
Vol.:(0123456789)

Journal of Network and Systems Management (2021) 29:21
https://doi.org/10.1007/s10922-021-09587-8

1 3

URLdeepDetect: A Deep Learning Approach for Detecting 
Malicious URLs Using Semantic Vector Models

Sara Afzal1 · Muhammad Asim1 · Abdul Rehman Javed2 · Mirza Omer Beg3 · 
Thar Baker4

Received: 1 June 2020 / Revised: 17 January 2021 / Accepted: 3 February 2021 / 
Published online: 4 March 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Malicious Uniform Resource Locators (URLs) embedded in emails or Twitter posts 
have been used as weapons for luring susceptible Internet users into executing mali-
cious content leading to compromised systems, scams, and a multitude of cyber-
attacks. These attacks can potentially might cause damages ranging from fraud 
to massive data breaches resulting in huge financial losses. This paper proposes a 
hybrid deep-learning approach named URLdeepDetect for time-of-click URL analy-
sis and classification to detect malicious URLs. URLdeepDetect analyzes semantic 
and lexical features of a URL by applying various techniques, including semantic 
vector models and URL encryption to determine a given URL as either malicious 
or benign. URLdeepDetect uses supervised and unsupervised mechanisms in the 
form of LSTM (Long Short-Term Memory) and k-means clustering for URL clas-
sification. URLdeepDetect achieves accuracy of 98.3% and 99.7% with LSTM and 
k-means clustering, respectively.

Keywords Malicious URL detection · Security and privacy · Word embedding · 
Deep neural networks

1 Introduction

An Online Social Network (OSN) is a platform where people interact and commu-
nicate with each other for various purposes such as entertainment, marketing, and 
business. Users share their ideas, photos, videos, events, and personal information 
in the form of posts on these platforms [1, 2]. Posting all of these details on online 
social platforms not only creates opportunities for people to exploit the users [3], but 
the simple use of any such platform can also lead to a lot of privacy concerns [4–6]. 
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People may give out too much of their personal information, and the sites may not 
take adequate steps to protect their privacy. This creates an opportunity for cyber-
criminals to attack their privacy and get what they want [7–9]. This is where phish-
ing attacks get very common. Such attacks are done by following a common method 
of shortening URLs through URL shortening services [10] and adding them in dif-
ferent posts and statuses on social media. A social media phishing attack involves 
deceiving the user to click on an infected link which can lead to a drive-by download 
attack [11, 12] or can steal the user’s credentials either from the site or by asking the 
user indirectly to enter their details [13]. Most of the URLs look very similar to the 
original URLs tricking the users into believing that they are opening the actual link 
[14].

Among many popular social media platforms, Twitter is a very famous social net-
work with the majority of most celebrities, politicians, and businessmen using it. It 
has a restriction of using only 140 characters in a post hence it is famous for includ-
ing shortened URLs to provide additional details along with the post. This provides 
an opportunity for cybercriminals to take advantage of shortened URLs and harm 
the user’s system or get access to their private data [15]. Drive-by download attacks 
and luring the users into providing private information are considered as growing 
dilemmas of cyber-attacks especially when cybercriminals target large-scale trend-
ing events on different online social platforms [16]. The trending topics and their 
associated terms or hashtags are the easiest approaches for cybercriminals to lure 
information-seeking users [17]. URLs are added along with the post and these URLs 
consist of comprise of additional information, evidence to the topic mentioned in the 
post, or an image to support that topic.

Attacks such as drive-by download attacks can be prevented by studying the 
behavioral analysis of malware which leads to the identification of malicious URLs 
[16, 18]. Researchers have emphasized the detection of malicious and benign URLs 
and worked on building machine learning models for the classification of URLs. 
The classification works on different kinds of features which include machine activ-
ity features [16], tweet features [19], URL based features [14, 20], lexical features 
[10], etc. These features help in detecting whether a particular URL is harmful to 
a user and some works [21] include protecting the users from clicking those URLs. 
It has become very important to build such a mechanism that provides good accu-
racy in detecting malicious URLs to protect the private data [22] and be safe from 
monetary losses. Figure 1 demonstrates how accessing an unknown URL can lead to 
harming the user’s system if there is no way adopted to check whether it is malicious 
or not. However, if the URL is checked before opening it, the user can be saved from 
any potential damage [23].

The motivation behind this paper is the detection of malicious URLs consider-
ing Twitter as the main aspect to protect its users since Twitter is the most used 
platform with 330 million1 monthly active users today. This makes it very important 
to protect Twitter from cybercriminals as they can target a large number of audi-
ences to harm them via Twitter. The existing work of researchers is mostly based 

1 https ://www.stati sta.com/stati stics /28208 7/numbe r-of-month ly-activ e-twitt er-users /.

https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
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upon features that can be collected only after clicking the URL [24, 25] such as 
machine activity features. Working with those features may harm the user’s sys-
tem before any malicious activity can be detected and blocked. Since those features 
require the URL to be clicked on, causing harm to the user or the system, therefore, 
it is not a sufficient method to consider. Other features are based on tweet attributes 
[26] that are difficult to get at run-time during the implementation of a prediction 
model, hence making the algorithm very complex. Therefore, this leads to the need 
for developing a security management system to detect malicious URLs, which can 
work in all kinds of scenarios without harming the system or increasing the com-
plexity of the algorithm.

This paper introduces a novel approach named URLdeepDetect in the field of 
cybersecurity management for detecting malicious URLs by implementing and 

Fig. 1  Consequences of detection and non-detection of malicious URLs
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demonstrating work on two different techniques. The approach includes working 
with semantic vector models of URL tokens, along with URL encryption. It also 
includes applying a modified version of recurrent neural network (i.e. LSTM), 
and k-means clustering as the classification models. The first technique uses 
tokenization and word embedding and classifies the URLs via LSTM. The sec-
ond technique uses URL encryption and classifies via k-means clustering. This 
work makes the following The key contributions of this work are as follows.

– A hybrid deep-learning approach named URLdeepDetect for time-of-click 
URL analysis and classification to detect malicious URLs.

– The use of word embedding generated by a vector space model is made to 
capture the semantics of URL tokens and then feed them into an LSTM to 
capture the sequential semantics of the entire URL.

– A novel URL encoding mechanism is developed and presented and is used in 
combination with vector embedding to employ clustering for unsupervised 
URL classification.

– A thorough empirical analysis of our techniques is presented and compared 
the results with highly tuned conventional machine learning models.

The remainder of the paper is structured as follows. Section  2 discusses the 
problem formalization of the paper and explains the lexical features of the URL. 
Section  3 presents the related work. Section  4 introduces the URLdeepDetect 
approach. The experimental setup, results, and comparative analysis are articu-
lated in Section  5. Finally, section  6 concludes the work. Table  1 denotes the 
abbreviations used in this work.

Table 1  Table of abbreviations Abbreviations Explanation

LSTM Long Short-Term Memory
URL Uniform Resource Locator
NLP Natural Language Processing
DNS Domain Name System
CNN Convolutional Neural Network
RNN Recurrent Neural Network
SVM Support Vector Machine
MLP Multilayer Perceptron
NB Naïve Bayes
RF Random Forest
CBOW Continuous Bag-of-Word
TF-IDF Term Frequency-Inverse 

Document Frequency
NLTK Natural Language Toolkit
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2  Detection of Malicious URLs

2.1  Problem Formulation

The primary focus of this paper is to detect malicious URLs on different social plat-
forms. To solve such a problem, a binary classification [27] is used since the tar-
get classes contains two labels i.e. malicious or benign. Consider a dataset contain-
ing URLs and labels (i.e. malicious and benign). The URLs can be represented as 
{(u1, y1),… , (uT , yT )} where u1 to ut are the URLs whereas y1 to yt are the labels of 
each URL respectively. The variable y can belong to the set {−1,+1} since it denotes 
the label of the URL. We can consider y = +1 to be a benign URL while y = −1 to 
be a malicious URL. This means that if the label corresponding to a particular URL 
depicts the URL as benign, the value of y will be +1 and if the label depicts the URL 
as malicious, the value of y will be −1 . The process of classification involves two 
steps that are followed in the approach. The first one is to attain a feature demonstra-
tion ut → xt . Here xt belongs to ℝn which is a feature vector with the dimension n 
and is used to represent a URL ut . A function denoted by f ∶ ℝ

n
→ ℝ for predic-

tion must be learned which is basically the second step of the process. The pur-
pose of this function is the prediction of a score so that a URL could be placed into 
any of the two classes. The function makes the prediction which is represented as 
ŷt = sign(f (xt)) . We perform these steps to minimize the loss function which is basi-
cally about trying to reduce the total number of mistakes in the complete dataset. 
For our problem, f represents LSTM and k-means clustering which are the classifi-
cation models that we used for the detection of the URLs. Later, the use of several 
evaluation metrics is done to evaluate our prediction function’s performance which 
in our case includes accuracy, precision, recall, and f-measure.

2.2  Lexical Features of URL

With the help of the lexical features of a URL [28], a raw URL is represented by u 
and is transformed into a vector of features represented by x. To do that, the URL is 
split into different tokens. The splitting takes place on special characters in the URL 
[29]. A huge number of tokens are obtained after splitting the URLs of the entire 
dataset. A dictionary is made in which all unique tokens are placed and each feature 
then represents a word which is represented by wi . In one of the two techniques, with 
the provision of unique features represented by M, every given URL represented by 
ut is worked upon for mapping it to a vector represented by xt which belongs to ℝM . 
This is done in such a way that the ith component in xt is mentioned as 0 stating that 
the word wi is not present in the URL and it is mentioned as 1 stating that the word 
wi is present in the URL. The second technique involves URL encryption instead of 
working with a vector model.

Each URL splits up into many tokens, hence creating a very large dataset with 
a huge feature size. The new dataset can even be greater in size than the original 
one, since there are more than one tokens for every URL. Next, the model is to be 
trained again since we have a new dataset. For training again, the size grows for 
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both the model as well as and features. The existing models, by using these features, 
have some limitations. Firstly, the sequence of the tokens is not maintained once 
the URL is split and the unique tokens are added to the dictionary. Secondly, the 
words which appear rarely or just once in the dictionary do not provide meaningful 
information. Lastly, new words in test data cannot be interpreted properly since they 
had not appeared in the data used for training purposes. Hence, there is no success 
in working with the models that fail to find any meaningful information behind such 
words. To overcome these limitations, both our models play their part and give high-
quality results.

3  Related Work

Many researchers have worked on the detection of the nature of URLs as either 
malicious or benign [30–32]. In this section, we describe the work presented by 
those authors along with the machine and deep learning [33, 34] models that they 
have used. The division of The related work section has been split can be made into 
3 sub-sections based upon feature categorization. The first sub-section covers the 
papers that use tweet features and machine activity data to predict the URLs as mali-
cious or benign. The second sub-section includes those references that use lexical, 
domain/host-based, and URL based features to achieve accuracy in prediction. The 
last sub-section consists of those papers that discuss vector models and neural net-
works for phishing detection. The literature review is done in the respective sections.

3.1  Usage of Tweet Features and Machine Activity Data

In [16], the authors focused on achieving four targets. Firstly, they developed a sys-
tem for the classification of URLs to determine them as either malicious or benign 
and they did this in seconds after the URL was clicked by the user. Secondly, the 
model that was learned was examined and interpreted to study the relationship 
between machine activity and malware presented by drive-by-downloads on Twit-
ter. Thirdly, their paper included work for the identification of such features that 
could generalize across different happenings. Lastly, the authors tried to understand 
how much data would be sufficient for this problem. The limitation in their work 
is that they have used only it uses machine activity features and that too is very 
limited , only. As for [21], improvements have been made to previous work [16] 
as the authors worked on building a machine learning model with the use of dif-
ferent features such as machine activity features along with the features of a spe-
cific tweet to block and prevent a drive-by download attack. This approach allowed 
them to identify the malicious URLs before these URLs harm the user or the sys-
tem after their execution and then take time to recover from such harm. The authors 
in [19] claimed that the approach of using only visible features of tweets and user 
profiles to detect malicious URLs is practicable and gives good enough results. 
Tweet features are extracted using python scripts and those features are divided into 
three categories including content, context, and social features. They claimed that if 
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machine activity features are not used, their predictive model can still give the best 
results. The authors in [35] focused on developing a detection system for the nature 
of URLs. The main idea behind the paper was to explore the relationship between 
different URLs and their re-directions to different pages. Therefore, they used two 
types of features. The first type consisted of features extracted from the idea of URL 
re-directions whereas the second type involved features that had data drawn out from 
tweets. The work in [36] solved the problem of malicious URL detection into two 
parts. The first part involved the training of the dataset to detect the maliciousness 
of URLs while the second part consisted of the work that they proposed i.e. building 
a mechanism for security alerts. A total of 11 features were used for training. The 
authors used Random Forest (RF) and achieved an accuracy of 97.50%.

3.2  Usage of Lexical, Domain/Host, and URL Based Features

Classification of URLs was done using a machine learning approach in [10]. The 
authors extracted lexical features from a URL and assumed that the features for 
both malicious and benign URLs are different which helps in classifying them. 
The deployment of the model was done in the FireEye Advanced URL Detection 
Engine (FAUDE), in which malicious URLs were detected in a large number. The 
authors in [37] claimed that all the authors who have worked in this domain have 
focused on binary classification and none of them have done multi-class classifica-
tion to detect the nature of URLs. According to them, the URLs are only classified 
as malicious or benign and not as any other kind of spam. Therefore, the main idea 
behind their paper was to introduce a multi-class classification system so that the 
nature of URLs could be identified more specifically. For training purposes, they 
used a supervised machine learning approach. In [38], authors analyzed approaches 
that extract features from phishing websites and train classification models with an 
extracted feature set to classify phishing websites. They created an exhaustive list of 
all features used in these approaches and categorized them into 6 broader categories 
and 33 finer categories. They extracted features from the URL, URL redirects, host-
ing domain (WHOIS and DNS records), and popularity of the website and analyzed 
their robustness in classifying a phishing website. Their emphasis was on determin-
ing the predictive performance of robust features. Later, they evaluated the classifi-
cation accuracy when the entire feature set was used and when URL features or site 
popularity features are excluded from the feature set.

3.3  Usage of Vector Models and Neural Networks

The authors in [39] presented present a methodology in which they made use of 
lexical features of URLs to classify their maliciousness using machine learning tech-
niques. The methodology consisted of using the techniques of Natural Language 
Processing (NLP) which involves working with word-level vectors and n-gram mod-
els. With the help of this technique, the authors classified the URLs as either mali-
cious or benign. They achieved an accuracy of 97.1% with a machine learning model 
named SVM (Support Vector Machine). The authors in [40] proposed an approach 
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of phishing detection using the techniques of deep learning. The mapping of the 
URLs on websites and their characters was done to different documents and words 
respectively with the use of a word embedding technique called word2vec. Further-
more, the combination of embedding of characters was done with URL structures to 
acquire the URL in the form of vectors. To achieve this, the authors split the URL 
into five components. The work in [41] achieved the purpose of classifying the 
URLs as malicious or benign using CNNs (Convolutional Neural Networks) along 
with the use of word2vec model for word embedding. These techniques were used 
to classify news articles and tweets. Different embedding techniques were used by 
the authors which include word2vec, Continuous Bag-of-Word (CBOW), and Skip-
gram. The authors built the neural network with two of these algorithms which are 
CBOW and Skip-gram. The accuracy of the classification of the neural network 
was measured using the above mentioned two techniques and achieved the highest 
accuracy with CBOW Model. Authors in [42–45] presented studies to detect intru-
sion attacks in a connected system. The authors in [46] conducted extensive experi-
ments on large-scale datasets and used deep learning-based solutions for detecting 
the maliciousness of URLs. Their method involved breaking the URL into words 
and characters and then feeding them all to the convolutional neural network. The 
technique of identifying unique characters and unique words first and then convert-
ing them into matrix representations later was used. In particular, two CNN models 
were made with the major difference of character level and word level embedding 
in each model. Both these models were combined to optimize the final model for 
prediction.

The research papers discussed above show that a variety of machine learn-
ing algorithms have been used to solve the problem that has been encountered i.e. 
detecting the URLs as malicious or benign. The common techniques that have been 
used extensively in the majority of the work are Random Forest, Naïve Bayes, Mul-
tilayer Perceptron, Decision Trees, Logistic Regression, Support Vector Machine, 
Bayes Net, and Neural Network. Most of the papers have used these algorithms 
on the datasets of features which are tweet based, machine activity-based, or URL 
based making all the papers similar to one another in some way. Therefore, we dis-
cuss a novel approach in this paper which no other work has yet introduced i.e. make 
use of two techniques which include word embedding and URL encryption for the 
detection of the nature of URLs. We also implement a few techniques mentioned 
above from our related work to compare our results with them.

4  URLdeepDetect

In this section, we present our proposed approach URLdeepDetect, which consists 
of two different techniques. We introduce a novel generalized approach that not only 
detects Twitter’s malicious URLs but URLs on all other platforms. In the implemen-
tation, first, we pre-process the dataset and then we tokenize the URLs. We apply 
word-level embedding in the first technique whereas URL encryption in the second 
technique. In the process of word embedding, we calculate the semantic similarity 
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score and then make vectors. Lastly, we perform classification using LSTM and 
k-means clustering.

The pseudo-code of our algorithm and the processing flow is illustrated in Algo-
rithm 1. The architecture of the proposed approach is shown in Fig. 2. It demon-
strates the methodology of the proposed model. The pre-processed URL is taken 
and two different techniques are applied to it. The upper half of the diagram dis-
plays that tokenization and Word2Vec are performed on the URL and later LSTM is 
applied on the vector to get results. The lower half of the diagram demonstrates the 
second technique where URL Encryption is performed and later k-means clustering 
is used to get the results.

Fig. 2  Overview of the proposed architecture
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4.1  Technique 1: Word Embedding and Long Short‑Term Memory

4.1.1  Tokenization

The first step of our implementation includes the process of tokenization of URLs, 
which is a necessary step of Natural Language Processing (NLP) tasks. Before 



1 3

Journal of Network and Systems Management (2021) 29:21 Page 11 of 27 21

performing any further steps on the data, it is a mandatory step to split the text into 
minimal meaningful units. Line 1 to 5 of Algorithm 1 demonstrates the code for the 
process of tokenization. We use the basic tokenizer, which is present in NLTK (The 
Natural Language Toolkit) and is basically supported in python to work with pro-
grams that involve techniques related to human language data. NLTK consists of a 
lot of libraries that can be used on strings and characters to find semantic meanings 
behind them. Among those libraries, we use the tokenize library to parse the URL 
into different tokens. We make an array to store the tokens after parsing. The tokens 
of each URL are appended one by one in the array which is later passed on to the 
vector model discussed in the next section.

Our tokenizer works in a way that it splits up the URL into different words by 
using an unsupervised algorithm to build a vector model that can be given as an 
input to LSTM. We use two modules of the tokenize library which include word_
tokenize and sent_tokenize. The first module i.e. word_tokenize is used to split 
words in the URL. It returns the syllables from a word where a single word may 
contain two or three syllables. The second module i.e. sent_tokenize function is a 
submodule of word_tokenize.

4.1.2  Word Embedding: Word2Vec

The next step involved in the process is to create a vector model using the tokens 
that we obtain in the previous step through the process of tokenization. We do so 
by following the method of vectorization, also known as word embedding. It is 
the process of converting words into numbers. Therefore, we use it for the same 
purpose i.e. we try to find meaning out of the words and strings by actually con-
verting the words into numbers which are basically vectors. Each word is mapped 
to its corresponding vector. An easy way to understand how arithmetic operations 
can be performed on words is with an example. Let us consider a famous exam-
ple: king − man + woman = queen , which is depicted in Fig.  2 of the proposed 
approach. Here, if we add the vectors which are associated with the words king and 
woman and then minus the vector associated with the word man will give us a vector 
associated with queen. Therefore, after the conversion of words to vectors, we use 
some techniques to find the similarity among the words. Line 9 to 29 in Algorithm 1 
demonstrates the process of vectorization.

Many approaches to perform word embedding are being used with different pros 
and cons. These approaches include BOW (Bag of Words),2 TF-IDF (Term Fre-
quency – Inverse Document Frequency) Scheme3 and Word2Vec. The technique that 
we use for word embedding is Word2Vec. In this method, the use of neural net-
works is made to do the conversion of words into vectors such that the words which 
have their semantic score similar to each other are considered to be closer in a space 

2 https ://towar dsdat ascie nce.com/machi ne-learn ing-text-proce ssing -1d5a2 d6389 58.
3 https ://towar dsdat ascie nce.com/tf-idf-for-docum ent-ranki ng-from-scrat ch-in-pytho n-on-real-world 
-datas et-796d3 39a40 89.

https://towardsdatascience.com/machine-learning-text-processing-1d5a2d638958
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
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of dimension n. We import the word2vec model from the Gensim library and then 
use it to build word embeddings. We train the word2vec model by making use of 
an algorithm named skip-gram. To create a word2vec model, we create a corpus 
first and then pre-process the content. For the training of the model, we use nltk.
sent_tokenize and nltk.word_tokenize utilities. We use the class word2vec when the 
array is passed to it keeping in mind that the array consists of all the words. This 
completes the creation of our word2vec model that converts the words into their cor-
responding vectors. The vocabulary size does not have any effect on the vectors that 
we have built.

4.1.3  Long Short‑Term Memory (LSTM)

The final step of the first technique includes the details regarding the model that 
we implement to predict the accuracy of the data given. Hence, the final step in 
this technique is to feed the vectors into a neural network. We use LSTM as our 
classification model which is a tweaked version of the recurrent neural network. 
Using LSTM as the classification model gives us the biggest advantage since we 
are dealing with word embeddings. The model needs to learn the embeddings 
which can be done best while fitting the LSTM. Traditional models have a limita-
tion of having no memory. Recurrent Neural Networks like LSTM can be used 
to tackle this problem. Since we are dealing with Natural Language Processing 
techniques in our work, LSTM can work best by remembering every input and 
making it easier to generate meanings out of words. LSTMs can make little modi-
fications by multiplications and additions depending upon the need as they can 
selectively remember or forget things. After the creation of vectors, we work on 
feeding those vectors to the LSTM for training. Line 30 to 38 of Algorithm  1 
demonstrates the process of training the model through LSTM. We prepare the 
data in such a format that for the prediction of ’E’ in ’BLUE’, the input given 
is the first three letters in an array and the outcome of that input is the last let-
ter. To define the LSTM model, we use the sequential model. The first layer is 
embedding which takes the vocabulary size as input dimension, embedding size 
as output dimension, and the pre-trained weights as the weights. We then add 
an LSTM layer to make sure that the problem of receiving data in a scattered 
manner by the next LSTM layer can be avoided. The model also has to be built 
in such a way that there is no over-fitting in it. Hence, we use the dropout layer 
for this purpose after every LSTM layer. Next, we use a fully connected layer 
i.e. dense layer and the activation function which we use with it is ‘relu’. Then, 
we apply another dense layer with 1 unit. Lastly, we use the Sigmoid function 
the output of which is basically a vector. The vector has values 0 and 1 where 0 
depicts that the value should be forgotten whereas 1 means that the value should 
be remembered.The complexity analysis is depicted via a graph is represented 
in Fig. 3 in which the running time of each epoch is shown and the details of the 
used parameters are demonstrated in Fig. 4. We then compile our model by set-
ting the loss to binary_crossentropy. The optimizer is set as Adam and the met-
rics are set to accuracy. After that, we fit our model and run 10 epochs on it for 
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training which gives us an accuracy of 98.3%. During model fitting, we pass the 
parameter of validation_split setting it to 0.1 which also makes sure that 10% of 
the training data is used for validation. With that, we also obtain the validation 
loss and accuracy.

4.2  Technique 2: URL Encryption and k‑Means Clustering

This approach involves working with the technique of k-means clustering which 
incorporates encryption of the numeric characters in a URL. k-means clustering 
is an optimal choice to apply when dataset instances are distinct or somewhat 
different in nature from each other. It is a fast and less complex algorithm in com-
parison with other clustering algorithms that provides optimal results. Moreover, 
k-means provides a set of the parameter that can be tuned to improve the cluster-
ing such as number of clusters (k), distance method and centroid position upda-
tion, etc. For experimentation, the hyperparameters are tuned for accurate cluster-
ing. In final setting, n_clusters is set to 2, init is set to ‘k-means++’, max_iter is 
set to 300, n_init is set to 10 and random_state is set to 0.

A specific URL is composed of alphanumeric format (i.e. 
www.64Tech − new.com ), therefore we perform analysis on the structure of 
benign and malicious URLs. Some of the malicious URLs try to be depicted as 
the original URL based on domain or length of URL having a minor difference. 
Most of the URLs have more characters than a usual URL. Similarly, the usage 
of special characters in domains is some of the signs of malicious URL. To get 
the best performance of k-means clustering, we convert contiguous numeric char-
acters into distinct numerical IDs. We encrypt each URL using the steps given in 
the algorithm below:

Fig. 3  Complexity analysis of LSTM model
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Fig. 4  The parameters used to train the LSTM Model
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This unique URL encryption mechanism represents a URL and its characteristics 
based on an encoding which is used as a feature vector for URL clustering. After 
converting all the URLs into encrypted code, the dataset is given as input to the 
k-means clustering algorithm.

5  Analysis and Evaluation of Results

In this section, we discuss the results of our implementation and evaluate them by 
comparing with the conventional machine learning models. For experimentation, we 
perform supervised URL classification and unsupervised URL clustering. For super-
vised classification, we choose conventional algorithms: RF, MLP, NB, and LSTM, 
a deep learning method. For unsupervised learning, we perform URL encryption-
based k-means clustering [47]. We also describe the evaluation measures that we 
have used to describe our results. We split our dataset into two parts for training and 
testing purposes. For training, we select 0.8 entries while for testing we keep 0.2 
entries (training: 20%, testing: 80%). We feed the training data into our classification 
models for the prediction of URLs as malicious or benign.

5.1  Dataset Overview

We obtain a dataset of 2019,4 which is created to tackle the problem of malicious URLs 
on the Internet. It is acquired from various sources such as PhishTank etc. It contains 
records of benign and malicious URLs that can be used for analysis or building clas-
sifiers. The total number of unique URLs in the dataset is 450176 out of which 77% 
are benign and 23% are malicious. The dataset contains four columns representing the 
index, URL, label, and result. We choose this dataset for our work because it has a 
variety of URLs from different sources. The size of different URLs vary from each 
other which means our model can detect the maliciousness of a URL with any variable 
length. The dataset also has a large number of entries of malicious and benign URLs 

4 https ://www.kaggl e.com/siddh arthk umar2 5/malic ious-and-benig n-urls.

https://www.kaggle.com/siddharthkumar25/malicious-and-benign-urls
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due to which the model has enough input for training and test. Hence, the above men-
tioned reasons make this dataset appropriate for our work.

To use the dataset for our work, we delete a few benign entries randomly to make 
the percentage of malicious and benign URLs equal i.e. 50% malicious and 50% benign 
to obtain better results. The final dataset consists of 207,081 entries with equal mali-
cious and benign URLs. All the information from this dataset is used for training and 
testing purposes. For training purposes, 80% of the data is used while testing is done on 
the rest of the 20% data. Figure 5 depicts the trend of benign and malicious URLs in 
the dataset. This representation demonstrates the URLs concerning the URLs’ length. 
The longer the URL, the more number of tokens it has usually resulting in helping the 
model to predict better accuracy.

5.1.1  Pre‑processing of Data

Firstly, the dataset contains several NaN values so we remove a few rows. The dataset 
even after removing some rows is large enough for training and testing purposes. Sec-
ondly, the dataset contains benign entries in more numbers as compared to malicious 
entries. Therefore, we also remove some benign entries to make the ratio of benign 
and malicious entries equal in the dataset. This balances our data for classification that 
leads to the better catering of both the classes.

Fig. 5  The representation of dataset concerning the length of URLs
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5.2  Evaluation Measures and Computing Environment

Practically all evaluation measures rely upon the nature of the dataset. For the 
most part, accuracy is taken as an essential measure yet it is for the situation 
when the dataset is balanced. In any case, when the dataset is imbalanced, it does 
not provide significant information about the performance of the model. In this 
paper, we consider the most valuable performance measures such as Accuracy, 
Precision, Recall, F-Score, and Confusion Matrix to analyze the performance of 
our classification model. Below, equations demonstrate the evaluation measures, 
and Table 2 presents the computing environment.

Confusion matrix comprises of TP, TN, FP, and FN, where TP is a malicious URL 
that is correctly classified as malicious URL, TN is a benign URL that is correctly 
classified as benign URL, FP is a benign URL that is incorrectly classified as mali-
cious URL, and FN is a malicious URL that is incorrectly classified as a benign 
URL.

(1)Accuracy =
TPMalicious + TNBenign

TPMalicious + FNMalicious + TNBenign + FPBenign

(2)Precision =
TPMalicious

TPMalicious + FPMalicious

(3)Recall =
TPMalicious

TPMalicious + FNBenign

(4)F − Score = 2 ×

TPMalicious

TPMalicious+FNBenign

×
TPMalicious

TPMalicious+FPMalicious

TPMalicious

TPMalicious+FNBenign

+
TPMalicious

TPMalicious+FPMalicious

Table 2  Computing 
environment

Operating System Windows 10 Professional 1909

CPU Intel(R) Core(TM)i7-6700HQ
RAM 16GB
GPU NVIDIA GeFroce 1060
CUDA Verion 9.0
Python Version 3.8
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5.3  Evaluation of Technique 1

In this section, we analyze the training parameters for the LSTM model and later 
discuss the results that we obtain via this model.

Parameter tuning is a critical part to obtain the best results of a machine learning 
model. The combination of parameters that produce the results is listed in Table 3 
and demonstrated in Fig. 4.

We make use of an optimizer algorithm to reduce the error function in our model. 
It is important to do so because this is a vital step in the neural network’s training 
process as it helps in the minimization of the loss function. The purpose of the loss 
function is to help the optimizer in determining whether the direction adopted by it is 
right in reaching the global minimum. In our approach, we use the optimizer named 
Adam because its usage is quite well in practice. Other than that, the convergence 
through this is very fast as compared to other optimization techniques. It performs 
very efficiently and makes sure that the problems encountered in other techniques 
are also rectified. The loss function we use for our classification problem is cross-
entropy. This loss function is also preferred to be used mathematically. A score is 
calculated using this function which is then minimized to obtain a perfect value i.e. 
0. We specify the cross-entropy in Keras by setting the loss to ‘binary_crossentropy’ 
when we compile the model. Next, we use a sigmoid activation function which has 

Table 3  Parameters for training 
model

Parameters Function/value

Optimizer Adam
Loss function Binary cross entropy
Dropout rate 0.2
Dense units 4
Epochs 10

Fig. 6  Accuracy of LSTM model
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an S-Shape curve on the graph. The main reason behind using this function is that 
the values of the function lie between [0, 1]. Hence, we use it in our model to predict 
such values as the output. Next, we use a dense layer in our neural network. After 
that, we apply dropout to the input. Dropout is used to prevent over-fitting during 
training time. Lastly, we run a total of 10 epochs on LSTM. Each epoch has one for-
ward pass and one backward pass of all the training examples in the dataset.

Figure  6 depicts the model accuracy achieved through LSTM. This model 
achieves the highest accuracy of 0.983 with a loss of 0.061 only which is depicted 
in Fig.  7. Figure illustrates the loss obtained during each epoch. We also obtain 
an f1-score of 0.983, while precision and recall are 0.990 and 0.977 respectively. 

Fig. 7  Error bars for LSTM

Fig. 8  ROC curve of LSTM
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Figure  8 demonstrates the ROC Curve for the model whereas Fig.  9 presents the 
confusion matrix of LSTM.

Similarly, Table 4 demonstrates the results of our proposed LSTM and k-means 
clustering. We use the metrics of accuracy, f-measure, precision, and recall to evalu-
ate the results of these models.

5.4  Evaluation of Technique 2

Table 4 demonstrates the results of our proposed k-means using Embedding. We use 
the metrics of accuracy, f-measure, precision, and recall to evaluate the results of 
this model. k-Means clustering achieves the accuracy, F-Score, Precision, Recall of 
0.997, 0.968,0.970,0.957 respectively, and provides promising results in comparison 
with LSTM for malicious URL detection. Figure 10 demonstrates a deep analysis 
of URLs through which we can cluster the sensitivity of a URL. The characteriz-
ing formula for a URL and k-means clustering shows that variance in data values is 
greater in malicious URLs as compare to benign URLs. This concludes that mali-
cious URL format could be of multiple types like it could be resembling an original 
URL or it could be an absurd looking URL. This analysis suggests that the URL 
sensitivity can be categorized through its URL length.

Fig. 9  Confusion matrix of LSTM

Table 4  Results of LSTM and k-means clustering

Accuracy F-1 Score Precision Recall

Long Short-Term Memory 0.983 0.983 0.990 0.977
 k -Means clustering 0.997 0.968 0.970 0.957
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Figure  11 interprets and validates the consistency of k-mean within the 
cluster.

5.5  Evaluation of Conventional Classification Models

We train several other classification models to perform a comparison between the 
results obtained from Random Forest, Multilayer Perceptron, and Naïve Bayes 
with LSTM and k-Means clustering using encryption for URL classification. 
We use the sklearn classifiers to train these models on our dataset. Random For-
est is trained by setting the parameters of n_estimators to 50, max_depth to 3, and 
random_state to 10. Similarly. Multilayer Perceptron is trained using the parameters 
of hidden_layer_sizes and max_iter by setting them to (2, 2, 2) and 10 respectively. 

Fig. 10  This figure is a depiction of clusters in 3D space against standard deviation, URLs mean (char-
acterization according to our formula) and URLs mean length, clustering a URL category with multi 
perspective
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The classification models give an accuracy of 0.99, 0.98, and 0.97 in case of Ran-
dom Forest, Multilayer Perceptron, and Naïve Bayes respectively. Figure 12 demon-
strates the ROC curves for all three models.

Fig. 11  Elbow curve for results validation with respect to various number of clusters

Fig. 12  ROC curves for random forest, multilayer perceptron, and Naive Bayes
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5.6  Comparative Analysis of Results

Table 5 presents the results in comparison with the conventional models. We use Ran-
dom Forest, Multilayer Perceptron, and Naive Bayes for URL classification. Each of 
these models provide promising results on our dataset. We evaluate our models with 
different evaluation metrics which include accuracy, f-measure, precision and recall.

6  Conclusion and Future Work

In this article, we proposed two techniques which are LSTM and k-Means clustering 
to detect malicious URLs. Existing work on URL classification uses non-contiguous 
features such as bag-of-words and does not infer semantics from individual URL com-
ponents. The limitations of those works include not maintaining a sequence of words, 
not interpreting useful meaning out of rare words in the URL, and not detecting unseen 
URLs correctly. To overcome these limitations, we worked with word embedding to 
generate a semantic vector model, and URL encryption to detect the real nature of 
the URLs. The novelty of our contributions include working with token-level embed-
ding and URL encryption to feed the processed URLs into the model where they were 
classified as malicious or benign with an accuracy of 98.3% with a loss of 0.061 with 
LSTM and 99.7% with k-means clustering.

In the future, we can extend this work by developing an extension for real-time 
detection of URLs as malicious or benign. Such an extension would turn the color 
of the URL as red or green when the cursor is moved onto it depicting malicious or 
benign URL respectively. Furthermore, other deep learning models can be applied to 
the dataset to depict whether more accurate results can be achieved.
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