisson process with load varying from 0.1 to 0.8 to thor-
oughly evaluate AACs performance in different traffic conditions.

Similar to previous work, we use flow completion time (FCT) as the primary per-
formance metric. In addition to the overall average FCT, we also take the FCT for
small flows (< 100 KB) and large flows (> 10 MB) into consideration for better
understanding of performance. The 99th percentile FCT of small flows is also an
important performance metric for tailed latency.

Figures 15 and 16 show the FCT of small and large flows in web search and data
mining workloads, respectively. As shown in Figs. 15a and 16a, for short flows,
AAC reduces the average FCT by 40–45% compared with the other schemes when
the load increases from 0.1 to 0.8. The results demonstrate the advantage of AAC in
adjusting flow concurrency under path diversity. ECMP obtains larger AFCT than
the other solutions, especially at high load, since some flows suffer from hash colli-
sions and cause low link utilization.

Figures 15b and 16b show the average FCT of short flows with varying work-
load. Under the web search workload, AAC reduces AFCT by 21–56%. Under the
data mining workload, AAC reduces AFCT by 40–66%. We observe that, compared
with the other load balancing schemes, MPTCP performs poorly. The reason is that,
when MPTCP makes full use of equal-cost multipath between end hosts to achieve
high throughput, the short flows may be blocked by long flows, resulting in large
AFCT for short flows.

Figures 15c and 16c show that tailed FCT of short flows. AAC significantly
reduces the tail FCT by around 16–51% and 7–56% under data mining and web

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 19 of 26  26

search load, respectively. Since the percent of long flows in web search is larger
than data mining, the probability that short flows in web search are blocked by
long flows is higher. Therefore, tailed FCT of short flows in web search is larger
than that in data mining.

Finally, we plot the AFCT of long flows in Figs. 15d and 16d. The results show
that, by adjusting the flow concurrency, AAC effectively avoids the packet reor-
dering and low link utilization, therefore achieving low FCT for long flows.

4.5 � Comparison with State‑of‑the‑Art Approaches

In recent years, researchers have proposed many load balancing solutions, such
as AG [33], Intflow [34], CAPS [25], Luopan [35]. Here, we conduct test to com-
pare AAC with these schemes. The experiment topology is the same as that in
Sect. IV-C. The state-of-the-art approaches are as follows.

•	 Hermes: Hermes [36] makes the switching decisions at packet level for long
flows according to congestion conditions, and reroutes the short flows at a
flow level. Due to the inflexibility feature, however, the flow-based mecha-
nisms may lead to congestion and load imbalance.

(a) (b)

(c) (d)

Fig. 15   FCT statistics of web search workload

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 20 of 26

•	 CAF: CAF [37] proactively measures available bandwidth at the end-hosts.
Based on the measurement result, CAF sets a proper congestion window that
matches the state of the new path.

•	 AG: AG [33] adaptively adjusts switching granularity under different degree of
topology asymmetry. To achieve flexibility and resiliency to asymmetry, AG is
sensitive to path latency and periodically adjusts its switching granularity. AG
randomly selects paths for each switching unit.

•	 SPLB: SPLB [38] employs a dual channel architecture, which logically parti-
tions a physical link into control and data channels. SPLB determines the appro-
priate transmission route of each packet immediately, without introducing any
control loop durations.

•	 Intflow: Intflow [34] integrates per-packet and per-flowlet switching. IntFlow
reacts to congestion and failures timely based on flow status to achieve proactive
rerouting, while performing cautious rerouting for flowlet switching.

•	 HMMLB: HMMLB [39] utilizes the hidden Markov Model to select paths for
data flows with small time cost, and approximates the same network throughput
rate as a traditional centralized load balancing algorithm.

We use the 8 × 8 leaf-spine network topology to test FCT of different number of
flows, which are generated between random pairs of hosts following a Poisson
process. We evaluate the performance of recent proposed approaches and AAC.

(a) (b)

(c) (d)

Fig. 16   FCT statistics of data mining workload

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 21 of 26  26

Figure 17a shows that, AAC obtains 18–57% AFCT improvements compared
with the other schemes. The overall performance SPLB is relatively poor, since it
needs stand-in packets to probe the congestion state. As shown in Fig. 17b, AAC
also obtains the lowest tail FCT. The reason is two-fold. On the one hand, AAC
makes switching decisions according to the global network congestion. On the
other hand, AAC adjusts the number of paths according to congestion conditions
to effectively alleviate packet reordering and link under-utilization.

5 � Mininet Implementation

We implement AAC on Mininet, a high-fidelity network emulation framework
built on Linux container based virtualization [36]. Mininet creates a virtual net-
work, running real Linux kernel, switch and application code on a single machine.
We use Mininet 2.3.0 to create the leaf-spine topology with 20 equal cost paths
between the leaf and spine switches. We respectively set the link bandwidth to
20Mbps and delay to 5ms as recommended in [40]. BMv2 is installed as the soft-
ware programmable switch with the buffer size of 256 packets. The overall traffic
obeys the heavy-tailed distribution in web server workload as illustrated in [40].
Besides, We set the delay of two paths as 100ms to produce asymmetric topology.

Figure 18a shows that, with the increasing number of flows, AAC reduces the
AFCT of all flows by 32–46%, 26–42%, 13–29% over ECMP, RPS and LetFlow,
respectively. As shown in Fig. 17b and c, AAC effectively improves the AFCT
and tailed FCT of short flows over ECMP, RPS and LetFlow. Figure 18d shows
that AAC improves the FCT of long flows by 32–44%, 25–41%, 12–26% over
ECMP, RPS and LetFlow, respectively. With more flows, AAC achieves better
performance compared with the other schemes by adaptively adjusting the flow
concurrency. ECMP and LetFlow suffer from the long-tailed delay and low link
utilization because of the inability to flexibly reroute flows. The packet reordering
issue degrades RPS’s performance.

O
ve

ra
ll

 A
F

C
T

(m
s)

0

5

10

Herm
es

CAF AG
SPLB

IntFlow
HMMLB

AAC

(a) Overall AFCT

O
ve

ra
ll

99
th

 A
F

C
T

(m
s)

20

40

60

80

100

Herm
es

CAF AG
SPLB

IntFlow
HMMLB

AAC

(b) 99th-ile AFCT of overall flows

Fig. 17   Comparison with recent approaches

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 22 of 26

6 � Releated Work

With the rapid increase of traffic, load balancing has become a hot research issue in
data center networks. To provide large bisection bandwidth and achieve good per-
formance, a wide range of solutions are proposed to balance traffic across multiple
paths. The existing load balancing schemes are based on flow granularity, flowlet
granularity and packet granularity.

The representative of per-packet load balancing scheme is RPS [5], which splits
flows at packet level to make full use of all available paths. Data packets are ran-
domly scattered on the switch to all equal cost paths. RPS has fewer out-of-order
packets, good load balancing performance, and high link utilization under symmetri-
cal topology. However, RPS is prone to experience packet disorder under an asym-
metric topology, leading to suboptimal performance.

DRILL [6] makes per-packet decisions to distribute load at each switch based on
local queue occupancies. However, under asymmetric topology, DRILL is prone to
experience packet reordering due to the difference between the local and end-to-end
congestion states [34]. MMPTCP [26] uses a combined transmission method of RPS
and MPTCP to improve network utilization. It dynamically adjusts the fast retrans-
mission threshold according to the topology information to prevent false retransmis-
sions caused by disorder. Detail [13] is a cross-layer scheme that considers packet
priority and load balancing to reduce tail delay. QDAPS [41] is a packet-level load

O
ve

ra
ll

A
F

C
T

(m
s)

0

20

40

60

ECMP RPS LetFlow AAC
0

20

40

60

ECMP RPS LetFlow AAC

≤ 100KB)

th
 A

F
C

T
(m

s)

0

20

40

60

ECMP RPS LetFlow AAC

99th-ile AFCT of short flows

0

20

40

60

ECMP RPS LetFlow AAC

(a) Overall AFCT AFCT of short flows (

AFCT of long flows(≥ 1MB)

(b)

(c) (d)

Fig. 18   FCT on mininet implementation

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 23 of 26  26

balancing mechanism based on queuing delay. FastPass [42] uses a central control-
ler to allocate transmission time slot and transmission path for each packet. As a
per-packet load balancing scheme, Hermes also easily leads to reordering especially
under the asymmetric topology [43].

In a word, these packet-based multipath schemes potentially make short flows
experience queueing delay and easily lead to reordering especially under the asym-
metric topology[5, 26, 44]. Unlike aforementioned solutions, when rerouting event
occurs due to path congestion, our approach AAC proactively measures path con-
gestion information at the sending leaf swtiches. According to path diversity, AAC
rationally adjusts the number of paths to improve link utilization under small path
asymmetry and reduce tail latency under large path asymmetry.

7 � Conclusion

We proposed a novel asymmetry-aware load balancing scheme AAC that reduces
flow completion time and simultaneously improves link utilization. Specifically,
AAC measures the leaf-to-leaf delay at leaf switch to adjust the flow concurrency
according to the degree of path asymmetry. Moreover, AAC is deployed only at the
leaf switches, without modification at thousands of servers.

Acknowledgements  This work is supported by the Natural Science Foundation of Hunan Province,
China (No. 2018JJ2084), National Natural Science Foundation of China (No. 61872387), and Project of
Foreign Cultural and Educational Expert (No. G20190018003).

References

	 1.	 Huang, Q., Jin, X., Lee, P.P.C., et al.: Setchvisor: Robust network measurement for software packet
processing. In: Proc. ACM Special Interest Group on Data Communication, pp. 113–126 (2015)

	 2.	 Bredel, M., Bozakov, Z., Barczyk, A., et al.: low-based load balancing in multipathed layer-2 net-
works using OpenFlow and multipath-TCP. In: Proc. Hot Topics in Software Defined Networking,
pp. 213–214 (2014)

	 3.	 Hopps, C.: Analysis of an equal-cost multi-path algorithm. RFC 2992, November, (2000). http://
www.ietf.org/rfc/rfc29​92.txt

	 4.	 Raiciu, C., Barre, S., Pluntke, C., et al.: Improving datacenter performance and robustness with mul-
tipath TCP. ACM SIGCOMM Comput. Commun. Rev. 41(4), 266–277 (2011)

	 5.	 Dixit, A., Prakash, P., Hu, Y. C., et al.: On the impact of packet spraying in data center networks. In
Proc. IEEE INFOCOM, pp. 2130–2138 (2013)

	 6.	 Ghorbani, S., Yang, Z., Godfrey, P. B., et al.: Drill: Micro load balancing for low-latency data center
networks. In: Proc. ACM Special Interest Group on Data Communication, pp. 225–238 (2017)

	 7.	 Zhang, H., Zhang, J., Bai, W., et al.: Resilient datacenter load balancing in the wild. In: Proc. ACM
Special Interest Group on Data Communication, pp. 253–266 (2017)

	 8.	 Vanini, E., Pan, R., Alizadeh, M., et al.: Let it flow: Resilient asymmetric load balancing with flow-
let switching. In: Proc. USENIX Symposium on Networked Systems Design and Implementation,
pp. 407–420 (2017)

	 9.	 Chen, G., Lu, Y., Meng, Y., et al.: Fast and cautious: Leveraging multi-path diversity for transport
loss recovery in data centers. In: Proc. USENIX Annual Technical Conference, pp. 29–42 (2016)

http://www.ietf.org/rfc/rfc2992.txt
http://www.ietf.org/rfc/rfc2992.txt

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 24 of 26

	10.	 Tso, F. P., Hamilton, G., Weber, R., et al.: Longer is better: exploiting path diversity in data center
networks. In: Proc. International Conference on Distributed Computing Systems, pp. 430–439
(2013)

	11.	 Alizadeh, M., Edsall, T., Dharmapurikar, S., et al.: CONGA: distributed congestion-aware load bal-
ancing for datacenters. In: Proc. ACM Conference on SIGCOMM, pp. 503–514 (2014)

	12.	 Cao, Y., Xu, M., Fu, X., et al.: Explicit multipath congestion control for data center networks. In
Proc. ACM Conference on Emerging Networking Experiments and Technologies, pp. 73–84 (2013)

	13.	 Zats, D., Das, T., Mohan, P., et al.: DeTail: reducing the flow completion time tail in datacenter net-
works. In: Proc. ACM SIGCOMM on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pp. 139–150 (2012)

	14.	 Zhang, J., Zhang, D., Huang, K.: Improving datacenter throughput and robustness with Lazy TCP
over packet spraying. Comput. Commun. 62, 23–33 (2015)

	15.	 Wang, W., Sun, Y., Salamatian, K., et al.: Adaptive path isolation for elephant and mice flows by
exploiting path diversity in datacenters. IEEE Trans. Netw. Serv. Manag. 13(1), 5–18 (2016)

	16.	 Alizadeh, M., Kabbani, A., Edsall, T., et al.: Less is more: trading a little bandwidth for ultra-low
latency in the data center. In: Proc. USENIX Symposium on Networked Systems Design and Imple-
mentation, pp. 253–266 (2012)

	17.	 Carpio, F., Engelmann, A., Jukan, A.: DiffFlow: differentiating short and long flows for load balanc-
ing in data center networks. In: Proc. IEEE Global Communications Conference, pp. 1–6 (2016)

	18.	 Lee, C., Park, C., Jang, K., et al.: Accurate latency-based congestion feedback for datacenters. In:
Proc. USENIX, pp. 403–415 (2015)

	19.	 Mittal, R., Lam, V.T., Dukkipati, N., et al.: TIMELY: RTT-based congestion control for the data-
center. ACM SIGCOMM Comput. Commun. Rev. 45(4), 537–550 (2015)

	20.	 Zou, S., Huang, J., Wang, J., et al.: Improving TCP Robustness over asymmetry with reordering
marking and coding in data centers. In: Proc. International Conference on Distributed Computing
Systems, pp. 57–67 (2019)

	21.	 Alizadeh, M., Yang, S., Sharif, M., et al.: Pfabric: minimal near-optimal datacenter transport. ACM
SIGCOMM Comput. Commun. Rev. 43(4), 435–446 (2013)

	22.	 Munir, A., Qazi, I.A., Uzmi, Z.A., et al.: Minimizing flow completion times in data centers. In:
Proc. IEEE INFOCOM, pp. 2157–2165 (2013)

	23.	 Noormohammadpour, M., Raghavendra, C.S.: Datacenter traffic control: understanding techniques
and tradeoffs. IEEE Commun. Surv. Tutor. 20(2), 1492–1525 (2017)

	24.	 Alizadeh, M., Greenberg, A., Maltz, D. A., et al.: Data center TCP (DCTCP). In: Proc. ACM SIG-
COMM, pp. 63–74 (2010)

	25.	 Hu, J., Huang, J., Lv, W., et al.: CAPS: coding-based adaptive packet spraying to reduce flow com-
pletion time in data center. IEEE/ACM Trans. Netw. 27(6), 2338–2353 (2019)

	26.	 Kheirkhah, M., Wakeman, I., Parisis, G.: MMPTCP: a multipath transport protocol for data centers.
In: Proc. IEEE INFOCOM, pp.1–9 (2016)

	27.	 Zhangy, W., Lingy, D., Zhangy, Y., et al.: Achieving optimal edge-based congestion-aware load bal-
ancing in data center networks. In: Proc. IEEE Networking Conference, pp. 109–117 (2020)

	28.	 Sen, S., Shue, D., Ihm, S., et al.: Scalable, “Optimal flow routing in datacenters via local link bal-
ancing”. In: Proc. ACM Conference on Emerging Networking Experiments and Technologies, pp.
151–162 (2013)

	29.	 Serfozo, R.F.: An equivalence between continuous and discrete time Markov decision processes.
Oper. Res. 27(3), 616–620 (1979)

	30.	 Kabbani, A., Sharif, M.: Flier: flow-level congestion-aware routing for direct-connect data centers.
In: Proc. IEEE INFOCOM, pp. 1–9 (2017)

	31.	 Katta, N., Hira, M., Ghag, A., et al.: CLOVE: How I learned to stop worrying about the core and
love the edge. In: Proc. the 15th ACM Workshop on Hot Topics in Networks, pp. 155–161 (2016)

	32.	 Huang, J., Li, W., Li, Q., et al.: Tuning high flow concurrency for MPTCP in data center networks.
J. Cloud Comput. 9(1), 1–15 (2020)

	33.	 Liu, J., Huang, J., Li, W., et al.: AG: adaptive switching granularity for load balancing with asym-
metric topology in data center network. In: Proc. International Conference on Network Protocols,
pp. 1–11 (2019)

	34.	 Shi, Q., Wang, F., Feng, D.: IntFlow: integrating per-packet and per-flowlet switching strategy for
load balancing in datacenter networks. IEEE Trans. Netw. Serv. Manag. 17(3), 1377–1388 (2020)

	35.	 Wang, P., Trimponias, G., Xu, H., et al.: Luopan: sampling-based load balancing in data center net-
works. IEEE Trans. Parallel Distrib. Syst. 30(1), 133–145 (2018)

1 3

Journal of Network and Systems Management (2021) 29:26	 Page 25 of 26  26

	36.	 Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM
Trans. Netw. 1(4), 397–413 (1993)

	37.	 Zou, S., Huang, J., Jiang, W., et al.: Achieving high utilization of flowlet-based load balancing in
data center networks. Future Gener. Comput. Syst. 108, 546–559 (2020)

	38.	 Xu, C., Yuan, T., Zhang, H., et al.: Dual channel per-packet load balancing for datacenters. In: Proc.
IEEE INFOCOM, pp. 157–164 (2020)

	39.	 He, B., Zhang, D., Zhao, C.: Hidden Markov Model-based Load Balancing in Data Center Net-
works. Comput. J. 63(10), 449–1462 (2020)

	40.	 Xu, H., Li, B.: RepFlow: minimizing flow completion times with replicated flows in data centers. In:
Proc. IEEE INFOCOM on Computer Communications, pp. 1581–1589 (2014)

	41.	 Huang, J., Lv, W., Li, W., et al.: QDAPS: queueing delay aware packet spraying for load balancing
in data center. In: Proc. International Conference on Network Protocols, pp. 66–76 (2018)

	42.	 Perry, J., Ousterhout, A., Balakrishnan, H., et al.: “Fastpass: a centralized” zero-queue “datacenter
network”. In: Proc. SIGCOMM, pp. 307–318 (2014)

	43.	 Hu, J., Huang, J., Lv, W., et al.: TLB: Traffic-aware load balancing with adaptive granularity in data
center networks. In: ICPP 2019: Proceedings of the 48th International Conference on Parallel Pro-
cessing, pp. 1–10 (2019)

	44.	 Katta, N., Ghag, A., Hira, M., et al.: Clove: congestion-aware load balancing at the virtual edge. In:
Proc. the 13th International Conference on Emerging Networking Experiments and Technologies
(2017)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Weimin Gao  received the B.E. degrees from Nanhua University, China, in 1999 and the master’s degrees
from the School of Information Science and Engineering, Hunan University, China, He is currently pur-
suing the Ph.D. degree with the School of Computer Science and Engineering, Central South University,
China. His current research interest is data center network.

Jiawei Huang  (M’07) received the bachelor’s degree from the School of Computer Science, Hunan Uni-
versity, in 1999, and the master’s and Ph.D. degrees from the School of Computer Science and Engineer-
ing, Central South University, China, in 2004 and 2008, respectively. He is currently a Professor with the
School of Computer Science and Engineering, Central South University. His research interests include
performance modeling, analysis, and optimization for data center networks.

Shaojun Zou  is currently working toward the Ph.D. degree in the Department of Computer Science and
Engineering, Central South University, Changsha, China. His current research interests include conges-
tion control and data center networks.

Weihe Li  is a Master Student in the School of Computer Science and Engineering, Central South Univer-
sity, China. His research interests include video streaming and data center networks.

Jianxin Wang  (SM’12) received the B.E. and M.E. degrees in computer engineering and the Ph.D. degree
in computer science from Central South University, Changsha, China, in 1992, 1996, and 2001 respec-
tively. He is currently a Professor with the School of Computer Science and Engineering, Central South
University. His current research interests include algorithm analysis and optimization, parameterized
algorithm, bioinformatics, and computer network.

Jianer Chen  (Senior Member, IEEE) received the Ph.D. degree in computer science from the Courant
Institute, New York University, in 1987, and the Ph.D. degree in mathematics from Columbia University
in 1990. He is currently a Professor of computer science with Texas A&M University at College Station.
His main research interest includes computer algorithms and their applications. His current research pro-
jects include exact and parameterized algorithms, computer graphics, computer networks, and computa-
tional biology.

	 Journal of Network and Systems Management (2021) 29:26

1 3

26  Page 26 of 26

Authors and Affiliations

Weimin Gao1,2  · Jiawei Huang1 · Shaojun Zou1 · Weihe Li1 · Jianxin Wang1 ·
Jianer Chen3

	 Weimin Gao
	 gwm@hnit.edu.cn

	 Shaojun Zou
	 zoushj@csu.edu.cn

	 Weihe Li
	 weiheli@csu.edu.cn

	 Jianxin Wang
	 jxwang@csu.edu.cn

	 Jianer Chen
	 chen@cse.tamu.edu

1	 School of Computer Science and Engineering, Central South University, Changsha 410083,
China

2	 Department of Computer and Information Science, Hunan Institute of Technology,
Hengyang 421002, China

3	 Department of Computer Science and Engineering, Texas A&M University, College Station,
TX 77843, USA

http://orcid.org/0000-0003-0912-9014

	AAC: Adaptively Adjusting Concurrency by Exploiting Path Diversity in Datacenter Networks
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Path Asymmetry in Production Data Center
	2.2 Impact of Path Asymmetry on Load Balancing Performances
	2.3 Summary

	3 Adaptively Adjusting Concurrency
	3.1 Design Overview
	3.2 Leaf-to-leaf Delay Measurement
	3.3 Tuning the Flow Concurrency
	3.4 AAC Algorithm
	3.4.1 Path Congestion Detector Module
	3.4.2 Concurrency Optimization Module

	4 Simulation Experiment
	4.1 Feature Test
	4.2 Performance Under Symmetric and Asymmetric Topologies
	4.3 Performance of TCP Friendliness
	4.4 Large-Scale Simulation Test
	4.5 Comparison with State-of-the-Art Approaches

	5 Mininet Implementation
	6 Releated Work
	7 Conclusion
	Acknowledgements
	References

