
Vol.:(0123456789)

Journal of Network and Systems Management (2021) 29:21
https://doi.org/10.1007/s10922-021-09587-8

1 3

URLdeepDetect: A Deep Learning Approach for Detecting
Malicious URLs Using Semantic Vector Models

Sara Afzal1 · Muhammad Asim1 · Abdul Rehman Javed2 · Mirza Omer Beg3 ·
Thar Baker4

Received: 1 June 2020 / Revised: 17 January 2021 / Accepted: 3 February 2021 /
Published online: 4 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Malicious Uniform Resource Locators (URLs) embedded in emails or Twitter posts
have been used as weapons for luring susceptible Internet users into executing mali-
cious content leading to compromised systems, scams, and a multitude of cyber-
attacks. These attacks can potentially might cause damages ranging from fraud
to massive data breaches resulting in huge financial losses. This paper proposes a
hybrid deep-learning approach named URLdeepDetect for time-of-click URL analy-
sis and classification to detect malicious URLs. URLdeepDetect analyzes semantic
and lexical features of a URL by applying various techniques, including semantic
vector models and URL encryption to determine a given URL as either malicious
or benign. URLdeepDetect uses supervised and unsupervised mechanisms in the
form of LSTM (Long Short-Term Memory) and k-means clustering for URL clas-
sification. URLdeepDetect achieves accuracy of 98.3% and 99.7% with LSTM and
k-means clustering, respectively.

Keywords Malicious URL detection · Security and privacy · Word embedding ·
Deep neural networks

1 Introduction

An Online Social Network (OSN) is a platform where people interact and commu-
nicate with each other for various purposes such as entertainment, marketing, and
business. Users share their ideas, photos, videos, events, and personal information
in the form of posts on these platforms [1, 2]. Posting all of these details on online
social platforms not only creates opportunities for people to exploit the users [3], but
the simple use of any such platform can also lead to a lot of privacy concerns [4–6].

 * Muhammad Asim
 muhammad.asim@nu.edu.pk

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-021-09587-8&domain=pdf

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 2 of 27

People may give out too much of their personal information, and the sites may not
take adequate steps to protect their privacy. This creates an opportunity for cyber-
criminals to attack their privacy and get what they want [7–9]. This is where phish-
ing attacks get very common. Such attacks are done by following a common method
of shortening URLs through URL shortening services [10] and adding them in dif-
ferent posts and statuses on social media. A social media phishing attack involves
deceiving the user to click on an infected link which can lead to a drive-by download
attack [11, 12] or can steal the user’s credentials either from the site or by asking the
user indirectly to enter their details [13]. Most of the URLs look very similar to the
original URLs tricking the users into believing that they are opening the actual link
[14].

Among many popular social media platforms, Twitter is a very famous social net-
work with the majority of most celebrities, politicians, and businessmen using it. It
has a restriction of using only 140 characters in a post hence it is famous for includ-
ing shortened URLs to provide additional details along with the post. This provides
an opportunity for cybercriminals to take advantage of shortened URLs and harm
the user’s system or get access to their private data [15]. Drive-by download attacks
and luring the users into providing private information are considered as growing
dilemmas of cyber-attacks especially when cybercriminals target large-scale trend-
ing events on different online social platforms [16]. The trending topics and their
associated terms or hashtags are the easiest approaches for cybercriminals to lure
information-seeking users [17]. URLs are added along with the post and these URLs
consist of comprise of additional information, evidence to the topic mentioned in the
post, or an image to support that topic.

Attacks such as drive-by download attacks can be prevented by studying the
behavioral analysis of malware which leads to the identification of malicious URLs
[16, 18]. Researchers have emphasized the detection of malicious and benign URLs
and worked on building machine learning models for the classification of URLs.
The classification works on different kinds of features which include machine activ-
ity features [16], tweet features [19], URL based features [14, 20], lexical features
[10], etc. These features help in detecting whether a particular URL is harmful to
a user and some works [21] include protecting the users from clicking those URLs.
It has become very important to build such a mechanism that provides good accu-
racy in detecting malicious URLs to protect the private data [22] and be safe from
monetary losses. Figure 1 demonstrates how accessing an unknown URL can lead to
harming the user’s system if there is no way adopted to check whether it is malicious
or not. However, if the URL is checked before opening it, the user can be saved from
any potential damage [23].

The motivation behind this paper is the detection of malicious URLs consider-
ing Twitter as the main aspect to protect its users since Twitter is the most used
platform with 330 million1 monthly active users today. This makes it very important
to protect Twitter from cybercriminals as they can target a large number of audi-
ences to harm them via Twitter. The existing work of researchers is mostly based

1 https ://www.stati sta.com/stati stics /28208 7/numbe r-of-month ly-activ e-twitt er-users /.

https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/

1 3

Journal of Network and Systems Management (2021) 29:21 Page 3 of 27 21

upon features that can be collected only after clicking the URL [24, 25] such as
machine activity features. Working with those features may harm the user’s sys-
tem before any malicious activity can be detected and blocked. Since those features
require the URL to be clicked on, causing harm to the user or the system, therefore,
it is not a sufficient method to consider. Other features are based on tweet attributes
[26] that are difficult to get at run-time during the implementation of a prediction
model, hence making the algorithm very complex. Therefore, this leads to the need
for developing a security management system to detect malicious URLs, which can
work in all kinds of scenarios without harming the system or increasing the com-
plexity of the algorithm.

This paper introduces a novel approach named URLdeepDetect in the field of
cybersecurity management for detecting malicious URLs by implementing and

Fig. 1 Consequences of detection and non-detection of malicious URLs

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 4 of 27

demonstrating work on two different techniques. The approach includes working
with semantic vector models of URL tokens, along with URL encryption. It also
includes applying a modified version of recurrent neural network (i.e. LSTM),
and k-means clustering as the classification models. The first technique uses
tokenization and word embedding and classifies the URLs via LSTM. The sec-
ond technique uses URL encryption and classifies via k-means clustering. This
work makes the following The key contributions of this work are as follows.

– A hybrid deep-learning approach named URLdeepDetect for time-of-click
URL analysis and classification to detect malicious URLs.

– The use of word embedding generated by a vector space model is made to
capture the semantics of URL tokens and then feed them into an LSTM to
capture the sequential semantics of the entire URL.

– A novel URL encoding mechanism is developed and presented and is used in
combination with vector embedding to employ clustering for unsupervised
URL classification.

– A thorough empirical analysis of our techniques is presented and compared
the results with highly tuned conventional machine learning models.

The remainder of the paper is structured as follows. Section 2 discusses the
problem formalization of the paper and explains the lexical features of the URL.
Section 3 presents the related work. Section 4 introduces the URLdeepDetect
approach. The experimental setup, results, and comparative analysis are articu-
lated in Section 5. Finally, section 6 concludes the work. Table 1 denotes the
abbreviations used in this work.

Table 1 Table of abbreviations Abbreviations Explanation

LSTM Long Short-Term Memory
URL Uniform Resource Locator
NLP Natural Language Processing
DNS Domain Name System
CNN Convolutional Neural Network
RNN Recurrent Neural Network
SVM Support Vector Machine
MLP Multilayer Perceptron
NB Naïve Bayes
RF Random Forest
CBOW Continuous Bag-of-Word
TF-IDF Term Frequency-Inverse

Document Frequency
NLTK Natural Language Toolkit

1 3

Journal of Network and Systems Management (2021) 29:21 Page 5 of 27 21

2 Detection of Malicious URLs

2.1 Problem Formulation

The primary focus of this paper is to detect malicious URLs on different social plat-
forms. To solve such a problem, a binary classification [27] is used since the tar-
get classes contains two labels i.e. malicious or benign. Consider a dataset contain-
ing URLs and labels (i.e. malicious and benign). The URLs can be represented as
{(u1, y1),… , (uT , yT)} where u1 to ut are the URLs whereas y1 to yt are the labels of
each URL respectively. The variable y can belong to the set {−1,+1} since it denotes
the label of the URL. We can consider y = +1 to be a benign URL while y = −1 to
be a malicious URL. This means that if the label corresponding to a particular URL
depicts the URL as benign, the value of y will be +1 and if the label depicts the URL
as malicious, the value of y will be −1 . The process of classification involves two
steps that are followed in the approach. The first one is to attain a feature demonstra-
tion ut → xt . Here xt belongs to ℝn which is a feature vector with the dimension n
and is used to represent a URL ut . A function denoted by f ∶ ℝ

n
→ ℝ for predic-

tion must be learned which is basically the second step of the process. The pur-
pose of this function is the prediction of a score so that a URL could be placed into
any of the two classes. The function makes the prediction which is represented as
ŷt = sign(f (xt)) . We perform these steps to minimize the loss function which is basi-
cally about trying to reduce the total number of mistakes in the complete dataset.
For our problem, f represents LSTM and k-means clustering which are the classifi-
cation models that we used for the detection of the URLs. Later, the use of several
evaluation metrics is done to evaluate our prediction function’s performance which
in our case includes accuracy, precision, recall, and f-measure.

2.2 Lexical Features of URL

With the help of the lexical features of a URL [28], a raw URL is represented by u
and is transformed into a vector of features represented by x. To do that, the URL is
split into different tokens. The splitting takes place on special characters in the URL
[29]. A huge number of tokens are obtained after splitting the URLs of the entire
dataset. A dictionary is made in which all unique tokens are placed and each feature
then represents a word which is represented by wi . In one of the two techniques, with
the provision of unique features represented by M, every given URL represented by
ut is worked upon for mapping it to a vector represented by xt which belongs to ℝM .
This is done in such a way that the ith component in xt is mentioned as 0 stating that
the word wi is not present in the URL and it is mentioned as 1 stating that the word
wi is present in the URL. The second technique involves URL encryption instead of
working with a vector model.

Each URL splits up into many tokens, hence creating a very large dataset with
a huge feature size. The new dataset can even be greater in size than the original
one, since there are more than one tokens for every URL. Next, the model is to be
trained again since we have a new dataset. For training again, the size grows for

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 6 of 27

both the model as well as and features. The existing models, by using these features,
have some limitations. Firstly, the sequence of the tokens is not maintained once
the URL is split and the unique tokens are added to the dictionary. Secondly, the
words which appear rarely or just once in the dictionary do not provide meaningful
information. Lastly, new words in test data cannot be interpreted properly since they
had not appeared in the data used for training purposes. Hence, there is no success
in working with the models that fail to find any meaningful information behind such
words. To overcome these limitations, both our models play their part and give high-
quality results.

3 Related Work

Many researchers have worked on the detection of the nature of URLs as either
malicious or benign [30–32]. In this section, we describe the work presented by
those authors along with the machine and deep learning [33, 34] models that they
have used. The division of The related work section has been split can be made into
3 sub-sections based upon feature categorization. The first sub-section covers the
papers that use tweet features and machine activity data to predict the URLs as mali-
cious or benign. The second sub-section includes those references that use lexical,
domain/host-based, and URL based features to achieve accuracy in prediction. The
last sub-section consists of those papers that discuss vector models and neural net-
works for phishing detection. The literature review is done in the respective sections.

3.1 Usage of Tweet Features and Machine Activity Data

In [16], the authors focused on achieving four targets. Firstly, they developed a sys-
tem for the classification of URLs to determine them as either malicious or benign
and they did this in seconds after the URL was clicked by the user. Secondly, the
model that was learned was examined and interpreted to study the relationship
between machine activity and malware presented by drive-by-downloads on Twit-
ter. Thirdly, their paper included work for the identification of such features that
could generalize across different happenings. Lastly, the authors tried to understand
how much data would be sufficient for this problem. The limitation in their work
is that they have used only it uses machine activity features and that too is very
limited , only. As for [21], improvements have been made to previous work [16]
as the authors worked on building a machine learning model with the use of dif-
ferent features such as machine activity features along with the features of a spe-
cific tweet to block and prevent a drive-by download attack. This approach allowed
them to identify the malicious URLs before these URLs harm the user or the sys-
tem after their execution and then take time to recover from such harm. The authors
in [19] claimed that the approach of using only visible features of tweets and user
profiles to detect malicious URLs is practicable and gives good enough results.
Tweet features are extracted using python scripts and those features are divided into
three categories including content, context, and social features. They claimed that if

1 3

Journal of Network and Systems Management (2021) 29:21 Page 7 of 27 21

machine activity features are not used, their predictive model can still give the best
results. The authors in [35] focused on developing a detection system for the nature
of URLs. The main idea behind the paper was to explore the relationship between
different URLs and their re-directions to different pages. Therefore, they used two
types of features. The first type consisted of features extracted from the idea of URL
re-directions whereas the second type involved features that had data drawn out from
tweets. The work in [36] solved the problem of malicious URL detection into two
parts. The first part involved the training of the dataset to detect the maliciousness
of URLs while the second part consisted of the work that they proposed i.e. building
a mechanism for security alerts. A total of 11 features were used for training. The
authors used Random Forest (RF) and achieved an accuracy of 97.50%.

3.2 Usage of Lexical, Domain/Host, and URL Based Features

Classification of URLs was done using a machine learning approach in [10]. The
authors extracted lexical features from a URL and assumed that the features for
both malicious and benign URLs are different which helps in classifying them.
The deployment of the model was done in the FireEye Advanced URL Detection
Engine (FAUDE), in which malicious URLs were detected in a large number. The
authors in [37] claimed that all the authors who have worked in this domain have
focused on binary classification and none of them have done multi-class classifica-
tion to detect the nature of URLs. According to them, the URLs are only classified
as malicious or benign and not as any other kind of spam. Therefore, the main idea
behind their paper was to introduce a multi-class classification system so that the
nature of URLs could be identified more specifically. For training purposes, they
used a supervised machine learning approach. In [38], authors analyzed approaches
that extract features from phishing websites and train classification models with an
extracted feature set to classify phishing websites. They created an exhaustive list of
all features used in these approaches and categorized them into 6 broader categories
and 33 finer categories. They extracted features from the URL, URL redirects, host-
ing domain (WHOIS and DNS records), and popularity of the website and analyzed
their robustness in classifying a phishing website. Their emphasis was on determin-
ing the predictive performance of robust features. Later, they evaluated the classifi-
cation accuracy when the entire feature set was used and when URL features or site
popularity features are excluded from the feature set.

3.3 Usage of Vector Models and Neural Networks

The authors in [39] presented present a methodology in which they made use of
lexical features of URLs to classify their maliciousness using machine learning tech-
niques. The methodology consisted of using the techniques of Natural Language
Processing (NLP) which involves working with word-level vectors and n-gram mod-
els. With the help of this technique, the authors classified the URLs as either mali-
cious or benign. They achieved an accuracy of 97.1% with a machine learning model
named SVM (Support Vector Machine). The authors in [40] proposed an approach

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 8 of 27

of phishing detection using the techniques of deep learning. The mapping of the
URLs on websites and their characters was done to different documents and words
respectively with the use of a word embedding technique called word2vec. Further-
more, the combination of embedding of characters was done with URL structures to
acquire the URL in the form of vectors. To achieve this, the authors split the URL
into five components. The work in [41] achieved the purpose of classifying the
URLs as malicious or benign using CNNs (Convolutional Neural Networks) along
with the use of word2vec model for word embedding. These techniques were used
to classify news articles and tweets. Different embedding techniques were used by
the authors which include word2vec, Continuous Bag-of-Word (CBOW), and Skip-
gram. The authors built the neural network with two of these algorithms which are
CBOW and Skip-gram. The accuracy of the classification of the neural network
was measured using the above mentioned two techniques and achieved the highest
accuracy with CBOW Model. Authors in [42–45] presented studies to detect intru-
sion attacks in a connected system. The authors in [46] conducted extensive experi-
ments on large-scale datasets and used deep learning-based solutions for detecting
the maliciousness of URLs. Their method involved breaking the URL into words
and characters and then feeding them all to the convolutional neural network. The
technique of identifying unique characters and unique words first and then convert-
ing them into matrix representations later was used. In particular, two CNN models
were made with the major difference of character level and word level embedding
in each model. Both these models were combined to optimize the final model for
prediction.

The research papers discussed above show that a variety of machine learn-
ing algorithms have been used to solve the problem that has been encountered i.e.
detecting the URLs as malicious or benign. The common techniques that have been
used extensively in the majority of the work are Random Forest, Naïve Bayes, Mul-
tilayer Perceptron, Decision Trees, Logistic Regression, Support Vector Machine,
Bayes Net, and Neural Network. Most of the papers have used these algorithms
on the datasets of features which are tweet based, machine activity-based, or URL
based making all the papers similar to one another in some way. Therefore, we dis-
cuss a novel approach in this paper which no other work has yet introduced i.e. make
use of two techniques which include word embedding and URL encryption for the
detection of the nature of URLs. We also implement a few techniques mentioned
above from our related work to compare our results with them.

4 URLdeepDetect

In this section, we present our proposed approach URLdeepDetect, which consists
of two different techniques. We introduce a novel generalized approach that not only
detects Twitter’s malicious URLs but URLs on all other platforms. In the implemen-
tation, first, we pre-process the dataset and then we tokenize the URLs. We apply
word-level embedding in the first technique whereas URL encryption in the second
technique. In the process of word embedding, we calculate the semantic similarity

1 3

Journal of Network and Systems Management (2021) 29:21 Page 9 of 27 21

score and then make vectors. Lastly, we perform classification using LSTM and
k-means clustering.

The pseudo-code of our algorithm and the processing flow is illustrated in Algo-
rithm 1. The architecture of the proposed approach is shown in Fig. 2. It demon-
strates the methodology of the proposed model. The pre-processed URL is taken
and two different techniques are applied to it. The upper half of the diagram dis-
plays that tokenization and Word2Vec are performed on the URL and later LSTM is
applied on the vector to get results. The lower half of the diagram demonstrates the
second technique where URL Encryption is performed and later k-means clustering
is used to get the results.

Fig. 2 Overview of the proposed architecture

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 10 of 27

4.1 Technique 1: Word Embedding and Long Short‑Term Memory

4.1.1 Tokenization

The first step of our implementation includes the process of tokenization of URLs,
which is a necessary step of Natural Language Processing (NLP) tasks. Before

1 3

Journal of Network and Systems Management (2021) 29:21 Page 11 of 27 21

performing any further steps on the data, it is a mandatory step to split the text into
minimal meaningful units. Line 1 to 5 of Algorithm 1 demonstrates the code for the
process of tokenization. We use the basic tokenizer, which is present in NLTK (The
Natural Language Toolkit) and is basically supported in python to work with pro-
grams that involve techniques related to human language data. NLTK consists of a
lot of libraries that can be used on strings and characters to find semantic meanings
behind them. Among those libraries, we use the tokenize library to parse the URL
into different tokens. We make an array to store the tokens after parsing. The tokens
of each URL are appended one by one in the array which is later passed on to the
vector model discussed in the next section.

Our tokenizer works in a way that it splits up the URL into different words by
using an unsupervised algorithm to build a vector model that can be given as an
input to LSTM. We use two modules of the tokenize library which include word_
tokenize and sent_tokenize. The first module i.e. word_tokenize is used to split
words in the URL. It returns the syllables from a word where a single word may
contain two or three syllables. The second module i.e. sent_tokenize function is a
submodule of word_tokenize.

4.1.2 Word Embedding: Word2Vec

The next step involved in the process is to create a vector model using the tokens
that we obtain in the previous step through the process of tokenization. We do so
by following the method of vectorization, also known as word embedding. It is
the process of converting words into numbers. Therefore, we use it for the same
purpose i.e. we try to find meaning out of the words and strings by actually con-
verting the words into numbers which are basically vectors. Each word is mapped
to its corresponding vector. An easy way to understand how arithmetic operations
can be performed on words is with an example. Let us consider a famous exam-
ple: king − man + woman = queen , which is depicted in Fig. 2 of the proposed
approach. Here, if we add the vectors which are associated with the words king and
woman and then minus the vector associated with the word man will give us a vector
associated with queen. Therefore, after the conversion of words to vectors, we use
some techniques to find the similarity among the words. Line 9 to 29 in Algorithm 1
demonstrates the process of vectorization.

Many approaches to perform word embedding are being used with different pros
and cons. These approaches include BOW (Bag of Words),2 TF-IDF (Term Fre-
quency – Inverse Document Frequency) Scheme3 and Word2Vec. The technique that
we use for word embedding is Word2Vec. In this method, the use of neural net-
works is made to do the conversion of words into vectors such that the words which
have their semantic score similar to each other are considered to be closer in a space

2 https ://towar dsdat ascie nce.com/machi ne-learn ing-text-proce ssing -1d5a2 d6389 58.
3 https ://towar dsdat ascie nce.com/tf-idf-for-docum ent-ranki ng-from-scrat ch-in-pytho n-on-real-world
-datas et-796d3 39a40 89.

https://towardsdatascience.com/machine-learning-text-processing-1d5a2d638958
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 12 of 27

of dimension n. We import the word2vec model from the Gensim library and then
use it to build word embeddings. We train the word2vec model by making use of
an algorithm named skip-gram. To create a word2vec model, we create a corpus
first and then pre-process the content. For the training of the model, we use nltk.
sent_tokenize and nltk.word_tokenize utilities. We use the class word2vec when the
array is passed to it keeping in mind that the array consists of all the words. This
completes the creation of our word2vec model that converts the words into their cor-
responding vectors. The vocabulary size does not have any effect on the vectors that
we have built.

4.1.3 Long Short‑Term Memory (LSTM)

The final step of the first technique includes the details regarding the model that
we implement to predict the accuracy of the data given. Hence, the final step in
this technique is to feed the vectors into a neural network. We use LSTM as our
classification model which is a tweaked version of the recurrent neural network.
Using LSTM as the classification model gives us the biggest advantage since we
are dealing with word embeddings. The model needs to learn the embeddings
which can be done best while fitting the LSTM. Traditional models have a limita-
tion of having no memory. Recurrent Neural Networks like LSTM can be used
to tackle this problem. Since we are dealing with Natural Language Processing
techniques in our work, LSTM can work best by remembering every input and
making it easier to generate meanings out of words. LSTMs can make little modi-
fications by multiplications and additions depending upon the need as they can
selectively remember or forget things. After the creation of vectors, we work on
feeding those vectors to the LSTM for training. Line 30 to 38 of Algorithm 1
demonstrates the process of training the model through LSTM. We prepare the
data in such a format that for the prediction of ’E’ in ’BLUE’, the input given
is the first three letters in an array and the outcome of that input is the last let-
ter. To define the LSTM model, we use the sequential model. The first layer is
embedding which takes the vocabulary size as input dimension, embedding size
as output dimension, and the pre-trained weights as the weights. We then add
an LSTM layer to make sure that the problem of receiving data in a scattered
manner by the next LSTM layer can be avoided. The model also has to be built
in such a way that there is no over-fitting in it. Hence, we use the dropout layer
for this purpose after every LSTM layer. Next, we use a fully connected layer
i.e. dense layer and the activation function which we use with it is ‘relu’. Then,
we apply another dense layer with 1 unit. Lastly, we use the Sigmoid function
the output of which is basically a vector. The vector has values 0 and 1 where 0
depicts that the value should be forgotten whereas 1 means that the value should
be remembered.The complexity analysis is depicted via a graph is represented
in Fig. 3 in which the running time of each epoch is shown and the details of the
used parameters are demonstrated in Fig. 4. We then compile our model by set-
ting the loss to binary_crossentropy. The optimizer is set as Adam and the met-
rics are set to accuracy. After that, we fit our model and run 10 epochs on it for

1 3

Journal of Network and Systems Management (2021) 29:21 Page 13 of 27 21

training which gives us an accuracy of 98.3%. During model fitting, we pass the
parameter of validation_split setting it to 0.1 which also makes sure that 10% of
the training data is used for validation. With that, we also obtain the validation
loss and accuracy.

4.2 Technique 2: URL Encryption and k‑Means Clustering

This approach involves working with the technique of k-means clustering which
incorporates encryption of the numeric characters in a URL. k-means clustering
is an optimal choice to apply when dataset instances are distinct or somewhat
different in nature from each other. It is a fast and less complex algorithm in com-
parison with other clustering algorithms that provides optimal results. Moreover,
k-means provides a set of the parameter that can be tuned to improve the cluster-
ing such as number of clusters (k), distance method and centroid position upda-
tion, etc. For experimentation, the hyperparameters are tuned for accurate cluster-
ing. In final setting, n_clusters is set to 2, init is set to ‘k-means++’, max_iter is
set to 300, n_init is set to 10 and random_state is set to 0.

A specific URL is composed of alphanumeric format (i.e.
www.64Tech − new.com), therefore we perform analysis on the structure of
benign and malicious URLs. Some of the malicious URLs try to be depicted as
the original URL based on domain or length of URL having a minor difference.
Most of the URLs have more characters than a usual URL. Similarly, the usage
of special characters in domains is some of the signs of malicious URL. To get
the best performance of k-means clustering, we convert contiguous numeric char-
acters into distinct numerical IDs. We encrypt each URL using the steps given in
the algorithm below:

Fig. 3 Complexity analysis of LSTM model

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 14 of 27

Fig. 4 The parameters used to train the LSTM Model

1 3

Journal of Network and Systems Management (2021) 29:21 Page 15 of 27 21

This unique URL encryption mechanism represents a URL and its characteristics
based on an encoding which is used as a feature vector for URL clustering. After
converting all the URLs into encrypted code, the dataset is given as input to the
k-means clustering algorithm.

5 Analysis and Evaluation of Results

In this section, we discuss the results of our implementation and evaluate them by
comparing with the conventional machine learning models. For experimentation, we
perform supervised URL classification and unsupervised URL clustering. For super-
vised classification, we choose conventional algorithms: RF, MLP, NB, and LSTM,
a deep learning method. For unsupervised learning, we perform URL encryption-
based k-means clustering [47]. We also describe the evaluation measures that we
have used to describe our results. We split our dataset into two parts for training and
testing purposes. For training, we select 0.8 entries while for testing we keep 0.2
entries (training: 20%, testing: 80%). We feed the training data into our classification
models for the prediction of URLs as malicious or benign.

5.1 Dataset Overview

We obtain a dataset of 2019,4 which is created to tackle the problem of malicious URLs
on the Internet. It is acquired from various sources such as PhishTank etc. It contains
records of benign and malicious URLs that can be used for analysis or building clas-
sifiers. The total number of unique URLs in the dataset is 450176 out of which 77%
are benign and 23% are malicious. The dataset contains four columns representing the
index, URL, label, and result. We choose this dataset for our work because it has a
variety of URLs from different sources. The size of different URLs vary from each
other which means our model can detect the maliciousness of a URL with any variable
length. The dataset also has a large number of entries of malicious and benign URLs

4 https ://www.kaggl e.com/siddh arthk umar2 5/malic ious-and-benig n-urls.

https://www.kaggle.com/siddharthkumar25/malicious-and-benign-urls

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 16 of 27

due to which the model has enough input for training and test. Hence, the above men-
tioned reasons make this dataset appropriate for our work.

To use the dataset for our work, we delete a few benign entries randomly to make
the percentage of malicious and benign URLs equal i.e. 50% malicious and 50% benign
to obtain better results. The final dataset consists of 207,081 entries with equal mali-
cious and benign URLs. All the information from this dataset is used for training and
testing purposes. For training purposes, 80% of the data is used while testing is done on
the rest of the 20% data. Figure 5 depicts the trend of benign and malicious URLs in
the dataset. This representation demonstrates the URLs concerning the URLs’ length.
The longer the URL, the more number of tokens it has usually resulting in helping the
model to predict better accuracy.

5.1.1 Pre‑processing of Data

Firstly, the dataset contains several NaN values so we remove a few rows. The dataset
even after removing some rows is large enough for training and testing purposes. Sec-
ondly, the dataset contains benign entries in more numbers as compared to malicious
entries. Therefore, we also remove some benign entries to make the ratio of benign
and malicious entries equal in the dataset. This balances our data for classification that
leads to the better catering of both the classes.

Fig. 5 The representation of dataset concerning the length of URLs

1 3

Journal of Network and Systems Management (2021) 29:21 Page 17 of 27 21

5.2 Evaluation Measures and Computing Environment

Practically all evaluation measures rely upon the nature of the dataset. For the
most part, accuracy is taken as an essential measure yet it is for the situation
when the dataset is balanced. In any case, when the dataset is imbalanced, it does
not provide significant information about the performance of the model. In this
paper, we consider the most valuable performance measures such as Accuracy,
Precision, Recall, F-Score, and Confusion Matrix to analyze the performance of
our classification model. Below, equations demonstrate the evaluation measures,
and Table 2 presents the computing environment.

Confusion matrix comprises of TP, TN, FP, and FN, where TP is a malicious URL
that is correctly classified as malicious URL, TN is a benign URL that is correctly
classified as benign URL, FP is a benign URL that is incorrectly classified as mali-
cious URL, and FN is a malicious URL that is incorrectly classified as a benign
URL.

(1)Accuracy =
TPMalicious + TNBenign

TPMalicious + FNMalicious + TNBenign + FPBenign

(2)Precision =
TPMalicious

TPMalicious + FPMalicious

(3)Recall =
TPMalicious

TPMalicious + FNBenign

(4)F − Score = 2 ×

TPMalicious

TPMalicious+FNBenign

×
TPMalicious

TPMalicious+FPMalicious

TPMalicious

TPMalicious+FNBenign

+
TPMalicious

TPMalicious+FPMalicious

Table 2 Computing
environment

Operating System Windows 10 Professional 1909

CPU Intel(R) Core(TM)i7-6700HQ
RAM 16GB
GPU NVIDIA GeFroce 1060
CUDA Verion 9.0
Python Version 3.8

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 18 of 27

5.3 Evaluation of Technique 1

In this section, we analyze the training parameters for the LSTM model and later
discuss the results that we obtain via this model.

Parameter tuning is a critical part to obtain the best results of a machine learning
model. The combination of parameters that produce the results is listed in Table 3
and demonstrated in Fig. 4.

We make use of an optimizer algorithm to reduce the error function in our model.
It is important to do so because this is a vital step in the neural network’s training
process as it helps in the minimization of the loss function. The purpose of the loss
function is to help the optimizer in determining whether the direction adopted by it is
right in reaching the global minimum. In our approach, we use the optimizer named
Adam because its usage is quite well in practice. Other than that, the convergence
through this is very fast as compared to other optimization techniques. It performs
very efficiently and makes sure that the problems encountered in other techniques
are also rectified. The loss function we use for our classification problem is cross-
entropy. This loss function is also preferred to be used mathematically. A score is
calculated using this function which is then minimized to obtain a perfect value i.e.
0. We specify the cross-entropy in Keras by setting the loss to ‘binary_crossentropy’
when we compile the model. Next, we use a sigmoid activation function which has

Table 3 Parameters for training
model

Parameters Function/value

Optimizer Adam
Loss function Binary cross entropy
Dropout rate 0.2
Dense units 4
Epochs 10

Fig. 6 Accuracy of LSTM model

1 3

Journal of Network and Systems Management (2021) 29:21 Page 19 of 27 21

an S-Shape curve on the graph. The main reason behind using this function is that
the values of the function lie between [0, 1]. Hence, we use it in our model to predict
such values as the output. Next, we use a dense layer in our neural network. After
that, we apply dropout to the input. Dropout is used to prevent over-fitting during
training time. Lastly, we run a total of 10 epochs on LSTM. Each epoch has one for-
ward pass and one backward pass of all the training examples in the dataset.

Figure 6 depicts the model accuracy achieved through LSTM. This model
achieves the highest accuracy of 0.983 with a loss of 0.061 only which is depicted
in Fig. 7. Figure illustrates the loss obtained during each epoch. We also obtain
an f1-score of 0.983, while precision and recall are 0.990 and 0.977 respectively.

Fig. 7 Error bars for LSTM

Fig. 8 ROC curve of LSTM

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 20 of 27

Figure 8 demonstrates the ROC Curve for the model whereas Fig. 9 presents the
confusion matrix of LSTM.

Similarly, Table 4 demonstrates the results of our proposed LSTM and k-means
clustering. We use the metrics of accuracy, f-measure, precision, and recall to evalu-
ate the results of these models.

5.4 Evaluation of Technique 2

Table 4 demonstrates the results of our proposed k-means using Embedding. We use
the metrics of accuracy, f-measure, precision, and recall to evaluate the results of
this model. k-Means clustering achieves the accuracy, F-Score, Precision, Recall of
0.997, 0.968,0.970,0.957 respectively, and provides promising results in comparison
with LSTM for malicious URL detection. Figure 10 demonstrates a deep analysis
of URLs through which we can cluster the sensitivity of a URL. The characteriz-
ing formula for a URL and k-means clustering shows that variance in data values is
greater in malicious URLs as compare to benign URLs. This concludes that mali-
cious URL format could be of multiple types like it could be resembling an original
URL or it could be an absurd looking URL. This analysis suggests that the URL
sensitivity can be categorized through its URL length.

Fig. 9 Confusion matrix of LSTM

Table 4 Results of LSTM and k-means clustering

Accuracy F-1 Score Precision Recall

Long Short-Term Memory 0.983 0.983 0.990 0.977
 k -Means clustering 0.997 0.968 0.970 0.957

1 3

Journal of Network and Systems Management (2021) 29:21 Page 21 of 27 21

Figure 11 interprets and validates the consistency of k-mean within the
cluster.

5.5 Evaluation of Conventional Classification Models

We train several other classification models to perform a comparison between the
results obtained from Random Forest, Multilayer Perceptron, and Naïve Bayes
with LSTM and k-Means clustering using encryption for URL classification.
We use the sklearn classifiers to train these models on our dataset. Random For-
est is trained by setting the parameters of n_estimators to 50, max_depth to 3, and
random_state to 10. Similarly. Multilayer Perceptron is trained using the parameters
of hidden_layer_sizes and max_iter by setting them to (2, 2, 2) and 10 respectively.

Fig. 10 This figure is a depiction of clusters in 3D space against standard deviation, URLs mean (char-
acterization according to our formula) and URLs mean length, clustering a URL category with multi
perspective

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 22 of 27

The classification models give an accuracy of 0.99, 0.98, and 0.97 in case of Ran-
dom Forest, Multilayer Perceptron, and Naïve Bayes respectively. Figure 12 demon-
strates the ROC curves for all three models.

Fig. 11 Elbow curve for results validation with respect to various number of clusters

Fig. 12 ROC curves for random forest, multilayer perceptron, and Naive Bayes

1 3

Journal of Network and Systems Management (2021) 29:21 Page 23 of 27 21

5.6 Comparative Analysis of Results

Table 5 presents the results in comparison with the conventional models. We use Ran-
dom Forest, Multilayer Perceptron, and Naive Bayes for URL classification. Each of
these models provide promising results on our dataset. We evaluate our models with
different evaluation metrics which include accuracy, f-measure, precision and recall.

6 Conclusion and Future Work

In this article, we proposed two techniques which are LSTM and k-Means clustering
to detect malicious URLs. Existing work on URL classification uses non-contiguous
features such as bag-of-words and does not infer semantics from individual URL com-
ponents. The limitations of those works include not maintaining a sequence of words,
not interpreting useful meaning out of rare words in the URL, and not detecting unseen
URLs correctly. To overcome these limitations, we worked with word embedding to
generate a semantic vector model, and URL encryption to detect the real nature of
the URLs. The novelty of our contributions include working with token-level embed-
ding and URL encryption to feed the processed URLs into the model where they were
classified as malicious or benign with an accuracy of 98.3% with a loss of 0.061 with
LSTM and 99.7% with k-means clustering.

In the future, we can extend this work by developing an extension for real-time
detection of URLs as malicious or benign. Such an extension would turn the color
of the URL as red or green when the cursor is moved onto it depicting malicious or
benign URL respectively. Furthermore, other deep learning models can be applied to
the dataset to depict whether more accurate results can be achieved.

Compliance with ethical standards

Conflicts of interest The authors declare no conflict of interest.

References

 1. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffu-
sion. In: Proceedings of the 21st international conference on World Wide Web, pp 519–528 (2012)

Table 5 Results of all
techniques

Accuracy F-measure Precision Recall

Random forest 0.993 0.991 0.991 0.984
Multilayer perceptron 0.982 0.984 0.994 0.979
Naive Bayes 0.956 0.955 0.992 0.922
LSTM 0.983 0.983 0.990 0.977
 k -Means clustering 0.997 0.968 0.970 0.957

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 24 of 27

 2. Basit, A., Zafar, M., Liu, X., Javed, A.R., Jalil, Z., Kifayat, K.: A comprehensive survey of ai-ena-
bled phishing attacks detection techniques. Telecommunication Systems pp 1–16 (2020)

 3. Asad, M., Asim, M., Javed, T., Beg, M.O., Mujtaba, H., Abbas, S.: Deepdetect: detection of distrib-
uted denial of service attacks using deep learning. Comput. J. 63(7), 983–994 (2020)

 4. Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on twitter. In: Collabo-
ration, electronic messaging, anti-abuse and spam conference (CEAS), vol 6, p 12 (2010)

 5. Javed, A.R., Beg, M.O., Asim, M., Baker, T., Al-Bayatti, A.H.: Alphalogger: detecting motion-
based side-channel attack using smartphone keystrokes. J. Ambient Intell. Human. Comput. pp 1–14
(2020)

 6. Nair, M.C., Prema, S.: A distributed system for detecting phishing in twitter stream. Int. J. Eng. Sci.
Innov. Technol. 3(2), 151–158 (2014)

 7. Leukfeldt, E.R., Kleemans, E.R., Stol, W.P.: Cybercriminal networks, social ties and online forums:
social ties versus digital ties within phishing and malware networks. Br. J. Criminol. 57(3), 704–722
(2017)

 8. Ohta, S., Kurebayashi, R., Kobayashi, K.: Minimizing false positives of a decision tree classifier for
intrusion detection on the internet. J. Netw. Syst. Manag. 16(4), 399–419 (2008)

 9. Jiang, J., Papavassiliou, S.: Detecting network attacks in the internet via statistical network traffic
normality prediction. J. Netw. Syst. Manag. 12(1), 51–72 (2004)

 10. Joshi, A., Lloyd, L., Westin, P., Seethapathy, S.: Using lexical features for malicious url detection–a
machine learning approach. arXiv preprint arXiv:191006277 (2019)

 11. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and mali-
cious javascript code. In: Proceedings of the 19th international conference on World wide web, pp
281–290 (2010)

 12. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, H.M.: A crawler-based study of spyware in the web.
In: NDSS, vol 1, p 2 (2006)

 13. Hofstede, R., Jonker, M., Sperotto, A., Pras, A.: Flow-based web application brute-force attack and
compromise detection. J. Netw. Syst. Manag. 25(4), 735–758 (2017)

 14. Alshboul, Y., Nepali, R., Wang, Y.: Detecting malicious short urls on twitter. In: Conference: 21st
Americas Conference on Information SystemsAt: Puerto Rico (2015)

 15. Shafahi, M., Kempers, L., Afsarmanesh, H.: Phishing through social bots on twitter. In: 2016 IEEE
International Conference on Big Data (Big Data), IEEE, pp 3703–3712 (2016)

 16. Burnap, P., Javed, A., Rana, O.F., Awan, M.S.: Real-time classification of malicious urls on twitter
using machine activity data. In: Proceedings of the 2015 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining 2015, pp 970–977 (2015)

 17. Lee, C.H.: Unsupervised and supervised learning to evaluate event relatedness based on content
mining from social-media streams. Expert Syst. Appl. 39(18), 13338–13356 (2012)

 18. Imtiaz, S.I., ur Rehman, S., Javed, A.R., Jalil, Z., Liu, X., Alnumay, W.S.: Deepamd: Detection and
identification of android malware using high-efficient deep artificial neural network. Future Genera-
tion Computer Systems (2020)

 19. Nepali, R.K., Wang, Y.: You look suspicious!!: Leveraging visible attributes to classify malicious
short urls on twitter. In: 2016 49th Hawaii International Conference on System Sciences (HICSS),
IEEE, pp 2648–2655 (2016)

 20. Kuyama, M., Kakizaki, Y., Sasaki, R.: Method for detecting a malicious domain by using whois
and dns features. In: The third international conference on digital security and forensics (Digital-
Sec2016), vol 74 (2016)

 21. Javed, A., Burnap, P., Rana, O.: Prediction of drive-by download attacks on twitter. Inf. Process.
Manag. 56(3), 1133–1145 (2019)

 22. Jahani, H., Jalili, S.: Online tor privacy breach through website fingerprinting attack. J. Netw. Syst.
Manag. 27(2), 289–326 (2019)

 23. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing url detection using
online learning. In: Proceedings of the 3rd ACM Workshop on Artificial Intelligence and Security,
pp 54–60 (2010)

 24. Cao, C., Caverlee, J.: Detecting spam urls in social media via behavioral analysis. In: European con-
ference on information retrieval, Springer, pp 703–714 (2015)

 25. Wang, D., Navathe, S.B., Liu, L., Irani, D., Tamersoy, A., Pu, C.: Click traffic analysis of short url
spam on twitter. In: 9th IEEE International Conference on Collaborative Computing: Networking,
pp. 250–259. Applications and Worksharing, IEEE (2013)

1 3

Journal of Network and Systems Management (2021) 29:21 Page 25 of 27 21

 26. Verma, M., Sofat, S.: Techniques to detect spammers in twitter-a survey. Intl. J. Comput. Appl.
85(10), (2014)

 27. Selvaganapathy, S., Nivaashini, M., Natarajan, H.: Deep belief network based detection and cat-
egorization of malicious urls. Inf. Secur. J. 27(3), 145–161 (2018)

 28. Vinayakumar, R., Soman, K., Poornachandran, P.: Evaluating deep learning approaches to char-
acterize and classify malicious url’s. Journal of Intelligent & Fuzzy Systems 34(3), 1333–1343
(2018)

 29. Saxe, J., Berlin, K.: expose: A character-level convolutional neural network with embeddings for
detecting malicious urls, file paths and registry keys. arXiv preprint arXiv:170208568 (2017)

 30. Patgiri, R., Katari, H., Kumar, R., Sharma, D.: Empirical study on malicious url detection using
machine learning. In: International Conference on Distributed Computing and Internet Technol-
ogy, Springer, pp 380–388 (2019)

 31. Begum, A., Badugu, S.: A study of malicious url detection using machine learning and heuristic
approaches. In: Advances in Decision Sciences, pp. 587–597. Image Processing, Security and
Computer Vision, Springer (2020)

 32. Kulkarni, A.D., Brown, L.L., III.: Phishing websites detection using machine learning. Intl. J.
Adv. Comput. Sci. Appl. 10(7), (2019)

 33. Zafar, S., Jangsher, S., Bouachir, O., Aloqaily, M., Othman, J.B.: Qos enhancement with deep
learning-based interference prediction in mobile iot. Comput. Commun. 148, 86–97 (2019)

 34. Zafar, S., Jangsher, S., Aloqaily, M., Bouachir, O., Othman, J.B.: Resource allocation in moving
small cell network using deep learning based interference determination. In: 2019 IEEE 30th
Annual International Symposium on Personal, pp. 1–6. Indoor and Mobile Radio Communica-
tions (PIMRC), IEEE (2019)

 35. Lee, S., Kim, J.: Warningbird: a near real-time detection system for suspicious urls in twitter
stream. IEEE Trans. Depend. Secure Comput. 10(3), 183–195 (2013)

 36. Liew, S.W., Sani, N.F.M., Abdullah, M.T., Yaakob, R., Sharum, M.Y.: An effective security alert
mechanism for real-time phishing tweet detection on twitter. Comput. Secur. 83, 201–207 (2019)

 37. Patil, D.R., Patil, J.B.: Feature-based malicious url and attack type detection using multi-class
classification. ISeCure 10(2), (2018)

 38. Namasivayam, B.: Categorization of phishing detection features. PhD thesis, PhD thesis, Ari-
zona State University (2017)

 39. Hai, Q.T., Hwang, S.O.: Detection of malicious urls based on word vector representation and
ngram. J. Intell. Fuzzy Syst. 35(6), 5889–5900 (2018)

 40. Yuan, H., Yang, Z., Chen, X., Li, Y., Liu, W.: Url2vec: Url modeling with character embeddings
for fast and accurate phishing website detection. In: 2018 IEEE Intl Conf on Parallel & Dis-
tributed Processing with Applications, Ubiquitous Computing & Communications, Big Data &
Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), IEEE, pp 265–272 (2018)

 41. Jang, B., Kim, I., Kim, J.W.: Word2vec convolutional neural networks for classification of news
articles and tweets. PLoS ONE 14(8), (2019)

 42. Otoum, S., Kantarci, B., Mouftah, H.T.: On the feasibility of deep learning in sensor network
intrusion detection. IEEE Netw. Lett. 1(2), 68–71 (2019)

 43. Aloqaily, M., Otoum, S., Al Ridhawi, I., Jararweh, Y.: An intrusion detection system for con-
nected vehicles in smart cities. Ad Hoc Netw. 90, 101842 (2019)

 44. Javed, A.R., Usman, M., Rehman, S.U., Khan, M.U., Haghighi, M.S.: Anomaly detection in
automated vehicles using multistage attention-based convolutional neural network. IEEE Trans.
Intell. Transport. Syst. pp 1–10, https ://doi.org/10.1109/TITS.2020.30258 75 (2020)

 45. Rehman Javed, A., Jalil, Z., Atif Moqurrab, S., Abbas, S., Liu, X.: Ensemble adaboost classifier
for accurate and fast detection of botnet attacks in connected vehicles. Trans. Emerg. Telecom-
mun. Technol. p e4088 (2020)

 46. Le, H., Pham, Q., Sahoo, D., Hoi, S.C.: Urlnet: learning a url representation with deep learning
for malicious url detection. arXiv preprint arXiv:180203162 (2018)

 47. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: t-distributed stochastic neighbor embedding. J. Mach. Learn. Res.
12, 2825–2830 (2011)

https://doi.org/10.1109/TITS.2020.3025875

 Journal of Network and Systems Management (2021) 29:21

1 3

21 Page 26 of 27

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Sara Afzal is an Instructor at the Department of Computer Science, National University of Computer and
Emerging Sciences, Pakistan. She received her Bachelors degree in Computer Science from the same
institution and is currently pursuing her Master’s in Computer Science. Her research interests include but
are not limited to Machine Learning and Network and Cyber Security.

Muhammad Asim is an Associate Professor at the Department of Computer Science, National University
of Computer and Emerging Sciences, Pakistan. Having attained a Ph.D. from Liverpool John Moores
University, he researches in the fields of Cloud Computing, Computer Networks, Network Security, Inter-
net of Things and Wireless Sensor Networks.

Abdul Rehman Javed is a lecturer at the Department of Cyber Security, Air University, Islamabad, Paki-
stan. He received his Master’s degree in Computer Science from the National University of Computer
and Emerging Sciences, Islamabad, Pakistan. His current research interests include but are not limited
to mobile and ubiquitous computing, data analysis, knowledge discovery, data mining, natural language
processing, smart homes, and their applications in human activity analysis, human motion analysis, and
e-health.

Mirza Omer Beg is an Associate Professor at the Department of Computer Science, National Univer-
sity of Computer and Emerging Sciences, Pakistan. His research interests lie at the confluence of Green
Computation, Compiler Optimizations, Memory Hierarchy Optimizations, Constraint Programming and
Graph Theoretic Algorithms. During the last few years he has worked on several compiler optimization
problems targeted towards low-end, power constrained processors. These include formalizing instruction
scheduling for clustered architectures, memory hierarchy optimizations and code generation.

Thar Baker is an Associate Professor at the Department of Computer Science, College of Computing
and Informatics at University of Sharjah (UoS) in UAE. Before joining UoS, Thar was Reader in Cloud
Engineering, Head of Applied Computing Research Group (ACRG), and International Mobility Head
in the Department of Computer Science at Liverpool John Moores University (LJMU). He is Member
of IEEE, BCS, ACM, Senior Fellow of UK Higher Education Academy (SFHEA), and a Member of
Institute of Leadership and Management (iLM). Baker has published numerous refereed research papers
and has been actively involved as a member of editorial board and review committee for a number of peer
reviewed international journals and conferences.

Authors and Affiliations

Sara Afzal1 · Muhammad Asim1 · Abdul Rehman Javed2 · Mirza Omer Beg3 ·
Thar Baker4

 Sara Afzal
 sara.afzal@nu.edu.pk

 Abdul Rehman Javed
 abdulrehman.cs@au.edu.pk

 Mirza Omer Beg
 omer.beg@nu.edu.pk

 Thar Baker
 tshamsa@sharjah.ac.ae

1 National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan

1 3

Journal of Network and Systems Management (2021) 29:21 Page 27 of 27 21

2 Department of Cyber Security, Air University, Islamabad, Pakistan
3 National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan
4 Department of Computer Science, University of Sharjah, Sharjah 27272, UAE

	URLdeepDetect: A Deep Learning Approach for Detecting Malicious URLs Using Semantic Vector Models
	Abstract
	1 Introduction
	2 Detection of Malicious URLs
	2.1 Problem Formulation
	2.2 Lexical Features of URL

	3 Related Work
	3.1 Usage of Tweet Features and Machine Activity Data
	3.2 Usage of Lexical, DomainHost, and URL Based Features
	3.3 Usage of Vector Models and Neural Networks

	4 URLdeepDetect
	4.1 Technique 1: Word Embedding and Long Short-Term Memory
	4.1.1 Tokenization
	4.1.2 Word Embedding: Word2Vec
	4.1.3 Long Short-Term Memory (LSTM)

	4.2 Technique 2: URL Encryption and k-Means Clustering

	5 Analysis and Evaluation of Results
	5.1 Dataset Overview
	5.1.1 Pre-processing of Data

	5.2 Evaluation Measures and Computing Environment
	5.3 Evaluation of Technique 1
	5.4 Evaluation of Technique 2
	5.5 Evaluation of Conventional Classification Models
	5.6 Comparative Analysis of Results

	6 Conclusion and Future Work
	References

